首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organophosphorus insecticide, chlorpyrifos, has been widely applied in agriculture; in veterinary, against household pests; and in subterranean termite control. Due to its slow rate of degradation in soil, it can persist for extended periods in soil with a significant threat to environment and public health. The mixed and pure fungi were isolated from three soils by enrichment technique. The enriched mixed fungal cultures were capable of biodegrading chlorpyrifos (300 mg L−1) when cultivated in Czapek Dox medium. The identified pure fungal strain, Acremonium sp., utilized chlorpyrifos as a source of carbon and nitrogen. The highest chlorpyrifos degradation (83.9%) by Acremonium sp. strain GFRC-1 was found when cultivated in the nutrient medium with full nutrients. Desdiethyl chlorpyrifos was detected as a major biodegradation product of chlorpyrifos. The isolated fungal strain will be used for developing bioremediation strategy for chlorpyrifos-polluted soils.  相似文献   

2.
Rates of degradation of seven organophosphate nematicides and insecticides were examined in two soils known to show accelerated biodegradation of fenamiphos and one soil known to show accelerated biodegradation of chlorpyrifos. The results indicated that several organophosphate insecticides and one nematicide were susceptible to cross-enhanced degradation in the soil showing accelerated biodegradation of chlorpyrifos. No cross-enhancement was observed in the two soils showing accelerated degradation of fenamiphos. Fumigation resulted in the complete inhibition of pesticide degradation in all soils. The data suggested that the cross-enhancement of selected pesticides in chlorpyrifos-degrading soil was dependent on the structural similarity of the compounds. Mechanisms of degradation of pesticide in soil support this hypothesis, where structurally similar compounds (diazinon, parathion, coumaphos and isazofos) were hydrolysed by microbial activity in chlorpyrifos-degrading soil but the degradation products were accumulated. Enhanced degradation of chlorpyrifos and fenamiphos was found to be stable in the laboratory condition for a period of one year.  相似文献   

3.
《Applied soil ecology》2006,31(1-2):136-146
Effects of foliar and soil insecticide applications on collembolan density and community structure were investigated in an early set-aside arable field. Insecticides were applied separately and in combination to the soil surface (chlorpyrifos) and vegetation (dimethoate). The treatments were established to investigate effects of above- and below-ground insects on plant succession. Starting in 1997, the insecticides were applied from April to November at 2-week (dimethoate) or monthly intervals (chlorpyrifos). Samples were taken in 2000 prior to and after insecticide application in March and June, respectively. Both insecticides are lethal to Collembola and insecticide applications resulted in a strong decline in the density of total Collembola. Application of chlorpyrifos reduced collembolan density to a greater extent than dimethoate; the effect of the combined application on total collembolan numbers was similar to that of chlorpyrifos only. Collembolan numbers recovered after the insecticide applications in 1999, but in the treated plots populations were still reduced in March 2000 before the re-application of insecticide treatments in that year. The insecticide applications changed the dominance structure of the collembolan community, but had no effects on species composition. The results may be of relevance for the interpretation of studies on plant–insect herbivore interactions using insecticides.  相似文献   

4.
 The persistence of metolachlor, a soil-applied herbicide, was studied under field conditions involving repeated herbicide applications. The test field received four applications of metolachlor over an 8-month period, which included two cropping seasons. There was a trend for more rapid rates of degradation with increasing numbers of previous treatments, with fifty percent dissipation time (DT50) of metolachlor declining from 18 days in the first spray to 2.5 days in the fourth spray. An effort was made to isolate the microbial population which had become acclimated to the herbicide from this field soil. A fungal community isolated from this soil showed the capacity to degrade up to 99.6% of the metolachlor within a span of 20 days. The bacterial community isolated could also degrade up to 81.5% of the metolachlor. Hence, this study clearly indicated that repeated applications of metolachlor to soil resulted in the generation of an adapted microbial population with an enhanced ability to degrade the applied herbicide. Received: 13 November 1998  相似文献   

5.
The exclusion of insects from terrestrial ecosystems may change productivity, diversity and composition of plant communities and thereby nutrient dynamics. In an early-successional plant community we reduced densities of above- and below-ground insects in a factorial design using insecticides. Beside measuring vegetation dynamics we investigated the effects of insect exclusion on above- and below-ground plant biomass, below-ground C and N storage by plants, litter quality, decomposition rate, soil water content, soil C:N ratio, nutrient availability and soil microbial activity and biomass.The application of soil insecticide had only minor effects on above- and below-ground biomass of the plant community but increased carbon content in root biomass and total carbon and nitrogen storage in roots. In one of the three investigated plant species (Cirsium arvense), application of soil insecticide decreased nitrogen concentration of leaves (−12%). Since C. arvense responded positively to soil insecticide application, this effect may be due to drought stress caused by root herbivory. Decomposition rate was slightly increased by the application of above-ground insecticide, possibly due to an impact on epigeic predators. The application of soil insecticide caused a slightly increased availability of soil water and an increased availability of mineralised nitrogen (+30%) in the second season. We explain these effects by phenological differences between the plant communities, which developed on the experimental plots. Microbial biomass and activity were not influenced by insecticide application, but were correlated to above-ground plant biomass of the previous year. Overall, we conclude that the particular traits of the involved plant species, e.g. their phenology, are the key to understand the resource dynamics in the soil.  相似文献   

6.
拟除虫菊酯类农药微生物降解研究进展   总被引:21,自引:3,他引:21  
王兆守  李顺鹏 《土壤》2005,37(6):577-580
拟除虫菊酯类农药是杀虫剂中的第三大类,这类农药残留已成为目前农产品中的主要农药残留类型之一。而微生物在降解农药残留中具有重要的作用,微生物降解技术已成为去除农药残留的绿色生产技术。拟除虫菊酯类农药的微生物降解国内外已有的研究主要集中在降解现象,菌株的分离、鉴定及生理生化特性,酶学,不同光学异构体的降解、降解途径等方面,本文对此进行了较详细的回顾,并对将来的研究方向进行了展望。  相似文献   

7.
The concentration of dichlorodiphenyltrichloroethane (DDT) was determined in a sandy soil of specially Protected Natural Area Osinskaya Lesnaya Dacha (Perm region) 45 years after the last application of the insecticide in this area. The concentration of DDT in the soil exceeded the maximum permissible concentration by 250 times and reached 25.05 mg/kg of soil. Under the conditions of model experiment, efficient decontamination of the soil was recorded in the system with the introduced strain Rhodococcus wratislaviensis Ch628; the DDT concentration decreased by 99.7% and equaled 0.07 mg/kg. The process of DDT degradation proceeded slower in the model soil system with autochthonous microbial complex. In this case, 58.2% DDT degraded in 70 days, and the final concentration was 10.47 mg/kg. The soil lost its toxicity for animal and plant test objects by the end of the experiment only in the model system containing the R. wratislaviensis Ch628 strain.  相似文献   

8.
Naphthenic acids (NAs) are a complex group of naturally occurring oil sands constituents that constitute a significant portion of the dissolved organic carbon (DOC) pool available for microbial degradation in the process-related waste water associated with oil sands mine sites. One approach to understanding the biological fate of oil sands process-derived carbon and nitrogen in aquatic reclamation of the mine sites involves the use of stable isotope analyses. However, for stable isotope analyses to be useful in such field-based assessments, there is a need to determine how microbial degradation of a complex mixture of NAs might change the stable isotope values (δ 13C, δ 15N). In batch cultures and semi-continuous laboratory microcosms, utilization of a commercial mixture of NAs by oil sands-derived microbial cultures resulted in microbial biomass that was similar or slightly 13C enriched (1.4‰ to 3.0‰) relative to the DOC source, depending on the length of incubation. Utilization of a NA-containing extract of oil sands processed water resulted in greater 13C enrichment of microbial biomass (8.5‰) relative to the DOC source. Overall, the δ 13C of the DOC comprised of complex mixtures of NAs showed minimal change (?0.5‰ to ?0.1‰) during the incubation period whereas the δ 13C of the dissolved inorganic carbon (DIC) was more variable (?5.0‰ to +5.4‰). In tests where the concentration of available nitrogen was increased, the final biomass values were 15N enriched (3.8‰ to 8.4‰) relative to the initial biomass. The isotope trends established in this study should enhance our ability to interpret field-based data from sites with hydrocarbon contamination, particularly in terms of carbon source utilization and 15N enrichment.  相似文献   

9.
采用平板计数法和磷脂脂肪酸(PLFA)分析方法评价了喷施敌敌畏杀虫剂后对桃树叶际微生物群落的影响。平板计数法分析结果表明,经80%敌敌畏乳油的1000倍液喷雾处理后,可培养微生物数量低于喷水对照。PLFA分析结果显示,桃树叶际真菌标记物18:1ω9t磷脂脂肪酸(PLFAs)含量最高,超过总PLFAs含量的60%;喷施杀虫剂后,叶际微生物PLFAs的含量、种类均有所增加,明显有别于喷水对照;并且增加敌敌畏处理次数会增强其对叶际微生物群落影响的显著性。PLFAs主成分分析表明,处理1d后不同样品的叶际微生物群落结构差异最明显,7d后,不同处理样品的叶际微生物群落结构差异变小。  相似文献   

10.
Metabolism of metolachlor by fungal cultures.   总被引:5,自引:0,他引:5  
Metabolism of metolachlor was studied using a mixed fungal culture isolated from a metolachlor-acclimated field soil. The culture rapidly degraded metolachlor with a half-life of 3.5 days in broth. Aspergillus flavus and A. terricola purified from the mixed culture also metabolized metolachlor effectively. Five metabolites obtained were identified by co-chromatography on HPLC by comparing with authentic standards and by GC-MS. Hydrolytic dechlorination, N-dealkylation, and amide bond cleavage appeared to be the dominant transformations involved in the metabolism. Metabolites, 6-methyl 2-ethyl acetanilide and 6-methyl 2-ethyl aniline, identified in this study are new metabolites of metolachlor being reported from any mixed or pure microbial cultures. The mixed culture could degrade 99% of metolachlor at a fortification level as high as 100 microg mL(-)(1).  相似文献   

11.
[目的]探究设施土壤微生物量碳、氮对菌渣还田的响应,为实现设施瓜菜生产的可持续发展提供理论依据和技术支持。[方法]以草菇菌渣为材料,在山东省莘县进行了田间试验,以常规鸡粪还田为对照(CON),设置5个菌渣(FR)还田量,研究菌渣还田对设施土壤有机碳(SOC)、全氮(TN)和微生量碳(MBC)、氮(MBN)的影响。[结果] 5个菌渣还田处理的菌渣使用量分别为15,30,45,60和75 t/hm~2)相比CON增加了SOC和TN。SOC分别增加了12.0%,11.2%,21.6%,33.1%和31.7%,TN分别增加了3.1%,6.3%,19.9%,29.4%和26.4%。除FR_1以外,其他4个菌渣还田处理相比增加了MBC和MBN,MBC分别增加了16.1%,19.9%,36.8%和50.7%,MBN分别增加了3.3%,37.7%,40.4%和60.9%。相比CON,高量菌渣还田处理增加了MBC/SOC和MBN/TN。相关分析表明,MBC,MBN与SOC和TN均呈极显著正相关。[结论]菌渣还田可以提高土壤有机碳、土壤全氮和土壤微生物碳、氮。土壤微生物碳、氮含量随着菌渣还田量的增加而增加,因此菌渣还田是提高设施土壤微生物活性及土壤肥力的有效措施。  相似文献   

12.
2014年9-10月设计小麦盆栽试验,设置常规施氮处理(CK)、氮肥添加葡萄糖(G)、氮肥添加葡萄糖和巨大芽孢杆菌(Bacillus megaterium,GY)、氮肥添加秸秆(S)、氮肥添加秸秆和巨大芽孢杆菌(SY)5种处理,通过观测小麦苗期温室气体排放、土壤碳氮环境以及微生物菌群等变化,以分析研究不同碳源和巨大芽孢杆菌对土壤温室气体排放和微生物的影响。结果表明:(1)在施氮的同时增施葡萄糖(G)以及葡萄糖和巨大芽孢杆菌处理(GY),对土壤微生物碳含量变化影响不显著,但降低土壤观测物种数与物种多样性;明显抑制硝态氮和铵态氮的增加,继而抑制N2O排放量的增加,同时促进了旱地土壤对CH4的吸收。(2)若用秸秆代替葡萄糖,在施氮的同时增施秸秆(S),显著减少小麦苗期土壤硝态氮含量,但对N2O排放影响不显著。与秸秆相比,葡萄糖能快速提供有机碳,作为碳源更能体现巨大芽孢杆菌改善土壤微生物菌群、减少硝态氮生成及N2O气体排放的效果。  相似文献   

13.
本试验通过两室分根装置种植玉米,利用网袋法研究接种Glomus mosseae和Glomus etunicatum两种AM真菌对玉米秸秆降解的影响。试验分别在玉米移栽后第20 d、30 d、40 d、50 d和60 d时取样,通过测定接种AM真菌后玉米秸秆中碳、氮释放,土壤中3种常见酶活性、微生物量碳、微生物量氮及土壤呼吸的动态变化,探讨AM真菌降解玉米秸秆可能的作用机制。研究结果表明:经60 d的培养后,与未接种根室相比,接种G.mosseae和G.etunicatum真菌的菌根室玉米秸秆降解量提高了20.75%和20.97%;另外,接种G.mosseae和G.etunicatum加快了玉米秸秆碳素释放,降低了氮素释放,致使碳氮比降低25.45%和26.17%,有利于秸秆进一步降解。在本试验条件下,接种AF真菌的菌根室中土壤酸性磷素酶、蛋白酶和过氧化氢酶活性均有显著提高,并增加了微生物量碳、氮和土壤呼吸作用,形成了明显有别于根际的微生物区系。这一系列影响都反映出AM真菌能够直接或间接作用于玉米秸秆的降解过程,是导致玉米秸秆降解加快的重要原因。  相似文献   

14.
堆肥对有机氯农药挥发和降解的效果   总被引:1,自引:0,他引:1  
选用鸡粪和玉米秸秆为堆肥原料,进行高温好氧堆肥试验,研究了堆肥处理对六六六(HCH)和滴滴涕(DDT)挥发和降解的影响。研究表明,30 d内,堆肥过程的高温和通气条件导致HCH和DDT的挥发比例分别为20.6%、13.8%;扣除堆肥过程中高温和通气等因素对有机氯挥发的影响后,未添加菌剂处理HCH和DDT的降解率分别为37.2%和14.9%,添加菌剂处理HCH和DDT的降解率分别为42.1%和24.2%,与未添加菌剂处理差异显著;α-HCH、δ-HCH的降解率高于β-HCH、γ-HCH,pp'-DDT、op'-DDT的降解率高于pp'-DDD、pp'-DDE。试验结果说明,堆肥过程中高温和通气促使了HCH和DDT向气相中挥发,而该过程的生化反应有助于HCH和DDT等有机氯农药的降解。  相似文献   

15.
通过分析不同施肥措施玉米耕层土壤碳、氮含量及相关关键酶活性和产量特征,探讨秸秆全量还田条件下不同施肥措施玉米产量差异的形成原因,为进一步提升黑龙江省第一积温带玉米耕层土壤生产能力提供理论和技术支持。试验以黑龙江省第一积温带主栽品种京农科728为试验材料,采用大区对比试验设计,设置掺混肥+尿素(NHF)、碳基肥+尿素(TJF)和控释肥(KSF)3个施肥措施,研究了秸秆还田配合施肥措施对玉米耕层土壤碳、氮含量及相关关键酶活性和产量的影响,分析了秸秆还田配合施肥措施玉米耕层土壤有机碳、微生物量碳、铵态氮、硝态氮、碱解氮、微生物量氮含量和土壤脲酶、过氧化氢酶、纤维素酶、蔗糖酶活性的变化规律。结果表明,与NHF相比,灌浆期TJF土壤有机碳、土壤微生物量碳含量分别提高了7.67%、7.29%,土壤铵态氮、土壤硝态氮、土壤碱解氮、土壤微生物量氮含量分别提高了1.97%、7.77%、7.29%、6.28%,土壤脲酶、土壤过氧化氢酶、土壤纤维素酶、土壤蔗糖酶活性分别提高了23.29%、5.92%、7.97%、15.70%;KSF土壤有机碳、土壤微生物量碳含量分别提高了10.80%、10.86%,土壤铵态氮、土壤硝态氮、土壤碱解氮、土壤微生物量氮含量分别提高了21.39%、12.30%、31.97%、21.08%,土壤脲酶、土壤过氧化氢酶、土壤纤维素酶、土壤蔗糖酶活性分别提高了25.81%、24.35%、12.76%、18.93%。与NHF相比,TJF、KSF产量分别提高了1.99%和13.24%。本研究推荐,秸秆全量还田条件下黑龙江省第一积温带玉米生产适宜施肥模式为70 cm宽行+40 cm窄行大垄双行种植,配施控释肥600 kg/hm2。  相似文献   

16.
张强  邓军  毛瑾  朵莹  程杰  郭梁 《水土保持通报》2021,41(1):29-34,40
[目的]探究半干旱区草地根际土壤碳氮及土壤微生物量碳氮对不同封禁年限响应特征,为半干旱草地生态系统物质循环研究以及生态系统养分限制判定等提供依据,并为确定合理围封年限提供科学参考.[方法]以宁夏回族自治区固原市云雾山国家级自然保护区半干旱草原为研究对象,应用生态化学计量学方法对比分析放牧地与围封10,25,35 a样地...  相似文献   

17.
The effect of adding easily available and more complex carbon sources, with and without nitrogen, on fungal and bacterial growth and activity in soil were studied in the laboratory. Total microbial activity was estimated by measuring respiration, fungal growth with the acetate-in-ergosterol incorporation technique and bacterial growth with the thymidine and leucine incorporation techniques. The substrate additions consisted of glucose and cellulose, with and without nitrogen (as ammonium nitrate), and gelatine. The microbial development was followed over a 2-month period. The respiration rate increased within a few days after adding glucose, with and without nitrogen, and gelatine, initially by more than 10 times, but after 2 months no differences were seen compared with the control. Bacterial growth estimated with the thymidine and leucine incorporation techniques gave similar results. Adding glucose with nitrogen, or gelatine, increased bacterial growth within a few days up to 10 times, but even after 2 months of incubation bacterial growth rates were still about 5 times higher than in the control. Adding only glucose increased bacterial growth rates by about twice over the whole incubation period. Fungal growth rates especially increased after adding cellulose and nitrogen, although a minor increase was found after adding cellulose alone. Fungal growth rates started to increase after 10 days of incubation with cellulose. There were indications of synergistic effects in that bacterial growth increased after the fungi had started to grow after adding cellulose. Treatments resulting in high bacterial growth rates (adding easily available carbon sources) led to decreased fungal growth rates compared with the control, indicating antagonistic effects of bacteria.  相似文献   

18.
菠菜是我国蔬菜出口的重要品种之一,其毒死蜱残留量直接关系到我国农产品的出口和消费者的安全。采用气相色谱法(GC-NPD)测定毒死蜱残留量,研究了硝酸稀土对菠菜中毒死蜱残留动态的影响。结果表明,不论是喷施农药之前2d还是喷施农药之后2d喷施硝酸稀土,不同的硝酸稀土对菠菜中的毒死蜱残留都有不同程度的降解作用,且随着喷药后时间的延长,毒死蜱在菠菜中的残留量逐渐减少。不同时间喷施硝酸稀土,对菠菜中毒死蜱残留降解的效果存在差异,药后喷施的效果优于药前喷施。在硝酸稀土种类的选择上,首先选择对毒死蜱降解效果好的硝酸铈和硝酸钕,其次选择常乐益植素和硝酸镧。根据稀土农用的安全性分析,参考植物性食品中稀土最大残留限量标准,选择硝酸稀土作为农药残留降解制剂用于蔬菜安全生产,在技术上是可行的,人类食用是安全的。  相似文献   

19.
陈利军  孙波  金辰  蒋瑀霁  陈玲 《土壤》2015,47(2):340-348
施用有机肥是快速培育瘠薄土壤的一个重要措施。针对中亚热带第四纪红黏土发育的红壤旱地,建立了玉米和花生单作系统等碳量投入有机肥和生物炭的田间试验,利用聚合酶链式反应—变性梯度凝胶电泳(polymerase chain reaction-denaturing gradient gel electrophoresis,PCR-DGGE)方法研究了土壤细菌和真菌群落组成和多样性的变化,分析了土壤呼吸速率(CO2通量)的变化及其与微生物多样性的关系。两年的试验表明,不同施肥方式导致微生物群落结构显著分异,施用有机肥和生物炭显著增加了细菌多样性,但施肥第二年真菌多样性有下降趋势。秸秆和猪粪配施显著增加了土壤呼吸速率,土壤呼吸速率与细菌和真菌多样性呈显著正相关,细菌多样性对土壤呼吸的影响(相对贡献率为71%)显著高于真菌(29%)。土壤磷素(全磷和速效磷)含量的变化是驱动红壤微生物多样性变化的主导因素,其对细菌和真菌多样性的相对贡献率分别为44.8%和47.4%。因此,合理配施秸秆和猪粪可以快速提高瘠薄红壤的生物功能。  相似文献   

20.
为探讨施用有机物料对宁夏沙化土壤的改良效果,以当地易得的杨树枝条、玉米秸秆、牛粪为原料在2015年4~10月期间进行桶栽试验,采用Biolog技术研究了有机物料单施和配施对宁夏沙化土壤微生物群落功能多样性的短期影响。结果显示:(1)施用有机物料使土壤微生物利用碳源总量增加,微生物代谢活性增强。其利用比例较高的碳源类型为氨基酸类、胺类和碳水化合物类。(2)单施有机物料比配施有机物料对微生物代谢的促进作用强;单施杨树枝条粉碎物的土壤微生物平均颜色变化率在所有处理中最大,而且微生物各种多样性指数也有明显提高。(3)对各类碳源的利用强度与土壤易氧化有机碳、全氮含量和碳氮比之间表现出了密切的关系,微生物多样性指数则与土壤易氧化有机碳和无机氮存在紧密联系。本研究表明,土壤施入杨树枝条粉碎物后微生物代谢活性增强、土壤质量提高,对土壤改良有积极作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号