首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《CATENA》2001,43(3):177-189
Soil utilization has, for many years, strongly influenced the properties of soils in the undulating terrain of the Lublin Upland. Population increase and suitability of the soils (particularly Luvisols, Cambisols and Chernozems derived from loess and loess-like formations) for arable agriculture were the main reasons for deforestation. This led to erosion, which caused changes in soil morphology and the development of a mosaic soil cover. Accelerated erosion was strongest on slopes exceeding 18%. It resulted in selective loss of clay. The main changes in silty soils developed from loess and loess-like deposits occurred in the first few decades after cultivation started. They included a decrease in organic matter content from an average of 2.3% organic C in the forest soils to about 1% in the arable soils. No further changes in humus content were observed, but the proportion of fulvic acids increased at the expense of humic acids. The pHKCl rate decreased at the slope foot from about 5.8 to 5.0. Morphological changes in rendzinas were much lower than in the soils derived from loess. We do not expect big changes in these soils in the next 100 years if their use remains the same.  相似文献   

2.
3.
Degradation of an acylated starch-plastic mulch film was evaluated in two soil types, a gray lowland soil (A) and a volcanic andosol (V). Weight loss, tensile strength (TS) loss and loss of percentage elongation (%E) were measured under laboratory conditions (black and white mulch films), and in the field (black films). Changes in the counts of total bacteria, total fungi, gram-negative bacteria, total Fusarium, ATP (adenosine triphosphate) content, % nitrification, pH (H2O), and total C and total N contents were determined at 4,8, 12, and 20 months in the field test soils where the mulch was repeatedly applied, and compared with controls. Film weight loss was greater in soil V than in soil A in both the laboratory and the field, and the losses were greater in the laboratory than in the field in both soils A and V. Significant TS losses and considerable %E losses were observed. Values were similar in the laboratory and in the field. No significant changes in the counts of bacteria, fungi, gram-negative bacteria, and Fusarium were observed. The ATP content of the test soils increased slightly compared with the initial values. The ATP content in the control soils initially fell, and then increased in response to weeding. Nitrification remained almost unchanged in the test soils, but fell in the control soils until the last sampling. However, the mulch film underwent a definite process of degradation in the soils, with great loss of physical properties and lesser weight loss. This degradation had no adverse impact on the soil microflora.  相似文献   

4.
绿化植物废弃物堆肥对城市绿地土壤的改良效果   总被引:13,自引:2,他引:11  
顾兵  吕子文  方海兰  李桥  郝冠军 《土壤》2009,41(6):940-946
针对城市中普遍存在的绿地土壤退化和有机废弃物处理处置难的现状,选择典型城市土壤进行绿化植物废弃物堆肥不同用量的绿地现场土壤改良实验.结果表明:绿化植物废弃物堆肥能提高土壤持水能力;降低土壤的酸碱度;增加土壤有机质、总N、总P、有效P、生物量C、N和微生物总量;堆肥对土壤全K的含量总体影响不大,但速效K的含量却成倍增加;说明绿化植物废弃物能改善土壤理化性质,提高土壤肥力,且随着堆肥用量的增加,对土壤的改良作用也越显著;鉴于绿化植物废弃物高C/N,其用量宜控制在13240 kg/hm~2以内.绿化植物废弃物堆肥就地利用即能改良城市退化土壤,又减少城市废弃物量,有利于提高城市生态环境质量.  相似文献   

5.
城郊结合区蔬菜种植地土壤性质特征   总被引:26,自引:3,他引:26  
Human activity and urbanization result in urban-rural environmental gradients.Undersanding effect of the gradients on soil properties is necessary for management of the soils around urban areas.In this study,soil quality of some vegetable fields was characterized along an urban-rural gradient in shaoxing County,Zhejiang Province.Fifteen soilphysical and chemical properties were evaluated by using principal component analysis.Results showed that there was a great variation in the soil quality along the gradient.From rural to urban zones,soil organic matter,water-stable aggregates,cation exchangeable capacity(CEC),total N and P,and available K increased,whereas soil pH value decreased.In addition,Pb,Cu,Ni,Co,Zn and Cr in the soils tended to be accumulated toward the urban zone.Sequential chemical extraction showed that mobility of all the heavy metals in the soils tended toincrease from the rural to the urban zones.The variation of soil properties accounted for by the first principal component was significantly explained bythe difference in application rates of municipal wastes.  相似文献   

6.
Experimental shifting cultivation was conducted at the Balai Ringin (B. Ringin) and Sabal sites in Sarawak, Malaysia. At the sites, plots (10 x 10 m2) were burned with the fuel of aboveground biomass amounting to 0 (control), 100, 200, and 300 Mg ha-1. At the B. Ringin site, the soils were clayey and strongly weathered with a strongly acidic characteristic. Ash addition enabled to alleviate the soil acidity and to increase the amounts of nutrients of the soils, especially the surface soils. It was indicated that 1) N addition from ash to the soils was negligible, 2) the losses of nutrients by runoff water were not substantial compared with the amounts of nutrients contained in ash, 3) ash alkalinity seemed to be consumed for inactivating exchangeable AI mainly in the surface soils, and 4) development of variable negative charges could contribute to the retention of inorganic bases derived from ash. After harvest of upland rice, the soil chemical properties in the plots treated with 100 and 200 Mg ha-1 fuel returned to the levels before burning, indicating the rapid loss of nutrients due to leaching and erosion as well as the uptake by plants. However, the soils treated with 300 Mg ha-1 fuel still showed high contents of exchangeable bases and a low content of exchangeable AI. On the other hand, the soils at the Sabal site were sandy and were characterized by a very low nutrient status. The changes in the amounts of nutrients by ash addition were similar to those at the B. Ringin site. However, the changes in the level of exchangeable AI which were not appreciable were probably due to the low AI content. It was postulated that because of the sandy texture and low CEC of the soils, inorganic bases contained in ash were only suspended in the soil solution. Taking into account the low yield of rice and low level of secondary biomass, it appeared that most of the nutrients were lost downward in soils by leaching.  相似文献   

7.
8.
潮土磷素累积流失风险及环境阈值   总被引:4,自引:3,他引:1  
潮土是中国分布比较广、施肥强度大的典型耕作土壤,潮土中磷素累积与流失对区域水环境的污染风险不容忽视。该研究在潮土面积最大的河南省采集磷素水平不同的典型潮土作为供试土壤,采用人工模拟降雨及土柱模拟试验方法,通过测定土壤中Olsen-P和溶解态活性磷CaCl2-P含量以及径流或淋滤液中各形态磷浓度,研究了潮土中磷素随地表径流和下渗流失特征,并通过分段线性模型对潮土的磷素环境阈值进行拟合。结果表明:1)不同形态磷在潮土土壤剖面中均有一定程度的累积,土壤Olsen-P和CaCl2-P含量表现为高磷最大,中磷次之,低磷最小,而磷吸持指数值表现为低磷最大,中磷次之,高磷最小。从磷素的剖面分布来看,低磷和中磷水平潮土Olsen-P和CaCl2-P含量随着土壤深度的增加而降低,而高磷水平的潮土Olsen-P和CaCl2-P含量在20~40 cm土层含量最高。2)不同磷水平潮土径流中总磷(TP)、可溶性总磷(TDP)和颗粒磷(PP)浓度和流失量大小表现为高磷最高,中磷和低磷水平土壤次之,潮土径流流失以PP为主。3)低磷和中磷水平潮土淋滤液中的各形态磷浓度和流失量随着土层深度的增加而降低,而在高磷水平的潮土淋滤液中,20~40 cm土层淋滤液中磷浓度和流失量要显著高于其他土层,在整个土壤剖面磷素浓度随着土层深度的增加呈现先上升后下降的趋势,潮土淋滤流失以TDP为主,其中,高磷和低磷水平潮土以可溶性有机磷占主导,而中磷水平潮土以钼酸盐反应磷(MRP)占主导。4)通过分段回归模型将不同含磷水平潮土的水溶性磷与土壤中Olsen-P含量进行拟合,得出潮土土壤磷素环境阈值为24.65 mg/kg,研究还表明径流和渗漏液中TP浓度与土壤CaCl2-P含量呈显著正相关,因此可通过测定CaCl2-P来预测并判断土壤磷素流失风险。  相似文献   

9.
Plant nitrogen (N) acquisition is strongly controlled by the concentration of available inorganic and organic N in the soil solution and by biogeochemical processes in the rhizosphere. However, until now it was hardly possible to reliably estimate plant-available N in soil microsites. Here, a novel microdialysis approach based on passive diffusion sampling is presented and compared qualitatively and quantitatively with lysimeter and soil extraction techniques when analyzing two contrasting boreal soils. Further, preliminary dialysis membrane calibration issues for sampling plant-available N compounds are discussed. Due to its miniaturized design microdialysis was shown to be a suitable tool for continuous sampling of ammonium, nitrate and free amino acids from the soil solution with only minimal disturbance of the soil structure. Microdialysis proved to be outstanding regarding the possible spatial (<0.5 mm) and temporal (<30 min) resolution of soil solution N chemistry. The different methods for soil N sampling resulted in significantly different results. In lysimeter and soil extraction samples, nitrate and ammonium were found at the highest concentrations, while results from microdialysis revealed that the pool of plant-available amino acids was contributing most to the total N pool tested. Application of a standard N solution to the tested soils led to an immediate peak of recovery via the microdialysis probes followed by a rapid decrease due to the formation of a depletion zone at the probe surfaces. Therefore, this relatively new technique will not only provide essential data on diffusion rates of a variety of N compounds in the soil but might be used for monitoring quantitative and qualitative changes in plant-available N in soil microsites such as the rhizosphere.  相似文献   

10.
Anthropogenic metal contamination is a pervasive problem in many urban or industrial areas. The interaction of metals with native soil communities is an important area of research as scientists strive to understand effects of long-term metal contamination on soil properties. Measurements of free soil enzyme activities can serve as useful indicators of microbial metabolic potential. The goals of this study are to determine extracellular soil enzymatic activities with respect to corresponding metal concentrations within a site of long-term contamination. These data are examined to understand relationships between extracellular soil enzyme activities and persistent metal loads in situ. Here we present such results from a rare research opportunity at an un-remediated, urban brownfield in Jersey City, NJ, USA. The soils of the site developed over the last 150 years through the dumping of urban fill from New York City as well as industrial rail use. The site was abandoned and fenced in the late 1960s, and within it, there is a mapped gradient of metal concentration in the soils, including As, Pb, Cr, Cu, Zn, and V. We measured soil enzymatic potential (alkaline phosphatase, cellobiohydrolase, and l-leucine-amino-peptidase) across four plots within the site and at an uncontaminated reference site that is of the same successional age and geographic influence. We found the highest enzymatic activities for all three activities measured at the site with the greatest soil metal loads and a particularly strong relationship among enzyme activity and the metals V and Cr. Our results differ from many experimental studies that show decreased soil enzyme activity in soils experimentally treated with metals. The results may indicate the effects of long-term adaptation of soil communities within these metal contaminated soils.  相似文献   

11.
《Applied soil ecology》2007,35(2):329-339
We evaluated the response of riparian forest soil nematode community structure to the physico-chemical environment associated with urban land use. Soils were sampled seasonally between December 2000 and October 2002 along an urban—rural transect in Asheville, North Carolina. We characterized the taxonomic (to genus) and functional composition (trophic groups) of the nematode community of forest soils, as well as several nematode ecological indicators (maturity index, channel index, weighted faunal index). The diversity of nematode genera was not affected by urban land use. However, there tended to be functional differences in the nematode communities along the land use gradient. The urban soils tended to have lower abundances of predatory and omnivorous nematodes. Differences in channel index scores indicated that there was less fungal dominance in the soil food webs of the urban soils. Our results indicate that the functional composition of the soil food web is an important component of soil biodiversity that can be affected by land use practices. This study was conducted in a relatively small city; hence the influence of pollutants on the soil environment was not as great as in larger cities. Correspondingly, the impact on the soil nematode community was not very severe. The utilization of the nematode community assemblage as an indicator of soil conditions should be further explored in urban places of differing magnitudes of environmental effects.  相似文献   

12.
Forest soil chemical changes between 1949/50 and 1987   总被引:1,自引:0,他引:1  
Soil profiles from the Alltcailleach Forest in north-east Scotland originally sampled in 1949/50 were resampled in 1987. Soil pH, exchangeable Ca, Mg, K and Na, extractable Al and cation exchange capacity were measured on the original stored and resampled soils. Chemical changes were characterized by decreases in pH, base cations, base saturation and cation exchange capacity. Extractable amounts of Al increased. Sequential leaching experiments showed a significant increase in the amount of extractable sulphate in mineral soil horizons. Changes in soil chemistry were interpreted to result from a combination of nutrient depletion caused by tree growth, natural pedogenic processes and atmospheric pollution effects.  相似文献   

13.
Contribution of bricks to urban soil properties   总被引:3,自引:2,他引:1  

Purpose

Bricks are regularly found in urban soils where they can strongly impact soil properties. The purpose of this study is to investigate abundance, especially in the fine earth fraction, and properties of bricks in urban soils, focusing on rooting, plant nutrition and contamination.

Materials and methods

Three different urban soils from the city of Berlin have been studied for their brick contents in the coarse and fine earth fractions by hand sorting. Light (LM) and scanning electron microscopy (SEM) was employed to investigate bricks for proofs of rooting. Third, CEC, pH, EC, Corg, nutrient and contaminant storage and availability have been investigated for bricks and the fine earth fractions of the corresponding soil horizons.

Results and discussion

The fine earth fractions of the investigated soils contain 3 to 5 % of bricks, while the coarse fractions contain up to 50 %. The LM and SEM micrographs made the proof that roots enter brick pores or attach to brick surfaces. Therefore, they can use the water and nutrients stored in bricks and bypass pore system discontinuities between bricks and surrounding soil. The CEC of bricks is grain size dependent and reaches a maximum of 6 cmolc kg?1 for particles smaller than 0.063 mm. This dependency is the result of the restricted diffusion into the brick pore system due to the short shaking time in the CEC analysis protocol and of the rising surface with decreasing particle size. From the nutrient storage and availability, we conclude that bricks can better supply plants with K, Mg, Ca and S than the investigated sandy bulk soil.

Conclusions

The nutrient availability from bricks is low compared to control soils, except for Ca and S. Because of the water and nutrient storage, low contamination status and the possible rooting of bricks, they can be used for amelioration of poor sandy soils and for constructed Technosols, preferably employed in small grain sizes.  相似文献   

14.
Policy makers rely on risk‐based maps to make informed decisions on soil protection. Producing the maps, however, can often be confounded by a lack of data or appropriate methods to extrapolate using pedotransfer functions. In this paper, we applied multi‐objective regression tree analysis to map the resistance and resilience characteristics of soils onto stress. The analysis used a machine learning technique of multiple regression tree induction that was applied to a data set on the resistance and resilience characteristics of a range of soils across Scotland. Data included both biological and physical perturbations. The response to biological stress was measured as changes in substrate mineralization over time following a transient (heat) or persistent (copper) stress. The response to physical stress was measured from the resistance and recovery of pore structure following either compaction or waterlogging. We first determined underlying relationships between soil properties and its resistance and resilience capacity. This showed that the explanatory power of such models with multiple dependent variables (multi‐objective models) for the simultaneous prediction of interdependent resilience and resistance variables was much better than a piecewise approach using multiple regression analysis. We then used GIS techniques coupled with an existing, extensive soil data set to up‐scale the results of the models with multiple dependent variables to a national level (Scotland). The resulting maps indicate areas with low, moderate and high resistance and resilience to a range of biological and physical perturbations applied to soil. More data would be required to validate the maps, but the modelling approach is shown to be extremely valuable for up‐scaling soil processes for national‐level mapping.  相似文献   

15.
Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol(from Colorado,USA) dominated by 2:1 clays and an Alfisol(from Virginia,USA) containing weathered mixed 1:1 and 2:1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg~(-1),to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg~(-1),whereas in the53 μm fraction C content increased from 5.7 to 22.6 g kg~(-1) with 100 g kg~(-1)biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the2 000 μm fraction.The greatest increase(from 6.2 to 22.0 g kg~(-1)) occurred in the 53–250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2:1 clays and low native soil organic content.  相似文献   

16.
Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m–3 ha–1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss.  相似文献   

17.
Biolog方法在区分城市土壤与农村土壤微生物特性上的应用   总被引:20,自引:3,他引:20  
通过利用环境微生物研究中比较可靠有效的Biolog方法研究了英国阿伯丁市城市土壤与邻近农村土壤的微生物群落结构和功能多样性,结果表明在重金属元素胁迫下,城市土壤的微生物群落结构与农村土壤相比已经发生了显著的改变,从而导致城市土壤微生物在利用能源碳方面包括消耗量、消耗速度、能源碳的利用种类等发生了一系列改变,使城市土壤显著区别于农村土壤。  相似文献   

18.
Raindrop energy disintegrates soil aggregates and rearranges soil particles to form a structural crust on the upper soil layer. The structural crust affects the physical properties of the soil, which can be observed by significant colour changes on the soil surface. Spectral differences observed in the structural crust are caused by rearrangement of the soil surface texture, mainly an increase in the clay fraction. Previous studies conducted on crusted soils using reflectance spectroscopy were limited to a certain soil type or area and seemed to be strongly dependent on the small range of soil types. In the current study, the influence of raindrop energy on the NIR‐SWIR spectral reflectance (1200–2400 nm) of heterogeneous soils was evaluated and used in combination with partial least squares (PLS) regression to construct a model that correlates the infiltration rate (IR) with its reflectance. Four soils from Israel and three soils from the USA were studied to provide a single data set. A relatively small root mean square error of cross‐validation (RMSECV) of 15.2% was found. A ratio of prediction to deviation (RPD) value of 1.98 indicates a promising generic model. Additionally, PLS models were run on different combinations of soil types (RPD values ranging between 2.4 and 3.2). For all models, whether all soils were run in one cross‐validation data set, or run for different combinations of soils, the best assessment of IR was achieved when using reduced wavelength range (selected wavelengths based on Martens’ significance test selection). These results allowed us to conclude that a generic approach aimed at assessing the structural crust for a variety of soils is feasible. A generic model using the suggested spectral approach has the potential to provide NIR‐SWIR spectral soil IR predictions with either a local or global data base of soils worldwide and may contribute to improved protection of crusted soils from erosion or water loss by runoff.  相似文献   

19.
Variations in the salinity of virgin soils of solonetzic soil complexes at the Dzhanybek Research Station are characterized on the basis of field materials obtained by the author in 2002–2004. The soil salinity is characterized with respect to the depth of the upper boundary of salt-bearing horizons, the total amount of salts, the content of toxic salts, and the chemical composition of salts. Changes in the soil salinity under dry farming conditions are estimated for the following soil management practices: (1) agroforest amelioration with additional moistening of virgin soils owing to snow retention by the adjacent shelterbelts and forest plantations, (2) intense grazing, (3) soil fallowing after normal tillage to a depth of 20–25 cm, and (4) soil fallowing after deep tillage to a depth of 40–50 cm. It is shown that normal tillage and considerable grazing pressure do not affect the salinity of the studied soils. No definite effect of the shelterbelts on the salt status of the adjacent virgin soils of the solonetzic complex has been revealed. Deep soil tillage strongly affects the salt status of solonetzes: the content of toxic salts in the upper meter considerably decreases. Virgin solonetzes are usually moderately or strongly saline soils, whereas deeply tilled solonetzes are slightly or moderately saline soils.  相似文献   

20.
The European Green Deal with its high ambition has set the European Union (EU) on a promising path towards greater soil protection. The EU Soil Strategy 2030, the Biodiversity Strategy 2030, the Farm to Fork Strategy, the Zero Pollution, the Nature Restoration Law and the European Climate Law, among others, include actions to protect our soils. Research and Innovation (R&I) will play a key role in developing new knowledge and tools enabling the transition to healthy soils. The main aim of this paper is to analyse past and near-future trends in EU's funding for R&I on soil-related issues. For this purpose, a review of EU-funded soil projects was conducted based on the data available in the Community Research and Development Information Service and the official portal for European data. Our analysis shows that over the past 40 years, the EU has invested significantly in developing integrated knowledge about the relationships between soil functions and ecosystem services and how human-induced pressures affect soil health. Following the adoption of the EU Soil Thematic Strategy in 2006, there was an increase in research funding for soil-related research. Furthermore, our analysis also illustrates an interesting interplay of permanent and changing soil themes. The Horizon Europe Mission ‘A Soil Deal for Europe’, which aims to establish a network of 100 living labs and lighthouses to lead the transition towards healthy soils and safeguard human and planetary health by 2030, provides a further incentive for soil research. Together with the EU Soil Strategy 2030 and the new proposal for a Directive on Soil Monitoring and Resilience (Soil Monitoring Law), and the EU Soil Observatory (EUSO), the three instruments set up the political framework, concrete measures, and a monitoring system needed for the protection, restoration and sustainable use of soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号