首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil N transformations using the polyvinyl chloride (PVC) closed-top tube in situ incubation method were studied in Nanchang urban forests of the mid-subtropical region of China in different months of 2007. Four plots of 20 m × 20 m were established in four different plant communities that represented typical successional stages of forest development including shrubs, coniferous forest, mixed forest and broad- leaved forest. Average concentrations of soil NH 4 + -N from January to December were not different among the four plant communities. The concentrations of soil NO 3 - -N and mineral N, and the annual rates of ammonification, nitrification and net N-mineralization under the early successional shrub community and coniferous forest were generally lower than that of the late successional mixed and broad-leaved forests (p<0.05). Similar differences among the plant communities were also shown in the relative nitrification index (NH 4 + -N/NO 3 - -N) and relative nitrification intensity (nitrification rate/net N-mineralization rate). The annual net N-mineralization rate was increased from younger to older plant communities, from 15.1 and 41.4 kg·ha -1 ·a -1 under the shrubs and coniferous forest communities to 98.0 and 112.9 kg·ha -1 ·a -1 under the mixed and broad-leaved forests, respectively. Moreover, the high annual nitrification rates (50-70 kg·ha -1 ·a -1 ) and its end product, NO 3 - -N (2.4-3.8 mg·kg -1 ), under older plant communities could increase the potential risk of N loss. Additionally, the temporal patterns of the different soil N variables mentioned above varied with different plant community due to the combined affects of natural biological processes associated withforest maturation and urbanization. Our results indicated that urban for- ests are moving towards a state of "N saturation" (extremely nitrification rate and NO 3 - -N content) as they mature.  相似文献   

2.
The vertical variation and storage of nitrogen in the depth of 0–150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4 +-N) and nitrate (NO3 -N). The sequence of STN storage was woodland>maize field>fallow field>paddy field, while that of NO3 -N content was maize field>paddy field>woodland>fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0–100 cm of woodland averaged to 11.41 t·hm−1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respectively, while there was no significant difference between maize and fallow fields. The comparatively higher amount NO3 -N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R 2≥0.929,p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3 -N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection. Foundation item: The project was supported by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-413-9) and Fund of Shenyang Experimental Station of Ecology, CAS (STZ0204) Biography: ZHANG Yu-ge, (1968-), female, Ph.D. candidate, associate research fellow in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China. Responsible editor: Song Funan  相似文献   

3.
Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0–10 cm) across 6–8-year-old silvicultural canopy gaps in three 50–70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3) pools, net N mineralization and nitrification rates, and NH4+ and NO3 ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3 pools, net N mineralization and nitrification rates, and NH4+ and NO3 IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6–8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.  相似文献   

4.
Previous studies have shown that clearcutting of northern hardwood forests mobilizes base cations, inorganic monomeric aluminum (Alim), and nitrate (NO3-N) from soils to surface waters, but the effects of partial harvests on NO3-N have been less frequently studied. In this study we describe the effects of a series of partial harvests of varying proportions of basal area removal (22%, 28% and 68%) on Alim, calcium (Ca2+), and NO3-N concentrations in soil extracts, soil water, and surface water in the Catskill Mountains of New York, USA. Increases in NO3-N concentrations relative to pre-harvest values were observed within a few months after harvest in soils, soil water, and stream water for all three harvests. Increases in Alim and Ca2+ concentrations were also evident in soil water and stream water over the same time period for all three harvests. The increases in Alim, Ca2+, and NO3-N concentrations in the 68% harvest were statistically significant as measured by comparing the 18-month pre-harvest period with the 18-month post-harvest period, with fewer significant responses in the two harvests of lowest intensity. All three solutes returned to pre-harvest concentrations in soil water and stream water in the two lowest intensity harvests in 2-3 years compared to a full 3 years in the 68% harvest. When the results of this study were combined with those of a previous nearby clearcut and 40% harvest, the post-harvest increases in NO3-N concentrations in stream water and soil water suggest a harvesting level above which the relation between concentration and harvest intensity changes; there was a greater change in concentration per unit change in harvest intensity when basal area removal was greater than 40%. These results indicate that the deleterious effects on aquatic ecosystems previously demonstrated for intensive harvests in northern hardwood forests of northeastern North America that receive high levels of atmospheric N deposition can be greatly diminished as harvesting intensity decreases below 40-68%. These results await confirmation through additional incremental forest harvest studies at other locations throughout the world that receive high levels of atmospheric N deposition.  相似文献   

5.
Acacia nilotica (L.) Willd. ex Del is an important multipurpose tree of traditional agroforestry system in the central belt of the Indian sub-continent. The tree is reported to reduce crop yields under its canopy. However, information is lacking on the spatial variation in soil physical characters, nutrient pool sizes and their availability to crops under its canopy. The present study reports influence of three tree canopy positions, viz. mid canopy, canopy edge and canopy gap, of Acacia nilotica (≥ 12 years) on texture, organic C, total and mineral N and P, and soil pH, in 0 to 10, 10 to 20 and 20 to 30 cm depth of the soil at ten sites in a traditional agroforestry system. Sand particles declined by 10% and 9% whereas clay particles increased by 14% and 10% under mid canopy and canopy edge, respectively, compared to that under canopy gap. Clay particles did not decline significantly with soil depth under all canopy positions. Proportion of silt particles was not influenced by the canopy position. Soil organic C, total N, total P, mineral N (NO3 -N and NH4 +-N) and P were greater under mid canopy and canopy edge positions compared to canopy gap. Soil organic C and N pool sizes were maximum in 0 to 10 cm and declined with the depth of soil. Total and mineral P contents were nearly uniform across the depths. C/N ratio tended to increase with the soil depth whereas C/P ratio declined. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
To investigate the potential effects of nitrogen (N) deposition on Japanese forests, a chronic N-addition experiment that included three treatments (HNO3, NH4NO3, and control) was carried out in a 20-year-old Japanese cedar (Cryptomeria japonica D. Don) stand in eastern Japan over 7 years. The amount of N applied was 168 kg N ha−1 year−1 on the HNO3 plots and 336 kg N ha−1 year−1 on the NH4NO3 plots. Tree growth, current needle N concentration, and soil solution chemistry were measured. Nitrogen application decreased the pH and increased NO3 , Ca2+, Mg2+, and Al concentrations in the soil solution. The needle N concentration increased in both of the N plots during the first 3 years. Nevertheless, the annual increments in height and in the diameter at breast height of the Japanese cedars were not affected by N application, and no visible signs of stress were detected in the crowns. Our results suggest that young Japanese cedar trees are not deleteriously affected by an excess N load.  相似文献   

7.
We present a field study on the drought effects on total soil respiration (SRt) and its components, i.e., “autotrophic” (SRa: by roots/mycorrhizosphere) and “heterotrophic” respiration (SRh: by microorganisms and soil fauna in bulk soil), in a mature European beech/Norway spruce forest. SRa and SRh were distinguished underneath groups of beech and spruce trees using the root exclusion method. Seasonal courses of SRa and SRh were studied from 2002 to 2004, with the summer of 2003 being extraordinarily warm and dry in Central Europe. We (1) analyzed the soil temperature (T s) and moisture sensitivity of SRa and SRh underneath both tree species, and (2) examined whether drought caused differential decline of SRa between spruce and beech. Throughout the study period, SRa of beech accounted for 45–55% of SRt, independent of the soil water regime; in contrast, SRa was significantly reduced during drought in spruce, and amounted then to only 25% of SRt. In parallel, fine-root production was decreased during 2003 by a factor of six in spruce (from 750 to 130 mg l−1 a−1), but remained at levels similar to those in 2002 in beech (about 470 mg l−1 a−1). This species-specific root response to drought was related to a stronger decline of SRa in spruce (by about 70%) compared to beech (by about 50%). The sensitivity of SRa and SRh to changing T s and available soil water was stronger in SRa than SRh in spruce, but not so in beech. It is concluded that SRa determines the effect of prolonged drought on the C efflux from soil to a larger extent in spruce than beech, having potential implications for respective forest types. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands."  相似文献   

8.
The chemistry of runoff waters from 13 forested watersheds in six regions (four regions from Japan, one from southern China and one from northern Thailand) was evaluated. The Cl concentrations in runoff waters were higher in those watersheds which had closed canopies and were nearer to the ocean. The NO3 concentrations were higher in those watersheds having the developed soils and high moisture conditions, but were lower in tropical and subtropical regions for those watersheds which had high rates of nitrogen uptake and for watersheds with large areas of saturated soils. The SO4 2− concentrations were affected by SO4 2− adsorption properties of the soils: at Shibecha, Jiulianshan, and Chiang Mai with high adsorption capacities SO4 2− concentrations in streams were low. High SO4 2− concentrations were found at Mt. Hiei and Kagawa due to the weathering of sulfur minerals and high levels of atmospheric sulfur deposition. Within regions SO4 2− concentrations were inversely related to NO3 concentrations. A comparison among the watersheds suggested H+ consumption in deeper soil that increased pH and HCO3 concentrations of the runoff waters of some watersheds. Anion concentrations increased with low H.I. (Humidity Index) values suggesting that dry conditions increased concentrations due to high rates of evapotranspiration.  相似文献   

9.
Safe and economical disposal of paper mill sludge is a key consideration for forest products industry. A study was conducted to examine the effects of amendments of sludge and nutrients on soil surface CO2 flux (Rs) in northern hardwood forests and to quantify the relat among R5, soil temperature, and moisture in these stands. The experiment was a randomized complete block design that included sludge-amended, fertilized, and control treatments in sugar maple (Acer saccharum Marsh) dominated hardwood forests in the Upper Peninsula of Michigan, USA. Results showed that Rs was positively correlated to soil temperature (R2=0.80, p<0.001), but was poorly correlated to soil moisture. Soil moisture positively affected the Rs only in the sludge-amended treatment. The Rs was significantly greater in the sludge-amended treatment than in the fertilized (p=0.033) and the control (p=0.048) treatments. The maximum Rs in the sludge-amended treatment was 8.8 μmol CO2·m−2·s−1, 91% and 126% greater than those in the fertilized (4.6 μmol CO2·m−2·s−1) and control (3.9 μmol CO2·m−2·s−1) treatments, respectively. The Rs did not differ significantly between the fertilized and control treatments. The difference in Rs between sludge-amended and the other treatments decreased with time following treatment. Foundation item: The research was funded by a NCASI grant to S.T. Gower. Wang CK was supported by Innovated Talent Program of Northeast Forestry University (2004–07) Biography: WANG Chuan-kuan (1963-), male, Professor in the Ecology Program, College of Forestry, Northeast Forestry University, Harbin 150040, China. Responsible editor: Chai Ruihai  相似文献   

10.
The species composition and diversities, and soil properties under canopy gaps in broad-leaved Pinus koraiensis forests were studied in the Changbai Mountains. The results indicated that the species composition and diversities in gap were different from those under canopy. The Shannon-Wiener index, evenness index, and abundance index in gap were higher than those under canopy in the seedling layer, while the community dominance in the seedling layer increased in closed canopy. The physicochemical properties of soil changed with the change of space and resource availability in gaps. The thickness, standing crop, and water holding capacity of the litter layer under canopy were significantly (p<0.01) higher than those in gap. The content of total nitrogen and total potassium of litter in gap were 10.47% and 20.73% higher than those under canopy, however, the content of total phosphorus and organic carbon under canopy were 15.23% and 12.66% more than those under canopy. The water content of 0–10 cm and 10–20 cm of soil layer in gap were 17.65% and 16.17% more than those under canopy. The soil buck density of 0–10 cm were slightly higher under canopy than that in gaps, but there was no significant difference in the soil buck density of the 10–20 cm soil layer. The soil pH values were 5.80 and 5.85 in gap and under canopy, respectively, and were not significantly different. The content of soil organic matter, total nitrogen, and total potassium in gap were 12.85%, 7.67%, and 2.38% higher than those under canopy. The content of NH4 +-N, available phosphorus, available potassium, and total phosphorus in soil under canopy were 13.33%, 20.04%, 16.52%, and 4.30% higher than those in gap. __________ Translated from Forest Research, 2006, 19(3): 347–352 [译自: 林业科学研究]  相似文献   

11.
The water chemistry of 51 headwater streams was studied in the Tanzawa Mountains, western fringe of Southern Kanto Plain, Japan. The relationships to soil N processes and catchment topography were also evaluated using a geographic information system with fine-scale map data. The average concentration of total dissolved N was 0.74 mg-N L−1, of which 95% consisted of NO3 -N. Stream N concentrations were not different among bedrock geologies and among vegetations of the catchments. Stream NO3 -N marginally correlated to soil nitrification. Stream NO3 -N also tended to be high in areas with steep and south-facing slopes. These results imply that N transport from Tanzawa forest ecosystems is related to hydrological and biological processes associated with catchment topography. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Forest precipitation chemistry is a major issue in forest hydrology and forest ecology. Chemical contents in precipitation change significantly when different kinds of external chemical materials are added, removed, translocated and transformed to or in the forest ecosystem along with precipitation. The chemistry of precipitation was monitored and analyzed in a 31-year-old Pinus tabulaeformis forest in the West Mountain of Beijing. Movement patterns of nutrient elements in hydrological processes can be discovered by studying this monitored data. Also, the information is useful for diagnosing the function of ecosystems and evaluating the impact of the environment on the ecosystem. Samples of rainfall, throughfall and stemflow were collected on the site. In the lab, Ca2+ and Mg2+ were analyzed by flame atomic absorption and K+ and Na+ by flame emission. NH4 +-N was analyzed by indophenol blue colorimetry and NO3 -N was analyzed by phenoldisulfonic acid colorimetry. The results showed that: 1) The concentration gradient of nutrient elements clearly changed except for Na+. The nutrients in stemflow were significantly higher than those of throughfall and rainfall as the precipitation passed through the P. tabulaeformis forest. The monthly patterns showed distinct differentiation. There are indications that a large amount of nutrients was leached from the canopy, which is a critical function of intra-ecosystem nutrient cycling to improve the efficiency of nutrient use. 2) The concentrations of NO3 -N and K+ changed more than those of the other nutrient elements. The concentration of NO3 -N in throughfall and stemflow was 4.4 times and 9.9 times higher than those in rainfall, respectively. The concentration of K+ in throughfall and stemflow was 4.1 times and 8.1 times higher than those in rainfall, respectively. 3) The leaching of nutrient elements from the stand was an important aspect of nutrient return to the P. tabulaeformis forest, which returned a total amount of nutrient of 54.1 kg/hm2, with the contribution of Ca2+ and K+ much greater than that of other elements. Also, K+ was the most active element in leaching intensity. 4) Nutrient input through precipitation was the main source in the West Mountain of Beijing and the amount of nutrient added was 66.4 kg/hm2, of which Ca2+ and N contributed much more than the other nutrient elements. When precipitation passes through the P. tabulaeformis forest, 121 kg/hm2 of nutrient is added to the forest floor. Ca2+ recorded the greatest nutrient increase, with 61.2 kg/hm2, followed by N (NH4 +-N and NO3 -N), K+ and Mg2+, with 31.3 and 16.5, and 8.11 kg/hm2, respectively. The least was Na+, 3.34 kg/hm2. Translated from Acta Ecologica Sinica, 2006, 26(7): 2,101–2,107 [译自: 生态学报]  相似文献   

13.
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations ofSchima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 −N, NH4 +−N and total dissolved N (TDN). DON was calculated by subtracting NO3 −N and NH4 +−N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L−1 and DON concentration of 0.13 mg·L−1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L−1 in the SS and 10.3 and 0.19 mg·L−1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L−1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L−1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September–November period. Foundation item: This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT). Biography: Guo Jian-fen (1977-), female, Ph. Doctor in College of Life Science, Xiamen University, Xiamen 361005, P.R. China. Responsible editor: Zhu Hong  相似文献   

14.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

15.
Fine root turnover plays important roles in carbon allocation and nutrient cycling in forest ecosystems. Seasonal dynamics of fine roots is critical for understanding the processes of fine root turnover. From May to October 2002, soil core method was used for estimating the seasonal pattern of fine root (diameter < 1 mm) parameters (biomass, specific root length (SRL) and root length density (RLD)) in a Manchurian ash (Fraxinus mandshurica) plantation located at the Maoershan Experiment Station, Heilongjiang Province, northeast of China. The relationships of fine root biomass, SRL and RLD with available nitrogen in soil, average soil temperature per month in 10 cm depth and soil moisture content were analyzed. Seasonal variation of fine root biomass was significant (P < 0.05). The peak values of fine root biomass were observed both in spring and in autumn, but SRL and RLD were the highest in spring and lowest in autumn. Specific root length and root length density were higher in spring and summer, which means that fine root diameter was thinner. In autumn, both parameters decreased significantly due to secondary incrassation of fine root diameter or the increase of tissue density. Seasonal dynamics of fine roots was associated with available nitrogen in soil, soil temperature in 10 cm depth and moisture content. Fine root biomass has a significant relationship with available NH4 +-N in soil. Available NO3 -N in soil, soil temperature in 10-cm depth and moisture content have a positive correlation with fine root biomass, SRL and RLD, although these correlations are not significant (P > 0.05). But the compound effects of soil available N, soil temperature and soil moisture content are significant to every root parameter. The variations of these three root parameters in different seasons show different physiological and ecological functions in different growing periods. Translated from Scientia Silvae Sinicae, 2006, 42(9): 7–12 [译自: 林业科学]  相似文献   

16.
A major limitation to efficient forage-based livestock production in Appalachia is asynchrony of forage availability and quality with nutritional requirements of the grazer. Producers require dependable plant resources and management practices that improve the seasonal distribution and persistence of high quality herbage, sustainability and environmental integrity of the agricultural landscape. It was hypothesized that inorganic N and fecal coliform concentrations delivered in leachate to the soil/bedrock interface would be lowest in deciduous forest (HF) and highest in pasture (CP) with HF converted to silvopasture (SP) between the two. Piezometers were used to monitor water quality at the soil/bedrock interface under conventional pasture, SP, and hardwood forest. The pasture and SP were rotationally grazed by sheep during the spring to fall grazing season (2004–2008). Geometric mean fecal coliform bacteria concentrations (FC) were greatest in SP (18 FC 100 mL−1) with no difference between CP (7.5 FC 100 mL−1) and HF (5.6 FC 100 mL−1). Mean NO3-N concentration was lowest in SP (2.3 mg L−1) and greatest in CP (4.4 mg L−1) and HF (4.1 mg L−1), which were not significantly different. Mean NH4-N concentrations showed different trends with the lowest mean concentration in CP (0.5 mg L−1) and the greatest in SP (2.5 mg L−1) and HF (2.6 mg L−1), which were not significantly different. SP was shown to be a management option in the study area that reduces nitrate leaching, but should be considered cautiously in near-stream areas and near wells where fecal bacteria pollution can be problematic. This study makes an important contribution to our knowledge about interactions between landscape management and environmental quality of the Appalachian region. A diversity of land and forage management options are needed to maximize forage and livestock productivity while protecting surface and groundwater quality of the region.  相似文献   

17.
Forest fires are known to influence nutrient cycling, particularly soil nitrogen (N), as well as plant succession in northern forest ecosystems. However, few studies have addressed the dynamics of soil N and its relationship to vegetation composition after fire in these forests. To investigate soil N content and vegetation establishment after wildfire, 13 sites of varying age class were selected in the Sub-Boreal spruce zone of the central interior of British Columbia, Canada. Sites varied in time since the last forest fire and were grouped into three seral age classes: (a) early-seral (<14 years), (b) mid-seral (50–80 years) and (c) late-seral (>140 years). At each site, we estimated the percent cover occupied by trees, shrubs, herbs and mosses. In addition, the soil samples collected from the forest floor and mineral horizons were analyzed for the concentrations of total N, mineralizable N, available NO3-N and available NH4+-N. Results indicated that soil N in both the forest floor and mineral horizons varied between the three seral age classes following wildfire. Significant differences in mineralizable N, available NO3-N and available NH4+-N levels with respect to time indicated that available soil N content changes after forest fire. Percent tree and shrub cover was significantly correlated to the amount of available NH4+-N and mineralizable N contents in the forest floor. In the mineral horizons, percent tree cover was significantly correlated to the available NH4+-N, while herb cover was significantly correlated with available NO3-N. Moss cover was significantly correlated with total N, available NO3-N and mineralizable N in the forest floor and available NO3-N in the mineral horizons. We identified several unique species of shrubs and herbs for each seral age class and suggest that plant species are most likely influencing the soil N levels by their contributions to the chemical composition and physical characteristics of the organic matter.  相似文献   

18.
Across the U.S., multiple species of riparian vegetation have proven to be effective filters of sediment and nutrients in agricultural watersheds. Research at Southern Illinois University Carbondale has focused on giant cane [Arundinaria gigantea (Walt.) Muhl.] as a potential candidate to incorporate into riparian buffer designs. In 2001, an exploratory study (i.e., Phase I) monitored nutrient and sediment concentrations from surface runoff and groundwater in the Cypress Creek watershed, while two subsequent studies (i.e., Phase II) focused on groundwater quality and added additional riparian buffer plots in the Big Creek and Cache River Watersheds. The primary objective of this research was to compare nutrient attenuation in groundwater of native giant cane and forest riparian buffers. Results from phase I showed significant nutrient reductions in groundwater over short distances in both the giant cane (~3.0 m) and forest buffers (~6.0 m), thus additional wells were installed at 1.5 and 12.0 m for the second phase. Groundwater NO3 -N was significantly reduced by 90% in the initial 3.0 m of the giant cane buffer, where plant assimilation and microbial denitrification were likely key NO3 -N removal mechanisms. Phase II showed significant reductions in groundwater NO3 -N beneath the forest buffers, whereas little change occurred below the giant cane buffers. However, NO3 -N concentrations beneath giant cane buffers were 3 times less than those observed beneath the forest buffers. Follow-up studies are being conducted on the transport of E. coli through vegetated buffers, and efforts have been expanded to the watershed-scale.  相似文献   

19.
A case study was conducted in beech forests of northern Iran to determine the effect of the created gaps on some soil properties in beech stand. Changes of soil properties in small (60 150 m 2 ), medium (151 241 m 2 ), large (242 332 m 2 ) and very large (333 550 m 2 ) gaps, as well as under closed stands were studied eight years after the gap creation. Soil samples were taken from three depths, 0 10, 10 20 and 20 30 cm. The gaps were different from their around undisturbed stands in terms of the following soil parameters: Mg +2 concentration of 0 10 cm at medium gap size, bulk density of 10 20 cm at very large gap size as well as K + and Ca +2 concentrations at 20 30 cm at small and large gap sizes, respectively. Furthermore, the size of the gaps had no effect on soil characteristics through the whole profile. Water saturation percent (Sp %) at 0 10cm as well as P and Mg +2 at 20 30 cm was different amongst undisturbed stands around different gap sizes. The center and the edges of the gap were different only in terms of organic carbon at the depth of 10 20 cm. Significant differences were observed between gaps andclosed canopy regarding P and Ca +2 at depth 0 10 cm and 10 20 cm, respectively. It can be concluded that applied silvicultural system for harvesting trees which created these gaps might be suitable for conservation and forest management in the region.  相似文献   

20.
The conversion of forests to agroecosystems or agroforests comes with many changes in biological and chemical processes. Agroforestry, a tree based agroecosystem, has shown promise with respect to enhanced system nutrient accumulation after land conversion as compared to sole cropping systems. Previous research on tropical agroforestry systems has revealed increases in soil organic matter and total organic nitrogen in the short term. However, research is lacking on long-term system level sustainability of nutrient cycles and storage, specifically in traditional multi-strata agroforestry systems, as data on both the scope and duration of nutrient instability are inconclusive and often conflicting. This study, conducted in Ghana, West Africa, focused on carbon and nitrogen dynamics in a twenty-five year chronosequence of cacao (Theobroma cacao Linn.) plantations. Three treatments were selected as on-farm research sites: 2, 15 and 25-year-old plantations. Soil carbon (C, to a depth of 15 cm) varied between treatments (2 years: 22.6 Mg C ha−1; 15 years: 17.6 Mg C ha−1; 25 years: 18.2 Mg C ha−1) with a significant difference between the 2- and 15- and the 2- and 25-year-old treatments (p < 0.05). Total soil nitrogen in the top 15 cm varied between 1.09 and 1.25 Mg N ha−1 but no significant differences were noted between treatments. Soil nitrification rates and litter fall increased significantly with treatment age. However, photosynthetically active radiation (PAR) and soil temperature showed a significant decrease with age. No difference was found between decay rates of litter at each treatment age. By 25 years, system carbon sequestration rates were 3 Mg C ha−1 y−1, although results suggest that even by 15 years, system-level attributes were progressing towards those of a natural system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号