首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
容器苗培育技术研究综述   总被引:2,自引:0,他引:2  
通过收集、整理国内外对容器育苗的研究进展,从容器苗的育苗容器、育苗基质、培育技术等方面综述了国内外有关苗木容器育苗研究现状.育苗容器主要从容器的种类、容器的形状及规格等方面进行评述.育苗基质主要从不同基质配比对苗木质量的影响进行评述.容器苗培育技术主要从育苗方法、断根技术、炼苗、肥力管理、化学调控技术、光周期控制对苗木质量的影响等方面进行评述.  相似文献   

2.
林木容器育苗研究综述   总被引:26,自引:6,他引:26  
从容器苗的育苗容器、基质、培育技术、根系畸形及矫正方法、病虫害防治和苗木质量评价等方面综述了国内外有关林木容器育苗研究现状 ,并提出了应加强育苗容器和基质、工厂化和机械化育苗技术、苗木质量调控技术、质量标准和评价体系的研究  相似文献   

3.
容器育苗质量调控技术研究评述*   总被引:37,自引:0,他引:37  
综述了国内外容器育苗发展现状及研究进展.分别从育苗容器、育苗基质、水肥调控、化学调控、生物调控技术等方面对苗木质量的影响出发.阐述了苗木培育理论和调控技术的研究现状,提出了目前我国在容器育苗中存在的问题和建议。  相似文献   

4.
樟子松容器苗在山西中部地区生态造林中得到广泛应用,有效提高了樟子松造林的成活率和保存率。笔者根据多年的生产实践,从樟子松育苗的容器准备、圃地准备、基质准备、容器装填与摆放、播种苗培育、移植苗培育、苗木出圃和运输等方面总结了樟子松容器育苗技术。  相似文献   

5.
油茶大规格容器苗质量及其造林效果评价   总被引:1,自引:0,他引:1  
为了筛选出适宜的容器规格、育苗基质及造林苗木规格,从而为油茶育苗和造林质量的提高提供技术依据,采用芽苗砧嫁接容器育苗方法,就不同规格的容器与不同类型的基质对容器苗质量的影响情况进行了试验研究,并对采用大规格容器苗的造林效果进行了调查与评价。试验结果表明:以大规格容器和轻基质培育的苗木其生长状况与根系质量均良好;运用3年生容器大苗造林的成活率平均为96.32%,其树高1.74 m、地径34.45 mm、冠幅1.07 m^2,当年挂果率达96.67%。研究结果表明:油茶大容器轻基质育苗和造林具有生产可行性,但相关技术还有待进一步优化与推广。  相似文献   

6.
塑膜容器育苗及容器苗造林中的几个技术问题   总被引:1,自引:0,他引:1  
针对当前容器育苗,造林中产生的技术问题,以油松,侧柏为主要树种,从制定塑膜容器苗的苗木标准,进一步提高育苗技术水平,注意容器苗造林的适地适树、适时进行穴内间株等四个方面,提出了技术建议。  相似文献   

7.
林木容器育苗底部渗灌技术研究现状与展望   总被引:1,自引:0,他引:1  
林业苗圃容器育苗采用上方喷灌易造成水分浪费、养分淋溶流失及环境污染。容器苗底部渗灌技术是利用育苗基质毛细管作用从容器下方吸收水分对苗木进行灌溉。该系统由储水箱、水泵、施水槽等设备形成水分封闭回流系统,可实现灌溉水循环利用,是一种有效管理容器苗水肥的方法。文中介绍了容器苗底部渗灌技术形成背景与系统组成,并从苗木质量、水肥利用效率、基质EC值和pH值以及病虫害等方面对容器苗底部渗灌系统进行评述,同时对该技术的深入研究和应用提出了展望。  相似文献   

8.
从基质配制、育苗容器制作、选地做床、种子采集、处理、播种、苗期管理等方面对五角枫(Acer mono Maxim.)轻基质容器育苗技术进行论述,分析了轻基质容器育苗技术的优势;为五角枫苗木培育提供了新的、可行的操作模式。  相似文献   

9.
用椰糠、泥炭土、塘泥、过磷酸钙和钙镁磷肥与南方普遍用作育苗基质的黄心土进行不同体积比或质量比混合作为育苗基质,开展江南油杉容器苗育苗基质试验,以期筛选出适合南方培育江南油杉的理想育苗基质.结果表明:育苗基质对江南油杉容器苗有较显著的影响,对苗木苗期的主要生长指标苗高、地径、根粗、保存率和生物量进行综合分析,筛选出较适合南方培育江南油杉容器苗的基质配方体积比为黄心土66.7%+椰糠33.3%,其次是黄心土50%+椰糠50%和黄心土80%+塘泥20%.  相似文献   

10.
为了确保造林质量,加快造林进程,以适应现代林业发展的需要,育苗技术的革新势在必行,而容器育苗作为苗木培育的非常规技术已越来越受重视,并被普遍推广。在全国范围内,容器育苗的数量呈逐年上升趋势。在抚顺市清原县海阳地区进行了一次容器育苗的试验,旨在探讨侧柏容器育苗不同营养基质和容器规格对苗木质量的影响,以提高容器育苗的技术和降低容器育苗成本。现  相似文献   

11.
根据多年的实践经验,总结了木兰科树种容器育苗技术的主要环节,包括适时采种、种子处理、层积砂藏、圃地选择、营养土配制、容器选择、芽苗移植、容器苗管理等。  相似文献   

12.
苗木容器育苗技术是利用容器装上营养土进行培育苗木的技术,采用这种技术培育的苗木叫容器苗。容器育苗具有节约种子,可以大量培育,不受造林季节的影响限制以及造林成活率高等特点,但是这种方法成本高,技术比较复杂,通常情况下用于裸根造林不易成活的树种。  相似文献   

13.
Few pine species develop a seedling grass stage; this growth phase, characterized by strong, carrot-like taproots and a stem-less nature, poses unique challenges during nursery production. Fertilization levels beyond optimum could result in excessive diameter growth that reduces seedling quality as measured by the root bound index (RBI). We grew longleaf pine (Pinus palustris), a grass stage species, in containers of four different volumes (60–336 ml) either coated with copper oxychloride or left untreated and fertilized at low, medium, or high levels of nitrogen (N). In general, N concentration of tissues rose as N rate increased, with larger changes in concentration occurring between low and medium levels than between medium and high levels. N rate influenced root tissue N concentration less than it did stems and needles. Subtle needle color differences caused by N rate were significant, suggesting its potential utility during nursery production. As expected, seedlings grew larger as container volume increased and as N rate increased. Copper treatment, which we posited could influence the RBI, tended to increase root-collar diameter and tap root biomass and decrease total root volume. Chlorophyll abundance was affected more by N rate than by container volume or copper treatment, but photosynthesis was affected more by copper treatment than N rate or container size. Although RBI was 25 % greater for seedlings grown in small containers with high N rates than those grown in large containers with low N rates, RBI ranged only from 11 to 15 %, well below the critical 27 % threshold.  相似文献   

14.
In the last decades, reforestation and afforestation programs are being carried out mainly with containerized seedlings. Container design determines the morphological and physiological characteristics of seedlings. However, container characteristics are often the same for plant species with very different growth strategies. The most commonly used nursery containers are relatively shallow and limit tap root growth; consequently, species relying on the early development of a long tap root to escape drought, such as those of the Quercus genus, might need to be cultivated in deep containers. The aim of this paper was to compare the morphological and physiological characteristics of Quercus suber L. seedlings cultivated in shallow containers (CCS-18, depth 18 cm) with seedlings cultivated in deep containers (CCL-30, depth 30 cm). Both container types used were made of high-density polyethylene, cylindrical in shape, open-bottomed, with a diameter of 5 cm, two kinds of vertical ribs on the inside wall showing a cultivation density of 318 seedlings/m2. At the end of nursery culture, the seedlings cultivated in the CCL-30 deep container presented a longer tap root, higher shoot and root biomass and higher Dickson Quality Index (DQI). Moreover, the CCL-30 seedlings showed a higher root growth capacity (RGC), they reached deep substrate layers faster and they presented higher root hydraulic conductance. These morpho-functional advantages improved the CCL-30 seedling water status, which was expressed by higher stomatal conductance during an imposed drought period.  相似文献   

15.
The growth and development of Pinus pinea seedlings grown in different containers was followed through one growing season in the nursery and 3 years following outplanting in the field. The variables studied in the nursery were height, diameter, biomass of shoots and roots, nutrient uptake and root density. The measured field variables, height and diameter increment and survival, were correlated with the nursery variables. Container volume had the greatest influence on plant morphology. Containers with larger rooting volume had seedlings with larger height and diameter, greater nutrient content, and better field performance. Growing density was correlated with seedling morphology and nutrient concentration in the nursery. Among the variables that influenced container volume, the diameter of the container was the most important, while the depth of the container had a minor influence on seedling morphology.The best indicator of seedling development in the nursery was the ratio of container depth to container diameter, and the optimum ratio was 4. All containers produced seedlings with some root spiralling, including those containers with ribs. There was no relationship between either the number of spiralling roots or the angle of spiralling and container characteristics. Furthermore, root spiralling did not influence seedling performance following outplanting. Root density (root biomass/cm3) was inversely correlated with container volume but there was no correlation with either depth or growing density. The largest plants were produced with container volumes of 300–400 cm3, depth/diameter ratios of 4, and growing densities of 200–300 seedlings/m2. These growing conditions will result in larger Pinus pinea seedlings coming out of the nursery, which will increase growth following outplanting.  相似文献   

16.
【目的】榉树Zelkova schneideriana,是我国珍贵树种,它不仅材质优良,且用途广泛,经济价值较高。本试验通过比较不同容器规格和基质配比对榉树容器苗营养累积的影响,筛选出最有利于榉树容器苗营养积累的容器规格和基质配比,为榉树容器苗的高效培育提供理论和实践依据。【方法】本研究采用双因素随机区组试验设计。试验设置了两个因素即不同配比的苗圃土、农林废弃物(主要成分为农作物秸秆)、珍珠岩组成的基质,以及不同类型和规格的容器。通过对不同基质配比和容器规格影响下榉树容器苗的生物量、非结构性碳水化合物浓度、蛋白质浓度、全碳、全氮等矿质元素浓度等指标的测定分析,揭示基质配比、容器规格以及两因素的交互作用对榉树容器苗营养积累的影响。【结果】试验结果如下:在生物量方面,基质M2(90%农林废弃物+10%珍珠岩)最有利于榉树容器苗生物量(111.19 g)的积累,基质M3(45%苗圃土+45%农林废弃物+10%珍珠岩)、M5(25%苗圃土+65%农林废弃物+10%珍珠岩)次之;容器C1(30 cm×30 cm的黑色塑料控根容器)最有利于榉树容器苗生物量(148.20 g)的积累,容器C2(20 cm×30 cm的黑色塑料控根容器)次之。在非结构性碳水化合物浓度方面,基质M1(90%苗圃土+10%珍珠岩)、M2处理下的榉树容器苗中可溶性糖等指标浓度较高;容器C1处理下的可溶性糖(88.029 mg/g)等指标浓度最高,C2次之。在蛋白质浓度方面,基质M5处理下的榉树容器苗中蛋白质浓度(2.59 mg/g)最高,M1、M2、M3次之;容器C1处理下的蛋白质浓度(2.77 mg/g)最高,C2、C4(20 cm×20 cm的普通无纺布容器)次之。在矿质元素方面,基质M2和M5处理下榉树容器苗中全碳等指标浓度较高;容器C1处理下的全碳等指标浓度(9.18 mg/g)最高,C2次之。【结论】综上所述,基质M2(90%农林废弃物+10%珍珠岩)和容器C2(20 cm×30 cm的黑色塑料控根容器)的组合,最适合榉树容器苗的营养积累。  相似文献   

17.
世界容器苗研究、生产现状和我国发展对策   总被引:45,自引:2,他引:45  
文章综述了容器苗生产和研究的现状。为克服根系畸形,改进苗木生理品质,先后采用了改变容器形状、空气断根、化学断根和改变苗型等措施;控制光周期、改变施肥方式和减少化学制剂应用的研究正在发展和应用;基质的生产也开始商品化。容器苗生产先进国家已形成一套从种子处理、苗木培育到造林的科学体系。并针对我国情况,提出了发展容器苗生产的建议。  相似文献   

18.
李日 《防护林科技》2021,(2):31-33,69
为探索樟子松(Pinus sylvestris var.mongolica)容器育苗的合理容器规格,以白色无纺布袋作为育苗容器,按照育苗容器口径和高度不同,设置6 cm×10 cm、10 cm×10 cm、12 cm×15 cm、15 cm×18 cm 4种容器规格,研究了不同容器规格对樟子松幼苗质量的影响。结果表明:随着容器规格的增大,樟子松幼苗的株高、地径、主根长、植株干鲜质量、根冠比和壮苗指数均呈增加趋势,但12 cm×15 cm和15 cm×18 cm两个规格容器对樟子松幼苗各项指标的影响差异不显著,而樟子松幼苗根系活力、可溶性蛋白和丙二醛均随着容器规格的增大呈先增加后降低趋势,并以12 cm×15 cm效果最佳。研究认为12 cm×15 cm规格的容器更适宜培育樟子松容器苗。  相似文献   

19.
Seedlings of the native Australian tree species Acacia holosericea, Casuarina cunninghamiana, Eucalyptus argophloia, E. camaldulensis and Melaleuca bracteata, were raised in nursery containers which were coated with CuCO3 (50 g l-1, in a water-based paint solution) or left uncoated for three months. Seedling growth of all species in the nursery was generally less in treated containers, although differences were relatively small. More importantly, CuCO3 treatment reduced the occurrence of lateral roots growing down or coiling around container walls for both three- and six-month-old seedlings. Twenty-four months after planting both three- and six-month-old seedlings on a semiarid site in subtropical southeast Queensland, there was no effect of CuCO3 treatment on height or basal diameter development of seedlings. However, sample excavations of root systems showed that the poor root morphology exhibited by untreated seedlings when in the nursery had persisted in the field. As such poor root form has the potential to reduce tree growth and wind firmness in the longer term, these results suggest that chemical root-pruning is a helpful nursery practice when raising seedlings for dryland afforestation, and in circumstances where it may be necessary to retain seedlings in the nursery for longer than normal to take advantage of infrequent rainfall events. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号