首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gram-negative bacterium Acidovorax citrulli causes bacterial fruit blotch (BFB) disease of cucurbits, which represents a serious threat to melon and watermelon production worldwide. To date, there are no efficient means to manage the disease, and reliable resistance sources for cucurbit germplasm are lacking. Mineral nutrition markedly affects plant diseases. Recently, we reported that disease severity on melon foliage and A. citrulli growth in the leaf tissue were significantly influenced by the form of nitrogen supply. In the present study, we investigated the influence of potassium nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants. Fertilization with relatively low concentrations of potassium increased these variables compared with higher potassium concentrations. Since establishment of A. citrulli during the growing season is assumed to increase the incidence of fruit infection, the fact that mineral nutrition influences BFB incidence in the plant foliage is of particular importance.  相似文献   

2.
Watermelon (Citrullus lanatus) is an important crop of the Cucurbitaceae family in fruit production worldwide. During its production, bacterial fruit blotch (BFB) caused by Acidovorax citrulli (Acidovorax avenae subsp. citrulli) is an important limiting factor on the volume and value of crops. This pathogen is known as a seed-borne pathogen, and the infested seeds can be a primary source of inoculum. Hence, a rapid and sensitive method for detecting A. citrulli on seeds would be an important tool in the management of BFB. In this study, we sought to develop a method to detect A. citrulli bacterial cells based on a TaqMan probe-based insulated isothermal PCR (TiiPCR) assay. Firstly, the specific primers and probe were designed based on a specific DNA fragment from the genome of A. citrulli. Then, PCR amplification was performed with the plasmid DNA to adjust the components of the PCR reagents, such as the concentrations of primers, magnesium chloride, and Taq DNA polymerase. Results revealed that 10 copies of plasmid DNA were detectable within the modified reagents by TiiPCR. Moreover, 10 bacterial cells in each reaction tube were detectable at a 100 % detection rate in this condition with a fluorescent signal intensification over 1.8. Based on these results, we concluded that a specific, rapid, and sensitive method based on TiiPCR had been successfully developed to detect bacterial cells of A. citrulli.  相似文献   

3.
Acibenzolar-S-methyl (ASM), a plant activator known to induce plant resistance, has been used as foliar sprays to manage several plant diseases including bacterial spot on tomato caused by four distinct Xanthomonas species. This study aimed to investigate the effects of soil application rates of ASM on bacterial spot of tomato and the expression levels of the two pathogenesis-related (PR) genes, PR1a and PR1b, in leaf tissues. Tomato seedlings were leaf-applied with ASM at 18.8 mg/l corresponding to the labeled rate, soil-applied with ASM at 0.84 and 10 mg/l, and sprayed with water served as an untreated control. The soil application of ASM at 10 mg/l consistently reduced the final disease severity and disease progress compared to the untreated control in four growth chamber experiments, whereas the soil application of ASM at 0.84 mg/l and foliar spray of ASM significantly reduced the final disease severity and area under disease progress curve (AUDPC) in three out of the four experiments. The expression levels of PR1a and PR1b in the leaf tissues were significantly induced by both soil and foliar applications of ASM. In addition, field trial results suggested that the soil applications of ASM at 10 mg/l markedly reduced disease progress compared to the control and copper standard. Although the control efficiency of soil applications of ASM depends on rates used, this study suggests that ASM can be used as soil applications to induce tomato resistance against bacterial spot.  相似文献   

4.
Rice blast is a devastating fungal disease resulting in major losses to rice crops. Owing to continuous acquisition of resistance by the causal fungus, several fungicide chemicals are no longer effective. Therefore, there is a need to identify natural components and develop new agents to control fungal pathogens. We previously demonstrated that the culture filtrate of Biscogniauxia sp. O821 inhibited infection behavior of Magnaporthe oryzae and subsequent blast lesion formation. In the present study, we isolated a new compound, (3aS,4aR,8aS,9aR)-3a-hydroxy-8a-methyl-3,5-dimethylenedecahydronaphto[2,3-b]furan-2(3H)-one (HDFO), from the culture filtrate of Biscogniauxia sp. O821 and determined its molecular weight as 248. The HDFO structure was determined by electrospray ionization-mass spectrometry and nuclear magnetic resonance spectroscopy after purification with column chromatography and high-performance liquid chromatography. The structure of this antifungal compound was similar to that of alantolactone and isoalantolactone. The growth inhibition zone against M. oryzae in presence of HDFO was observed at Rf 0.5–0.6 on a thin layer chromatography plate. HDFO inhibited conidial germination of M. oryzae in a dose-dependent manner (1–200 ppm). Furthermore, blast lesion formation was significantly suppressed by HDFO at over 5 ppm. These results suggest that HDFO from the culture filtrate of Biscogniauxia sp. O821 can protect rice from rice blast disease caused by M. oryzae. This is the first report that HDFO produced by Biscogniauxia sp. can serve as an antifungal compound against M. oryzae.  相似文献   

5.
Fusarium proliferatum has been identified as the main causal agent of bulb rot of garlic (Allium sativum L.). This disease occurs after the drying process and can rot almost 30 % of the bulbs. Few studies are available regarding the effectiveness of chemical treatments to reduce F. proliferatum incidence in garlic. The efficacy of three commercial fungicides of different chemical groups to reduce seven strains of F. proliferatum mycelial growth was tested in vitro. These three fungicides were also evaluated by foliar spreading of aqueous suspension in a field crop. Fluopyram 20 % + tebuconazole 20 % and tebuconazole 50 % + trifloxystrobin 50 % were highly effective at reducing mycelial growth in F. proliferatum with EC50 values <2 ppm. In general, the effectiveness of the fungicides was enhanced with increasing dosage. Our results indicate that the fungicides evaluated in this study may lead to a risk of resistance appearing in F. proliferatum at low concentrations and this risk is maintained at higher doses for the fungicide dimethomorph 7.2 % + pyraclostrobin 4 %. Although several of the fungicides affected in vitro mycelial growth of F. proliferatum, as a part of an strategy to measure the efficacy of resistance management it is necessary to monitor the ongoing efficacy of fungicides under commercial conditions. All fungicidal treatments tested in field application failed to control garlic bulb rot during storage.  相似文献   

6.
Streptomyces griseorubens E44G is a chitinolytic bacterium isolated from cultivated soil in Saudi Arabia (a hot, arid climatic region). In vitro, antifungal potential of S. griseorubens E44G was assessed against the phytopathogenic fungus, Fusarium oxysporum f. sp. lycopersici (the causative agent of the Fusarium wilt disease of tomato). An inhibition zone of 24 mm was recorded. The chitinolytic activity of S. griseorubens E44G was proved when the colloidal chitin agar plate method was used. A thermostable chitinase enzyme of 45 kDa molecular weight was purified using gel filtration chromatography. The optimum activity was obtained at 60 °C and pH 5.5. The purified enzyme has shown a very pronounced activity against the phytopathogenic fungus, F. oxysporum. The molecular characterization of the chitinase gene indicated that it consists of 1218 bp encoding 407 amino acids. The phylogentic analysis based on the nucleotide DNA sequence and the deduced amino acids sequence showed high similarity percentages with other chitinases isolated from different Streptomyces species. In the field evaluation, application of both S. griseorubens E44G treatments significantly increased all tested growth and yield parameters and decreased the disease severity compared with the infected-untreated tomato plants suggesting potential as a biocontrol agent.  相似文献   

7.
Entomopathogenic nematodes in the genus Steinernema are associated with Xenorhabdus spp. bacteria. When steinernematid colonise an insect host the nematode-bacterium association overcomes the insect immune system and kills the host within 48 h. Xenorhabdus spp. produce secondary metabolites that are antifungal to protect nematode-infected cadavers from fungal colonization. The concentrated, or cell-free metabolites of X. szentirmaii exhibit high toxicity against various fungal plant pathogens and show potential as natural bio-fungicides. In the current study, we determined 1) thermo-stability, 2) dose-response, and 3) shelf-life of antifungal metabolites of X. szentirmaii against Monilinia fructicola (cause of brown rot of peach and other stone fruit) and Glomerella cingulata (cause of antharacnose). Thermo-stability was determined by autoclaving bacterial culture broths (121 °C and 15 psi for 15 min) and measuring fungal growth on in potato dextrose agar (PDA) containing 10% of the supernatants. Autoclaving had no impact on the antifungal activity of the secondary metabolites. Over a test period of 9 months, the activity of both extract types did not decline when stored at 4 or 20 °C. A dose-response study (10, 20, 40, 60, 80 and 100% supernatant-containing metabolite) using both phytopathogens demonstrated that a greater dose of supernatant increased antifungal activity. The antifungal-metabolite containing supernatant of X. szentirmaii has potential as a bio-fungicide. These results demonstrate the metabolite(s) are thermo-stable, they have a long shelf-life and require no stabilizing formulation, even at room temperature.  相似文献   

8.
Pyrethrum seed has an important role in the transmission of Stagonosporopsis tanaceti, the cause of ray blight disease of pyrethrum. A TaqMan probe based polymerase chain reaction (PCR) assay was developed to quantify the level of S. tanaceti inocula in pyrethrum seed and seedlings. Primer pair (St_qF3, St_qR2) was designed based on the intergenic spacer (IGS) region of S. tanaceti, which produced a 125 bp amplicon specific to S. tanaceti. TaqMan PCR assay using St_qF3, St_qR2 and a probe St_qP was highly specific against the genomic DNA of S. tanaceti, but did not amplify DNA of 14 related Stagonosporopsis species or other foliar pathogens of pyrethrum. The sensitivity limit of this assay was measured using the cycle threshold (Ct) value which ranged from 17.59 for 10 nanograms (ng) to 36.34 for 100 femtograms (fg) genomic DNA of S. tanaceti. There was a significant negative correlation (r = ?0.999, P < 0.001) between the Ct value and the percent of S. tanaceti infected seed. In addition, this TaqMan PCR assay detected latent infection within seedlings. This assay could be applied to test commercial seed and seedlings before deciding on the appropriate management practices.  相似文献   

9.
A method was developed using a Loop-mediated isothermal amplification assay (LAMP) for detecting Didymella bryoniae in cucurbit seeds. The LAMP primers were designed based on the DNA-dependent RNA polymerase II RPB140 gene (RPB2) from D. bryoniae. Calcein was used as an indicator for the endpoint visual detection of DNA amplification. The LAMP assay was conducted in isothermal (65 °C) conditions within 1 h. The detection threshold of the LAMP assay was 10 pg of genomic DNA and D. bryoniae was detected in 100 % of artificially infested seedlots with 0.05 % infestation or greater. With the LAMP assay, 16 of 60 watermelon and muskmelon seedlots collected from Xinjang province were determined to be positive for D. bryoniae. In contrast, a real-time PCR assay determined that 11 of the 60 seedlots from Xinjiang province were positive for the pathogen. These results showed that the LAMP technique was simple, rapid and well suited for detecting D. bryoniae DNA, especially in seed health testing.  相似文献   

10.
Ralstonia solanacearum, the causal agent of bacterial wilt of tomato, grows in infected plants and migrates from the roots into the soil. We investigated the effectiveness of bacterial wilt-resistant tomato rootstock in reducing the migration of R. solanacearum from susceptible scions into the soil. Rootstock stems were either 3–5 cm tall (low-grafted, LG) or ≥?10 cm tall (high-grafted, HG). After inoculation of scions of the susceptible cultivar (SC) with R. solanacearum below the first flower, there was no difference in disease progression among LG, HG, and ungrafted SC plants, and plants had wilted by 2 weeks. However, the rate of detection of R. solanacearum in the soil of wilted plants was reduced by grafting. The size of the R. solanacearum population in the soil of fully wilted plants increased in the order of HG?<?LG?<?SC. These results show that grafting onto resistant rootstock strongly suppressed the migration of R. solanacearum into the soil by the time of full wilting, and the effect was stronger with a longer rootstock. Migration of R. solanacearum into soil increased with increasing disease severity in SC, LG and HG. These facts suggest that early uprooting of slightly infected plants could control the spread of the bacteria into the soil.  相似文献   

11.
Antifungal activity of plant-derived compounds can be exploited in disease management systems to improve sustainability and replace synthetic molecules. In this study, four crude hydroethanolic extracts of leaves, collected from Italian Solanum spp. landraces, were selected to evaluate their ability to suppress Sclerotinia minor Jagger, a great threat to lettuce production worldwide. In vitro fungal development was inhibited by Solanum melongena L. and S. aethiopicum L. extracts showing a dose-dependent correlation. At the highest concentration tested in the current experiments (45 mg mL?1) antifungal activity caused up to 90% growth reduction. The exposure of the fungus to S. aethiopicum extracts incited pronounced changes in the hyphal morphology as observed under light microscopy. Consistently, under laboratory conditions, in planta application of the active extracts on lettuce significantly reduced Sclerotinia drop disease in comparison to non-treated controls. Phytochemical composition was determined by liquid chromatography/mass spectrometry (LC/MS) analyses. Four secondary metabolites differentially present in the extracts, identified as n-caffeoylputrescine, chlorogenic acid, isoquercitrin and solasodoside A, are hypothesized to play a crucial role in mechanisms underlying biological effects of extracts. PCA analysis showed positive correlations of these compounds with the overall control ability of the extracts. The results indicated that foliar material from cultivated eggplant could be suitable to produce biological-based remedies for controlling plant diseases.  相似文献   

12.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

13.
Fungal species comprising the Fusarium graminearum species complex (FGSC) may cause disease in maize and wheat. Host preference within the FGSC has been suggested, in particular F. boothii towards maize ears. Therefore, the disease development and mycotoxin production of five FGSC species in maize and wheat grain was determined. Eighteen isolates representing F. acaciae-mearnsii, F. boothii, F. cortaderiae, F. graminearum and F. meridionale were used. Each isolate was inoculated on maize ears and wheat heads to determine host preferences. Disease severity and disease incidence was measured for maize and wheat, respectively. Fungal colonisation and mycotoxins, deoxynivalenol (DON), nivalenol and zearalenone, was also quantified. Isolates differed significantly (P < 0.05) in their ability to produce symptoms on maize ears, however, no significant differences between FGSC species were determined. Similarly, significant differences (P < 0.05) between isolates but not between FGSC species in disease incidence on wheat were determined. The isolates also differed significantly (P < 0.05) in their ability to colonise maize and wheat grain. No significant differences in fungal colonisation, among the five FGSC species, were determined in field grown maize. However, under greenhouse conditions, F. boothii was the most successful coloniser of maize grain (P < 0.05). In wheat, F. graminearum colonised the grain more successfully and produced significantly more (P < 0.05) DON than the other species. Fusarium boothii isolates were the best colonisers and mycotoxin producers in maize, and F. graminearum isolates in wheat. The selective advantage of F. boothii to cause disease on maize was supported in this study.  相似文献   

14.
With the aim of selecting potential botanical insecticides, seven plant extracts (Daphne mucronata (Family: Thymelaeaceae), Tagetes minuta (Asteraceae), Calotropis procera (Apocynaceae), Boenninghausenia albiflora (Rutaceae), Eucalyptus sideroxylon (Myrtaceae), Cinnamomum camphora (Lauraceae) and Isodon rugosus (Lamiaceae)) were screened for their toxic effects against four important agricultural pest insects, each representing a separate insect order; pea aphids of Acyrthosiphon pisum (Hemiptera), fruit flies of Drosophila melanogaster (Diptera), red flour beetles of Tribolium castaneum (Coleoptera), and armyworms of Spodoptera exigua (Lepidoptera). Aphids were the most susceptible insect with 100% mortality observed after 24 h for all the plant extracts tested. Further bioassays with lower concentrations of the plant extracts against aphids, revealed the extracts from I. rugosus (LC50 36 ppm and LC90 102 ppm) and D. mucronata (LC50 126 ppm and LC90 198 ppm) to be the most toxic to aphids. These most active plant extracts were further fractionated into different solvent fractions on polarity basis and their insecticidal activity evaluated. While all the fractions showed considerable mortality in aphids, the most active was the butanol fraction from I. rugosus with an LC50 of 18 ppm and LC90 of 48 ppm. Considering that high mortality was observed in aphids within 24 h of exposure to a very low concentration of the butanol fraction from I. rugosus, we believe this could be exploited and further developed as a potential plant-based insecticide against sucking insect pests, such as aphids.  相似文献   

15.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

16.
17.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

18.
Soil application of the systemic insecticide imidacloprid (Admire®, Bayer Crop Science) produced season-long control of citrus canker caused by Xanthomonas citri sbsp. citri. Imidacloprid is a neo-nicotinoid that breaks down in planta into 6-chloronicotinic acid, a compound closely related to the systemic acquired resistance (SAR) inducer isonicotinic acid. Potted Swingle citrumelo seedlings (Citrus paradisi × Poncirus trifoliata) were treated with imidacloprid and the SAR inducers, isonicotinic acid, and acibenzolar-s-methyl as soil drenches or with acibenzolar-s-methyl as a foliar spray 1week prior to inoculation of immature leaves with X. citri sbsp. citri. Seedlings were re-inoculated four times over a 24-week period. SAR induction was confirmed by expression of the PR-2 gene (β-1,3 glucanase). Soil drenches of imidacloprid, isonicotinic acid, and acibenzolar-s-methyl induced a high and persistent up-regulation of PR-2 gene expression and reduced the number of canker lesions for up to 24 weeks compared to 4 weeks for foliar acibenzolar-s-methyl. Soil applied inducers of SAR reduced canker lesions up to 70% compared with the untreated inoculated plants. Lesions on leaves were small, necrotic, and flat compared to pustular lesions on inoculated untreated plants. Populations of X. citri sbsp. citri per leaf were reduced 1–3 log units in soil-treated plants compared to inoculated untreated plants.  相似文献   

19.
Ability to detect Pseudocercospora macadamiae infection in macadamia husk at least four months before symptoms become visible will aid the development of disease control measures. This study examined the distinctness of P. macadamiae within the phylogenetic lineages of the genus Pseudocercospora. In addition, we developed two quantitative PCR (qPCR) assays, as rapid diagnostic tools, for early detection and quantification of P. macadamiae in planta. Phylogenetic analysis of concatenated sequences of four gene loci (large subunits, internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF-1α) and actin of 47 P. macadamiae isolates showed that P. macadamiae is a distinct species in the genus Pseudocercospora. P. macadamiae isolates were partitioned into subunits in the cluster but the grouping of the isolates was regardless of location. Nucleotide diversity (0.02) and the coefficient of genetic differentiation (0.07) were low in the P. macadamiae population. Two qPCR primer sets, based on ITS (PMI) and TEF-1α (PME) were designed that consistently amplified P. macadamiae in fungal cultures (Ct = 16.93 ± 0.11 and Ct = 21.20 ± 0.11, respectively) and in planta (Ct = 32.36 ± 0.28 and Ct = 38.07 ± 1.20, respectively). The PMI primers also detected species in the genus Pseudocercospora, while PME was more specific and robust for quantification of P. macadamiae. Both primer sets detected P. macadamiae in asymptomatic tissue samples and strongly differentiated various stages of disease progression, which revealed approximately 10-fold increase in fungal biomass between each consecutive stage of symptom development.  相似文献   

20.
Phytophthora capsici infection of chili pepper seedlings can cause substantial losses due to damping-off and collar rot diseases. Chemical control is no longer effective due to reported resistance development, on top of the related environmental concerns and the consumer demands for reduced use of fungicides. Biological control is a sustainable option, with several agents having been reported to be effective against this pathogen. This research focused on optimizing the application of strain THSW13 of Trichoderma hamatum and a bacterial isolate BJ10–86 with the objectives of improving chili pepper seed germination, reduce damping-off disease incidence, and improve the growth of the seedlings. Bacterial isolate BJ10–86 was subjected to molecular identification and found to be Pseudomonas aeruginosa. Chili pepper seeds treated with the biocontrol agents, individually or in combination, were seeded into commercial nursery media that had been pre-inoculated with P. capsici zoospores. Over a period of 35 days the chili pepper seed treatments significantly (P = 0.008) reduced the disease incidence of seedlings damping-off. Combined application of T. hamatum and P. aeruginosa was the best biocontrol treatment with an area under disease curve of only 36.61 units compared to 92.87 units for the control treatment. Similar results were observed in vitro where T. hamatum and P. aeruginosa synergistically inhibited P. capsici growth by 73.2 %. The inhibition activity of this treatment was similar to mefenoxam treatment, which implies that it is an effective and sustainable alternative for chili pepper seed treatment. The biocontrol seed treatment had no effect on seed germination and seedling growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号