首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are considered as the key drivers of global nitrogen (N) biogeochemical cycling. Responses of the associated microorganisms to global changes remain unclear. This study was to determine if there was a shift in soil AOB and AOA abundances and community structures under free-air carbon dioxide (CO2) enrichment (FACE) and N fertilization in Duke Forest of North Carolina, by using DNA-based molecular techniques, i.e., quantitative PCR, restriction fragment length polymorphism (RFLP) and clone library. The N fertilization alone increased the abundance of bacterial amoA gene, but this effect was not observed under elevated CO2 condition. There was no significant effect of the N fertilization on the thaumarchaeal amoA gene abundance in the ambient CO2 treatments, while such effect increased significantly under elevated CO2. A total of 690 positive clones for AOA and 607 for AOB were selected for RFLP analysis. Analysis of molecular variance (AMOVA) indicated that effects of CO2 enrichment and N fertilization on the community structure of AOA and AOB were not significant. Canonical correspondence analysis also showed that soil pH rather than elevated CO2 or N fertilization shaped the distribution of AOB and AOA genotypes. A negative linear relationship between the δ13C and archaeal amoA gene abundance indicated a positive effect of elevated CO2 on the growth ammonia oxidizing archaea. On the other hand, the community structures of AOB and AOA are determined by the soil niche properties rather than elevated CO2 and N fertilization.  相似文献   

2.

Purpose

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are ubiquitous and important for nitrogen transformations in terrestrial ecosystems. However, the distribution patterns of these microorganisms as affected by the terrestrial environments across a large geographical scale are not well understood. This study was designed to gain insights into the ecological characteristics of AOA and AOB in 65 soils, collected from a wide range of soil and ecosystem types.

Materials and methods

Barcoded pyrosequencing in combination with quantitative PCR was employed to characterize the relative abundance, diversity, and community composition of archaeal 16S rRNA gene, and AOA and AOB amoA genes in 65 soil samples.

Results and discussion

The operational taxonomic unit richness and Shannon diversity of Thaumarchaeota, AOA, and AOB were highly variable among different soils, but their variations were best explained by soil pH. Soil pH was strongly correlated with the overall community composition of ammonia oxidizers, as measured by the pairwise Bray–Curtis dissimilarity across all sites. These findings were further corroborated by the evident pH-dependent distribution patterns of four thaumarchaeal groups (I.1a-associated, I.1b, I.1c, and I.1c-associated) and four AOB clusters (2, 3a.1, 10, and 12). The ratios of AOA to AOB amoA gene copy numbers significantly decreased with increasing pH, suggesting a competitive advantage of AOA over AOB in acidic soils.

Conclusions

These results suggest that the distribution of ammonia oxidizers across large-scale biogeographical settings can be largely predicted along the soil pH gradient, thus providing important indications for the ecological characteristics of AOA and AOB in different soils.  相似文献   

3.

Purpose

Nitrogen (N) is one of the most important elements that can limit plant growth in forest ecosystems. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are considered as the key drivers of global N biogeochemical cycling. Soil ammonia-oxidizing microbial communities associated with subtropical vegetation remain poorly characterized. The aim of this study was to determine how AOA and AOB abundance and community structure shift in response to four typical forest vegetations in subtropical region.

Materials and methods

Broad-leaved forest (BF), Chinese fir forest (CF), Pinus massoniana forest (PF), and moso bamboo forest (MB) were widely distributed in the subtropical area of southern China and represented typical vegetation types. Four types of forest stands of more than 30 years grew adjacent to each other on the same soil type, slope, and elevation, were chosen for this experiment. The abundance and community structure of AOA and AOB were characterized by using real-time PCR and denaturing gradient gel electrophoresis (DGGE). The impact of soil properties on communities of AOA and AOB was tested by canonical correspondence analysis (CCA).

Results and discussion

The results indicated that AOB dominated in numbers over AOA in both BF and MB soils, while the AOA/AOB ratio shifted with different forest stands. The highest archaeal and bacterial amoA gene copy numbers were detected in CF and BF soils, respectively. The AOA abundance showed a negative correlation with soil pH and organic C but a positive correlation with NO3 ??N concentration. The structures of AOA communities changed with vegetation types, but vegetation types alone would not suffice for shaping AOB community structure among four forest soils. CCA results revealed that NO3 ??N concentration and soil pH were the most important environmental gradients on the distribution of AOA community except vegetation type, while NO3 ??N concentration, soil pH, and organic C significantly affected the distribution of the AOB communities.

Conclusions

These results revealed the differences in the abundance and structure of AOA and AOB community associated with different tree species, and AOA was more sensitive to vegetation and soil chemical properties than AOB. N bioavailability could be directly linked to AOA and AOB community, and these results are useful for management activities, including forest tree species selection in areas managed to minimize N export to aquatic systems.  相似文献   

4.

Purpose

Global climate change, in particular temperature variation, is likely to alter soil microbial abundance and composition, with consequent impacts on soil biogeochemical cycling and ecosystem functioning. However, responses of belowground nitrogen transformation microorganisms to temperature changes in high-elevation terrestrial ecosystems are not well understood.

Materials and methods

Here, the effects of simulated cooling and warming on the abundance and community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as the abundance of denitrifiers, were investigated using quantitative polymerase chain reaction and clone library approaches, on the basis of a 2-year reciprocal elevation translocation experiment along an elevation gradient from 3,200 to 3,800 m above sea level on the Tibetan Plateau.

Results and discussion

We found that, compared with the temperature variations caused by elevation translocation, the soil origin exerted a much stronger influence on AOA abundance. There were significant effects of both soil origin and elevation translocation on AOB abundance, which was particularly decreased by elevation-enhanced (simulated cooling) and increased by elevation-decreased (simulated warming) treatments. Altered temperature affected the abundance of nirK rather than nirS and nosZ genes, and the latter two seemed to be associated tightly with the soil origin. Furthermore, the results showed that temperature changes had obvious influences on the community structure and diversity of AOB, but not AOA. More apparent response of AOB to warming than in other studies on grassland and forest ecosystems may be attributed to higher elevation and lower mean annual temperature in this study.

Conclusions

Our findings thus suggest that, in comparison with AOA and denitrifying populations, AOB may respond more sensitively to natural temperature variation caused by elevation translocation in this alpine grassland ecosystem on the Tibetan Plateau.  相似文献   

5.
《Applied soil ecology》2010,46(3):193-200
Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and potentially cover a broader range of habitats.  相似文献   

6.

Purpose

Human disturbance is a major culprit driving imbalances in the biological transformation of nitrogen from the nonreactive to the reactive pool and is therefore one of the greatest concerns for nitrogen (N) cycling. The objective of this study was to compare potential nitrification rates and the abundance of ammonia oxidizers responsible for nitrification, with the amendment of external N in different agricultural soils.

Materials and methods

Three typical Chinese agricultural soils, QiYang (QY) acid soil, ShenYang (SY) neutral soil, and FengQiu (FQ) alkaline soil, were amended with 0, 20, 150, and 300 μg NH4 +-N g?1 soil and incubated for 40 days. The abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) at the end of incubation in the soil microcosms was determined using the real-time PCR.

Results and discussion

There was a significant decrease in ammonium concentration in the QY soil from the highest to the lowest N-loading treatments, while no significant difference in ammonium concentrations was detected among the different N-loading treatments for the SY and FQ soils. A significantly higher potential nitrification rate (PNR) was observed in the FQ soil while lowest PNR was found in the QY soil. Quantitative PCR analysis of AOB amoA genes demonstrated that AOB abundance was significantly higher in the high N-loading treatments than in the control for the QY soil only, while no significant difference among treatments in the SY and FQ soils. A significant positive correlation between PNR and AOB amoA abundance, however, was found for the SY and FQ soils, but not for the QY soil. Little difference in AOA amoA abundance between different N-loading treatments was observed for all the soils.

Conclusions

This study suggested that ammonia oxidation capacity in the FQ and SY soils was higher than those in the QY soil with the addition of ammonium fertilizer for a short-term. These findings indicated that understanding the differential responses of biological nitrification to varying input levels of ammonium fertilizer is important for maximizing N use efficiency and thereby improving agricultural fertilization management.  相似文献   

7.
Studies about ammonia-oxidizing bacteria (AOB) and archaea (AOA) are often focused on topsoil, but little is known about their activity and distribution in subsoil. A long-term fertilizer experiment was conducted to assess the effects of different fertilizer treatments on AOB and AOA in vertical soil profiles of paddy soil plots that received no nitrogen fertilizer control (CK), NPK chemical fertilizers (CF), organic–inorganic mixed fertilizer (OIMF) and organic fertilizer (OF). Soil properties, potential nitrification rate (PNR) and amoA gene abundance of AOB and AOA were measured and analyzed by two-way ANOVA and correlation analysis. Quantitative PCR analysis of amoA genes showed that AOA were more abundant than AOB in all the soil samples. AOB declined sharply with soil depth. Compared with CK and OF treatments, CF and OIMF treatments had higher abundance of AOB throughout the soil profiles. However, AOA tend less responsive to soil depth and fertilizers compared to AOB. This caused the AOA/AOB ratios in subsoil higher than in topsoil, and in CK and OF higher than in CF and OIMF treatments. These results suggest that AOA are more abundant and can be better adapted to nutrient-poor subsoils than AOB, and autotrophic nitrification could likely be determined by a complex suite of environmental factors in vertical profiles of the paddy soil tested.  相似文献   

8.
As part of a long-term sloped land use experiment established in 1995 at Taoyuan Agro-ecosystem Research Station (111°26′ E, 28°55′ N) in China, soil samples were collected from three land use types, including cropland (CL), natural forest, and tea plantation. Quantitative polymerase chain reaction and terminal restriction fragment length polymorphism were used to determine the abundance and community composition of amoA-containing bacteria (AOB) and archaea (AOA). The results indicate that land use type induced significant changes in soil potential nitrification rate and community composition, diversity, and abundance of AOB and AOA. Both AOB and AOA community compositions were generally similar between upper and lower slope positions (UP and LP), except within CL. The LP soils had significantly (p?<?0.05) higher diversity and abundance of both AOB and AOA than in the UP. Potential nitrification rate was significantly correlated (p?<?0.05) with diversity and abundance of AOA, but not with AOB. Among land use types, the NO3 ? and amoA-containing AOA runoff loss was greatest in CL. Nitrate-N runoff loss was significantly correlated (p?<?0.05) with the loss of AOA amoA copies in the runoff water. Furthermore, relationships between NO3 ?-N runoff loss and abundance of AOA but not of AOB at both slope positions were significantly correlated (p?<?0.05). These findings suggest that AOA are more important than AOB in nitrification and NO3 ?-N runoff loss in acidic soils across sloped land use types.  相似文献   

9.
Ammonia oxidation is a critical step in the soil nitrogen (N) cycle and can be affected by the application of mineral fertilizers or organic manure. However, little is known about the rhizosphere effect on the function and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities, the most important organisms responsible for ammonia oxidation in agricultural ecosystems. Here, the potential nitrification activity (PNA), population size and composition of AOB and AOA communities in both the rhizosphere and bulk soil from a long-term (31-year) fertilizer field experiment conducted during two seasons (wheat and maize) were investigated using the shaken slurry method, quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis. N fertilization greatly enhanced PNA and AOB abundance, while manure application increased AOA abundance. The community structure of AOB exhibited more obvious shifts than that of AOA after long-term fertilization, resulting in more abundant AOB phylotypes similar to Nitrosospira clusters 3 and 4 in the N-fertilized treatments. Moreover, PNA was closely correlated with the abundance and community structure of AOB rather than that of AOA among soils during both seasons, indicating that AOB play an active role in ammonia oxidation. Conversely, the PNA and population sizes of AOB and AOA were typically higher in the rhizosphere than the bulk soil, implying a significant rhizosphere effect on ammonia oxidation. Cluster and redundancy analyses further showed that this rhizosphere effect played a more important role in shaping AOA community structure than long-term fertilization. Overall, the results indicate that AOB rather than AOA functionally dominate ammonia oxidation in the calcareous fluvo-aquic soil, and that rhizosphere effect and fertilization regime play different roles in the activity and community structures of AOB and AOA.  相似文献   

10.
It is still not clear which group of ammonia-oxidizing microorganisms plays the most important roles in nitrification in soils. Change in abundances and community compositions of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under long-term different nitrogen (N) fertilization rates were investigated in an acidic luvisols soil using real-time polymerase chain reaction and denaturing gradient gel electrophoresis, respectively, based on the ammonia monooxygenase a-subunit gene. The experimental plan included the following treatments: control without N fertilization (NCK), low N fertilization rate, middle N fertilization rate, and high N fertilization rate as 0, 100, 150, and 250?kg urea-N?ha?1, respectively. Long-term different N fertilization rates did not significantly alter the total C and N contents of soil while it significantly decreased soil pH, which ranged from 5.60 to 5.20. The AOB abundance was more abundant in the N fertilization treatments than the NCK treatment; the AOA abundance decreased by the increasing N fertilization rates, as did the ratios of AOA/AOB. The large differences in the potential nitrification rates among four treatments depended on the changes in AOA abundance but not to changes in AOB abundance. Phylogenetic analysis showed that the AOB communities were dominated by Nitrosospira clusters 1, 3, and 9 while all AOA sequences were grouped into soil/sediment cluster except for one sequence. Taken together, these results indicated that AOB and AOA preferred different soil N conditions and AOA were functionally more important in the nitrification than AOB in the acidic luvisols soil.  相似文献   

11.

Purpose

Soil microbial communities can be strongly influenced by agricultural practices, but little is known about bacterial community successions as land use changes. The objective of this study was to determine microbial community shifts following major land use changes in order to improve our understanding of land use impacts on microbial community composition and functions.

Materials and methods

Four agricultural land use patterns were selected for the study, including old rice paddy fields (ORP), Magnolia nursery planting (MNP), short-term vegetable (STV), and long-term vegetable (LTV) cultivation. All four systems are located in the same region with same soil parent material (alluvium), and the MNP, STV, and LTV systems had been converted from ORP for 10, 3, and 30 years, respectively. Soil bacteria and ammonia oxidizer community compositions were analyzed by 454 pyrosequencing and terminal restriction fragment length polymorphism, respectively. Quantitative PCR was used to determine 16S rRNA and amoA gene copy numbers.

Results and discussion

The results showed that when land use was changed from rice paddy to upland systems, the relative abundance of Chloroflexi increased whereas Acidobacteria decreased significantly. While LTV induced significant shifts of bacterial composition, MNP had the highest relative abundance of genera GP1, GP2, and GP3, which were mainly related to the development of soil acidity. The community composition of ammonia-oxidizing bacteria (AOB) but not ammonia-oxidizing archaea was strongly impacted by the agricultural land use patterns, with LTV inducing the growth of a single super predominant AOB group. The land use changes also induced significant shifts in the abundance of 16S rRNA and bacterial amoA genes, but no significant differences in the abundance of archaea amoA was detected among the four land use patterns. Soil total phosphorous, available phosphorous, NO3 ?, and soil organic carbon contents and pH were the main determinants in driving the composition of both bacteria and AOB communities.

Conclusions

These results clearly show the significant impact of land use change on soil microbial community composition and abundance and this will have major implications on the microbial ecology and nutrient cycling in these systems, some of which is unknown. Further research should be directed to studying the impacts of these microbial community shifts on nutrient dynamics in these agroecosystems so that improved nutrient management systems can be developed.  相似文献   

12.

Purpose

Nitrous oxide (N2O) is a potent greenhouse gas which is mainly produced from agricultural soils through the processes of nitrification and denitrification. Although denitrification is usually the major process responsible for N2O emissions, N2O production from nitrification can increase under some soil conditions. Soil pH can affect N2O emissions by altering N transformations and microbial communities. Bacterial (AOB) and archaeal (AOA) ammonia oxidisers are important for N2O production as they carry out the rate-limiting step of the nitrification process.

Material and methods

A field study was conducted to investigate the effect of soil pH changes on N2O emissions, AOB and AOA community abundance, and the efficacy of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions from animal urine applied to soil. The effect of three pH treatments, namely alkaline treatment (CaO/NaOH), acid treatment (HCl) and native (water) and four urine and DCD treatments as control (no urine or DCD), urine-only, DCD-only and urine + DCD were assessed in terms of their effect on N2O emissions and ammonia oxidiser community growth.

Results and discussion

Results showed that total N2O emissions were increased when the soil was acidified by the acid treatment. This was probably due to incomplete denitrification caused by the inhibition of the assembly of the N2O reductase enzyme under acidic conditions. AOB population abundance increased when the pH was increased in the alkaline treatment, particularly when animal urine was applied. In contrast, AOA grew in the acid treatment, once the initial inhibitory effect of the urine had subsided. The addition of DCD decreased total N2O emissions significantly in the acid treatment and decreased peak N2O emissions in all pH treatments. DCD also inhibited AOB growth in both the alkaline and native pH treatments and inhibited AOA growth in the acid treatment.

Conclusions

These results show that N2O emissions increase when soil pH decreases. AOB and AOA prefer different soil pH environments to grow: AOB growth is favoured in an alkaline pH and AOA growth favoured in more acidic soils. DCD was effective in inhibiting AOB and AOA when they were actively growing under the different soil pH conditions.  相似文献   

13.

Purpose

Ammonia oxidation—as the rate-limiting step of nitrification—has been found to be performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, how ammonium content and oxidation–reduction status regulate the distribution of ammonia oxidizers in constructed wetlands and their contribution to potential ammonia oxidation rate are still in dispute. This study aimed to explore the effects of ammonium content and oxidation–reduction status on the abundances of AOA/AOB and examine the contributions of AOA and AOB populations to ammonia oxidation rates in the plant-bed/ditch system of a constructed wetland.

Materials and methods

Sampling was carried out in the plant-bed/ditch system of the Shijiuyang Constructed Wetland, China. Three plant-bed soil cores were collected using a soil auger and sampled at depths of 0, 20, and 50 cm in 5-cm increments. Five ditch surface sediments (0–5 cm) were collected along the water flow direction. The abundances of AOA and AOB were investigated by quantitative polymerase chain reaction based on amoA genes. The potential ammonia oxidation rate was determined using the chlorate inhibition method.

Results and discussion

The results showed that AOA outnumbered AOB in the plant-bed surface soil which had lower ammonium content (4.67–7.63 mg kg?1), but that AOB outnumbered AOA in the ditch surface sediment which had higher ammonium content (14.0–22.9 mg kg?1). Ammonium content was found to be the crucial factor influencing the relative abundances of AOA and AOB in the surface samples of the plant-bed/ditch system. In the deep layers of the plant bed, AOA abundance outnumbered AOB, though much lower oxidation–reduction potential occurred along the water flow direction. Thus, the oxidation–reduction potential may be another factor influencing the distributions of AOA and AOB in the deep layers of the plant bed without significant difference in ammonium content (p?<?0.05). Moreover, the potential ammonia oxidation rate was significantly dominated by AOB rather than AOA in the plant-bed/ditch system.

Conclusions

The high ammonium content in the ditch sediment likely favored AOB. AOA seemed to persist more readily even under low oxidation–reduction potential in the deep layers of the plant bed. Ammonium content and the oxidation–reduction potential were important parameters influencing the distribution of AOA and AOB in the plant-bed/ditch system of Shijiuyang Constructed Wetland. AOB contributed more to ammonia oxidation than AOA, both in the plant-bed soils (r?=?0.592, p?=?0.0096) and in the ditch sediments (r?=?0.873, p?=?0.0002).  相似文献   

14.
Taking two important agricultural soils with different pH, brown soil (Hap-Udic Luvisol) and cinnamon soil (Hap-Ustic Luvisol), from Northeast China, a pot culture experiment with spring maize (Zea mays L.) was conducted to study the dynamic changes in the abundance and diversity of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) populations during maize growth period in response to the additions of nitrification inhibitors dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) by the methods of real-time polymerase chain reaction (PCR) assay, PCR-denaturing gradient gel electrophoresis (DGGE), and construction of clone library targeting the amoA gene. Four treatments were established, i.e., no urea (control), urea, urea plus DCD, and urea plus DMPP. Both DCD and DMPP inhibited growth of AOB significantly, compared to applying urea alone. Soil bacterial amoA gene copies had a significant positive linear correlation with soil nitrate content, but soil archaeal amoA gene copies did not. In both soils, all AOB sequences fell within Nitrosospira or Nitrosospira-like groups, and all AOA sequences belonged to group 1.1b crenaxchaea. With the application of DCD or DMPP, community composition of AOB and AOA in the two soils had less change except that the AOB community composition in Hap-Udic Luvisol changed at the last two growth stages of maize under the application of DCD. AOB rather than AOA likely dominated soil ammonia oxidation in these two agricultural soils.  相似文献   

15.
Biochar amendments have frequently been reported to alter microbial communities and biogeochemical processes in soils. However, the impact of biochar application on bacterial (AOB) and archaeal ammonia oxidizers (AOA) remains poorly understood. In this study, we investigated the responses of AOB and AOA to the application of biochar derived from cotton stalk at rates of 5, 10, and 20 % by weight to a coastal alkaline soil during a 12-week incubation. The results showed that the amoA gene of AOB consistently outnumbered that of AOA, whereas only the AOA amoA gene copy number was significantly correlated with the potential ammonia oxidation (PAO) rate (P?<?0.01). The significant decrease of PAO rates in biochar treatments occurred after incubation for 4–6 weeks, which were distinctly longer than that in the control (2 weeks). The PAO rates were significantly different among treatments during the first 4 weeks of incubation (P?<?0.05), with the highest usually in the 10 % treatment. Biochar application significantly increased the abundance of both nitrifiers in the 4 weeks of incubation (P?<?0.05). Biochar amendment also decreased AOA diversity, but increased AOB diversity, which resulted in different community structures of both nitrifiers (P?<?0.01), as shown by the differences between the 5 % biochar and the control treatments. We conclude that biochar application generally enhanced the abundance and altered the composition of ammonia oxidizers; the rate of biochar application also affected the rate and dynamics of nitrification, and the risk for increasing the alkalinity and N leaching of the studied soil was lower with a lower application rate.  相似文献   

16.
As the first and rate-limiting step of nitrification, ammonia oxidation can be realized either by ammonia-oxidizing bacteria (AOB) or archaea (AOA). However, the key factors driving the abundance, community structure and activity of ammonia oxidizers are still unclear, and the relative importance of AOA and AOB in ammonia oxidation is unresolved. In the present study, we examined the effects of long-term (6 years) nitrogen (N) addition and simulated precipitation increment on the abundance and community composition of AOA and AOB based on a field trial in a typical temperate steppe of northern China. We used combined approaches of quantitative PCR, terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of amoA genes. The study objective was to determine (1) AOA and AOB diversity and activity in response to N addition and increased precipitation and (2) the relative contributions of AOA and AOB to soil ammonia oxidation in the typical temperate steppe. The results showed that the potential nitrification rate (PNR) increased with N addition, but decreased with increased precipitation. Both N addition and increased precipitation significantly increased AOB but not AOA abundance, and a significant correlation was only observed between PNR and AOB amoA gene copies. The T-RFLP analysis showed that both N and precipitation were key factors in shaping the composition of AOB, while AOA were only marginally influenced. Phylogenetic analysis indicated that all AOA clones fell within the soil and sediment lineage while all AOB clones fell within the Nitrosospira. The study suggested that AOA and AOB had distinct physiological characteristics and ecological niches. AOB were shown to be more sensitive to N and precipitation than AOA, and the ammonia oxidation process was therefore supposed to be mainly driven by AOB in this temperate steppe.  相似文献   

17.

Purpose

Nitrification and denitrification, two of the key nitrogen (N) transformation processes in the soil, are carried out by a diverse range of microorganisms and catalyzed by a series of enzymes. Different management practices, such as continuous grazing, mowing, and periodic fencing off from grazing, dramatically influenced grassland ecosystems. This study aimed to examine the effects of management practices on the abundance and community structure of nitrifier and denitrifier communities in grassland ecosystems.

Materials and methods

Soil samples were collected from a semiarid grassland ecosystem in Xilingol region, Inner Mongolia, where long-term management practices including free-grazing, different periods of enclosure from grazing, and different frequencies of mowing were conducted. Real-time quantitative polymerase chain reaction (Q-PCR), denaturing gradient gel electrophoresis (DGGE), sequencing, and phylogenetic analysis were applied to estimate the abundance and composition of amoA, nirS, nirK, and nosZ genes.

Results and discussion

The ammonia-oxidizing archaea (AOA) amoA copies were in the range 5.99?×?108 to 8.60?×?108, while those of ammonia-oxidizing bacteria (AOB) varied from 3.02?×?107 to 4.61?×?107. The abundance of AOA was substantially higher in the light grazing treatment (LG) than in the mowing treatments. The quantity and intensity of DGGE bands of AOA varied with pasture management. In stark contrast, AOB population abundance and community structure remained largely unchanged in all the soils irrespective of the management practices. All these results suggested that ammonia oxidizers were dominated by AOA. The higher gene abundance and greater intensity of DGGE bands of nirS and nosZ under the enclosure treatments would suggest greater stimulated denitrification. The ratio of nosZ/(nirS?+?nirK) was higher in mowing treatments than in the free-grazing and enclosure treatments, possibly leading to more complete denitrification. Correlation analysis indicated that soil moisture and inorganic nitrogen content were the two main soil environmental variables that influence the community structure of nitrifiers and denitrifiers.

Conclusions

In this semiarid neutral to alkaline grassland ecosystem under low temperature conditions, AOA mainly affiliated with Nitrososphaera dominated nitrification. These results clearly demonstrate that grassland management practices can have a major impact on nitrifier and denitrifier communities in this semiarid grassland ecosystem, under low temperature conditions.
  相似文献   

18.
Both arbuscular mycorrhizal (AM) fungi and ammonia oxidizers are important soil microbial groups in regulating soil N cycling. However, knowledge of their interactions, especially the direct influences of AM fungi on ammonia oxidizers is very limited to date. In the present study, a controlled microcosm experiment was established to examine the effects of AM fungi and N supply level on the abundance and community structure of ammonia oxidizing bacteria (AOB) and archaea (AOA) in the rhizosphere of alfalfa plants (Medicago sativa L.) inoculated with AM fungus Glomus intraradices. Effects were studied using combined approaches of quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The results showed that inoculation with AM fungi significantly increased the plant dry weights, total N and P uptake. Concomitantly, AM fungi significantly decreased the amoA gene copy numbers of AOA and AOB in the root compartment (RC) but not in the hyphal compartment (HC). Moreover, AM fungi induced some changes in AOA community structure in HC and RC, while only marginal variations in AOA composition were observed to respond to N supply level in HC. Neither RC nor HC showed significant differences in AOB composition irrespective of experimental treatments. The experimental results suggested that AM fungi could directly shape AOA composition, but more likely exerted indirect influences on AOA and AOB abundance via the plant pathway. In general, AM fungi may play an important role in mediating ammonia oxidizers, but the AOA community appeared to be more sensitive than the AOB community to AM fungi.  相似文献   

19.

Purpose

Sampling and analysis of greenhouse soils were conducted in Shouguang, China, to study continuous excessive fertilization effect on nitrifying microbial community dynamics in greenhouse environment.

Materials and methods

Potential nitrification activity (PNA), abundance, and structure of nitrifying microbial communities as well as the correlations with soil properties were investigated.

Results and discussion

Short-term excessive fertilization increased soil nutrient contents and the diversity of nitrifying microbial communities under greenhouse cultivation. However, the abundance and diversity of nitrifying communities decreased greatly due to the increase of soil acidity and salinity after 14 years of high fertilization in greenhouse. There was a significant positive correlation between soil PNA and the abundance of ammonia-oxidizing bacteria (AOB) but not that of ammonia-oxidizing archaea (AOA) in topsoil (0–20 cm) when pH ≥7. Soil PNA and AOB were strongly influenced by soil pH. The groups of Nitrososphaeraceae, Nitrosomonadaceae, and Nitrospiraceae were predominant in the AOA, AOB, and nitrite-oxidizing bacteria (NOB) communities, respectively. Nitrifying community structure was significantly correlated with soil electrical salinity (EC), organic carbon (OC), and nitrate nitrogen (NO3 ?–N) content by redundancy analysis (RDA).

Conclusions

Nitrification was predominated by AOB in greenhouse topsoil with high fertilizer loads. Soil salinity, OC, NO3 ?–N content, and pH affected by continuous excessive fertilization were the major edaphic factors in shaping nitrifying community structure in greenhouse soils.
  相似文献   

20.

Purpose

Nitrification is a key process in the global nitrogen cycle, of which the first and rate-limiting step is catalyzed by ammonia monooxygenase. Root cap cells are one of substrates for microorganisms that thrive in the rhizosphere. The degradation of root cap cells brings about nitrification following ammonification of organic nitrogen derived from the root cap cells. This study was designed to gain insights into the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to mineralized N from root cap cells and the composition of active bacterial and archaeal ammonia oxidizers in rice soil.

Materials and methods

Rice callus cells were used as a model for root cap cells, and unlabelled (12C) and 13C-labelled callus cells were allowed to decompose in aerobic soil microcosms. Real-time quantitative polymerase chain reaction (PCR), DNA-based stable isotope probing (SIP), and denaturing gradient gel electrophoresis (DGGE) were applied to determine the copy number of bacterial and archaeal amoA genes and the composition of active AOB and AOA.

Results and discussion

The growth of AOB was significantly stimulated by the addition of callus cells compared with the growth of AOA with a much lesser extent. AOB communities assimilated 13C derived from the callus cells, whereas no AOA communities grew on 13C-callus. Sequencing of the DGGE bands in the SIP experiments revealed that the AOB communities belonging to Nitrosospira spp. dominated microbial ammonia oxidation with rice callus amendment in soil.

Conclusions

The present study suggests that root cap cells of rice significantly stimulated the growth of AOB, and the active members dominating microbial ammonia oxidation belonged to Nitrosospira spp. in rice rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号