首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.  相似文献   

2.
Seedlings of seven temperate tree species (Acer pseudoplatanus L., Betula pendula Roth, Fagus sylvatica L., Fraxinus excelsior L., Juglans regia L., Quercus petraea Matt. Liebl. and Quercus robur L.) were grown in a nursery under neutral filters transmitting 45% of incident global irradiance. During the second or third year of growth, leaf photosynthetic capacity (i.e., maximal carboxylation rate, Vcmax, maximal photosynthetic electron transport rate, Jmax, and dark respiration, Rd) was estimated for five leaves from each species at five or six leaf temperatures (10, 18, 25, 32, 36 and 40 degrees C). Values of Vcmax and Jmax were obtained by fitting the equations of the Farquhar model on response curves of net CO2 assimilation (A) to sub-stomatal CO2 mole fraction (ci), at high irradiance. Primary parameters describing the kinetic properties of Rubisco (specificity factor, affinity for CO2 and for O2, and their temperature responses) were taken from published data obtained with spinach and tobacco, and were used for all species. The temperature responses of Vcmax and Jmax, which were fitted to a thermodynamic model, differed. Mean values of Vcmax and Jmax at a reference temperature of 25 degrees C were 77.3 and 139 micromol m(-2) s(-1), respectively. The activation energy was higher for Vcmax than for Jmax (mean values of 73.1 versus 57.9 kJ mol(-1)) resulting in a decrease in Jmax/Vcmax ratio with increasing temperature. The mean optimal temperature was higher for Vcmax than for Jmax (38.9 versus 35.9 degrees C). In addition, differences in these temperature responses were observed among species. Temperature optima ranged between 35.9 and above 45 degrees C for Vcmax and between 31.7 and 43.3 degrees C for Jmax, but because of data scatter and the limited range of temperatures tested (10 to 40 degrees C), there were few statistically significant differences among species. The optimal temperature for Jmax was highest in Q. robur, Q. petraea and J. regia, and lowest in A. pseudoplatanus and F. excelsior. Measurements of chlorophyll a fluorescence revealed that the critical temperature at which basal fluorescence begins to increase was close to 47 degrees C, with no difference among species. These results should improve the parameterization of photosynthesis models, and be of particular interest when adapted to heterogeneous forests comprising mixtures of species with diverse ecological requirements.  相似文献   

3.
Panek JA 《Tree physiology》2004,24(3):277-290
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.  相似文献   

4.
Xu L  Baldocchi DD 《Tree physiology》2003,23(13):865-877
Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO2 and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (Vcmax) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine Vcmax. There was a pronounced seasonal pattern in Vcmax. The maximum value of Vcmax, 127 micromol m(-2) s(-1), was reached shortly after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, Vcmax declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 degrees C. The decline in Vcmax was gradual in midsummer, however, despite extremely low predawn leaf water potentials (Psipd, approximately -4.0 MPa). Overall, temporal changes in Vcmax were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (Rd, 5-6 micromol m(-2) s(-1)) were observed. Once a leaf reached maturity, Rd remained low, around 0.5 micromol m(-2) s(-1). In contrast to the strong seasonality of Vcmax, m and marginal water cost per unit carbon gain (partial partial differential E/ partial partial differential A) were relatively constant over the season, even when leaf Psipd dropped to -6.8 MPa. The constancy of partial partial differential E/ partial partial differential A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.  相似文献   

5.
We measured the seasonal and temperature responses of leaf photosynthesis and respiration of two co-occurring native New Zealand tree species with contrasting leaf phenology: winter-deciduous fuchsia (Fuchsia excorticata J. R. Forst & G. Forst) and annual evergreen wineberry (Aristotelia serrata J. R. Forst & G. Forst). There was no difference in the amount of nitrogen per unit leaf area (Narea, range 40-160 mmol m-2, P = 0.18) or specific leaf area (S, range 8-27 m2 kg-1, P = 0.87) in summer leaves of wineberry or fuchsia. The amount of nitrogen per unit leaf area and S varied significantly with height of leaves in the canopy for both species (r2 range 0.61-0.87). Parameters describing the maximum rates of rubisco carboxylation (Vcmax) and electron transport (Jmax) were related significantly to Narea, and were 60% higher on average in spring and summer leaves than in autumn and winter leaves for both species. The seasonal effect remained significant (P < 0.001) when Narea was included in a regression model, indicating that seasonal changes were not only due to changes in Narea. Values for Vcmax and Jmax were 30% lower in wineberry leaves than in fuchsia leaves on average, although the difference ranged from 15% in summer leaves to 39% in autumn leaves. Activation energies describing the temperature dependence of Vcmax and Jmax in wineberry were 111 and 114% of corresponding values for fuchsia (Ea (Vcmax) = 39.1 kJ mol-1, Ea (Jmax) = 32.9 kJ mol-1). Respiration at night was the same (P = 0.34) at 10 degrees C for both species (R10 = 0.7 micromol m-2 s-1), although activation energies (E0) were higher in wineberry than in fuchsia (47.4 and 32.9 kJ mol-1 K-1, respectively). These results show that rates of photosynthesis are higher in winter-deciduous fuchsia than in annual evergreen wineberry.  相似文献   

6.
We measured seasonal variation in area-based nitrogen concentration (N), maximum rate of carboxylation (Vcmax) and maximum rate of electron transport (Jmax) in 1-year-old needles along four first-order branches within a Pinus densiflora Sieb. & Zucc. crown, and analyzed their relationships to growth irradiance and temperature. Each leaf light environment was expressed as a ratio of the monthly mean of daily integrated photosynthetically active irradiance (Iint) for the particular needle to Iint above the canopy (Irel). Needle N decreased in the upper crown during the development of new needles, whereas it remained fairly constant in the lower crown, reflecting differences between upper and lower crown needles in their contribution to the nitrogen of new needles. Gradients of N within the crown were correlated with Irel in all seasons (r2 = 0.40-0.78). Seasonal variation in N was weakly correlated with mean daily air minimum temperatures. Both Vcmax and Jmax showed seasonal variation in all first-order branches, and decreased to their lowest values in winter. The gradients of Vcmax and Jmax within the crown were not correlated with Irel in some seasons, but were correlated with changes in N in most months (r2 = 0.33-0.75), except in the winter. Furthermore, the regression slope of the relationship between N and Vcmax and the temperature response of Vcmax and Jmax exhibited seasonal variation.  相似文献   

7.
We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading modify the acclimation response. Sun and shade leaf responses to elevated [CO2] and soil N were compared between upper and lower canopy leaves of P. tremuloides and between A. saccharum seedlings grown with and without shading by P. tremuloides. Both species had higher leaf N concentrations and photosynthetic rates in high-N soil than in low-N soil, and these characteristics were higher for P. tremuloides than for A. saccharum. Electron transport capacity (Jmax) and carboxylation capacity (Vcmax) generally decreased with atmospheric CO2 enrichment in all 3 years of the experiment, but there was no evidence that elevated [CO2] altered the relationship between them. On a leaf area basis, both Jmax and Vcmax acclimated to elevated [CO2] more strongly in shade leaves than in sun leaves of P. tremuloides. However, the apparent [CO2] x shade interaction was largely driven by differences in specific leaf area (m2 g-1) between sun and shade leaves. In A. saccharum, photosynthesis acclimated more strongly to elevated [CO2] in sun leaves than in shade leaves on both leaf area and mass bases. We conclude that trees rooted freely in the ground can exhibit photosynthetic acclimation to elevated [CO2], and the response may be modified by light environment. The hypothesis that photosynthesis acclimates more completely to elevated [CO2] in shade-tolerant species than in shade-intolerant species was not supported.  相似文献   

8.
We compared photosynthesis-nitrogen relationships of one broad-leaved (poplar; Populus x euroamericana (Dole) Guinier) and one conifer (Douglas-fir; Pseudotsuga menziesii (Mirb.) Franco) species. Plants were grown in large pots to allow free root development and were kept well watered. We determined effects of low, intermediate and high nitrogen supply rates on area-based leaf nitrogen (Na) and chlorophyll concentrations, leaf mass per area (LMA), light-saturated photosynthesis (Amax), maximum carboxylation (Vcmax) and electron transport rate (Jmax), photosynthetic nitrogen-use efficiency (PNUE), and proportions of leaf N in active Rubisco (PR), bioenergetic pools (PB) and the light-harvesting complex (PLH). Nitrogen supply significantly affected leaf Na. Leaf mass per area did not differ between species and was unaffected by the N treatments. In both species, there was a positive correlation between leaf Na and chlorophyll concentration, and between leaf Na and the photosynthetic parameters Amax, Jmax and Vcmax. At comparable leaf Na, however, poplar showed twofold higher PNUE and a threefold steeper slope of the Amax- nitrogen relationship than Douglas-fir. Leaf Na was negatively correlated with PNUE in Douglas-fir but not in poplar. Leaf Na was also negatively correlated with PR, PB and PLH in Douglas-fir, whereas in poplar, a negative correlation was found only for PLH. Parameter PR was significantly higher in poplar than in Douglas-fir. The ratio of CO2 concentration in the intercellular space to that in ambient air was higher in poplar than in Douglas-fir. Overall, our data suggest that differences in the photosynthesis-nitrogen relationship and PNUE between Douglas-fir and poplar primarily reflect a different investment of N to active Rubisco, and possibly a different constraint to CO2 diffusion.  相似文献   

9.
Grassi G  Bagnaresi U 《Tree physiology》2001,21(12-13):959-967
The role of morphological versus physiological foliar plasticity in the capacity for, and mechanisms of, photosynthetic acclimation was assessed in Picea abies (L.) Karst. and Abies alba Mill. saplings in a forest gap-understory light gradient (relative irradiance, RI, ranging from 0.02 to 0.32). The species investigated showed a similar foliar morphological plasticity along the light gradient, at both the needle level (through alteration in leaf dry mass per area) and the shoot level (through alteration in the silhouette area ratio, e.g., shoot silhouette to projected needle area ratio). In both species chlorophyll (Chl) concentration on a mass basis decreased at increasing RI, but was independent of RI when expressed on an area basis. In contrast, leaf N concentration on a mass basis was independent of RI, but was positively influenced by RI when expressed on an area basis. The parameters describing photosynthetic performance at low light (dark respiration rate, apparent quantum yield and light compensation point) suggest that Abies alba was better suited to maintain a positive carbon balance in shaded conditions. By contrast, parameters describing biochemical capacity at high light (maximum electron transport rate, Jmax and maximum ribulose-1,5-biphosphate carboxylation capacity, Vcmax) indicate that only Picea abies was capable of acclimating physiologically to high photosynthetic photon flux densities (PPFDs) by increasing nitrogen partitioning to Rubisco and Vcmax/mass by increasing RI. These results support the hypothesis that interspecific differences in nitrogen partitioning within the photosynthetic apparatus may provide a mechanistic basis for species separation along a light gradient. The differences in photosynthetic plasticity observed are likely to influence regeneration patterns and habitat breadth of the species investigated. The limited ability of Abies alba saplings to exploit high-light conditions may be a competitive disadvantage in large canopy gaps and thus limit recruitment of this species to small gaps.  相似文献   

10.
Responses of photosynthesis to carbon dioxide (CO2) partial pressure and irradiance were measured on leaves of 39-year-old trees of manuka (Leptospermum scoparium J. R. Forst. & G. Forst.) and kanuka (Kunzea ericoides var. ericoides (A. Rich.) J. Thompson) at a field site, and on leaves of young trees grown at three nitrogen supply rates in a nursery, to determine values for parameters in a model to estimate annual net carbon uptake. These secondary successional species belong to the same family and commonly co-occur. Mean (+/- standard error) values of the maximum rate of carboxylation (hemi-surface area basis) (Vcmax) and the maximum rate of electron transport (Jmax) at the field site were 47.3 +/- 1.9 micromol m(-2) s(-1) and 94.2 +/- 3.7 micromol m(-2) s(-1), respectively, with no significant differences between species. Both Vcmax and Jmax were positively related to leaf nitrogen concentration on a unit leaf area basis, and the slopes of these relationships did not differ significantly between species or between the trees in the field and young trees grown in the nursery. Mean values of Jmax/Vcmax measured at 20 degrees C were significantly lower (P < 0.01) for trees in the field (2.00 +/- 0.05) than for young trees in the nursery with similar leaf nitrogen concentrations (2.32 +/- 0.08). Stomatal conductance decreased sharply with increasing air saturation deficit, but the sensitivity of the response did not differ between species. These data were used to derive parameters for a coupled photosynthesis-stomatal conductance model to scale estimates of photosynthesis from leaves to the canopy, incorporating leaf respiration at night, site energy and water balances, to estimate net canopy carbon uptake. Over the course of a year, 76% of incident irradiance (400-700 nm) was absorbed by the canopy, annual net photosynthesis per unit ground area was 164.5 mol m(-2) (equivalent to 1.97 kg C m(-2)) and respiration loss from leaves at night was 37.5 mol m(-2) (equivalent to 0.45 kg m(-2)), or 23% of net carbon uptake. When modeled annual net carbon uptake for the trees was combined with annual respiration from the soil surface, estimated net primary productivity for the ecosystem (0.30 kg C m(-2)) was reasonably close to the annual estimate obtained from independent mensurational and biomass measurements made at the site (0.22 +/- 0.03 kg C m(-2)). The mean annual value for light-use efficiency calculated from the ratio of net carbon uptake (net photosynthesis minus respiration of leaves at night) and absorbed irradiance was 13.0 mmol C mol(-1) (equivalent to 0.72 kg C GJ(-1)). This is low compared with values reported for other temperate forests, but is consistent with limitations to photosynthesis in the canopy attributable mainly to low nitrogen availability and associated low leaf area index.  相似文献   

11.
We measured horizontal and vertical gradients of light (rPPFD) along four first-order branches of a Pinus densiflora Sieb. & Zucc. crown, and compared variations in specific leaf area (SLA), needle nitrogen concentration (N), chlorophyll concentration (Chl) and photosynthetic capacity (i.e., maximum rate of carboxylation (V(cmax))) along the two axes. The horizontal gradient of rPPFD along first-order branches was similar in magnitude to the vertical gradient of rPPFD from the upper to the lower crown. None of the measured parameters (i.e., SLA, N, Chl and Vcmax) were strictly proportional to rPPFD, although they were more or less correlated with light when data obtained for all of the crown were pooled (r(2) = 0.31-0.80). The slope of rPPFD against N on an area basis (Narea) for a branch in the middle of the crown orientated northward was significantly greater than the slope for a similar branch orientated southward. Horizontal variations were unrelated to age effects because measurements were all on 1-year-old needles. We conclude that factors other than light (i.e., orientation) may influence N allocation within branches. There was considerably less variation in the relationship of Vcmax to Narea (r2 = 0.58) than in the relationship of Vcmax to rPPFD (r2 = 0.41). Fractional N distribution among components of the photosynthetic machinery was constant within the crown. Together with the relationships between rPPFD and N on a mass basis (r2 = 0.80) and SLA and Vcmax (r2 = 0.60), these findings suggest that most light acclimation in P. densiflora occurs through changes in needle morphology (e.g., SLA) during development.  相似文献   

12.
We compared leaf gas exchange and water potential among the dominant tree species and major size classes of trees in an upland, pine-oak forest in northern Arizona. The study included old-growth Gambel oak (Quercus gambelii Nutt.), and sapling, pole, and old-growth ponderosa pines (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Old-growth oak had higher predawn leaf water potential (Psi(leaf)) than old-growth pine, indicating greater avoidance of soil water stress by oak. Old-growth oak had higher stomatal conductance (G(w)), net photosynthetic rate (P(n)), and leaf nitrogen concentration, and lower daytime Psi(leaf) than old-growth pine. Stomatal closure started at a daytime Psi(leaf) of about -1.9 MPa for pine, whereas old-growth oak showed no obvious reduction in G(w) at Psi(leaf) values greater than -2.5 MPa. In ponderosa pine, P(n) and G(w) were highly sensitive to seasonal and diurnal variations in vapor pressure deficit (VPD), with similar sensitivity for sapling, pole, and old-growth trees. In contrast, P(n) and G(w) were less sensitive to VPD in Gambel oak than in ponderosa pine, suggesting greater tolerance of oak to atmospheric water stress. Compared with sapling pine, old-growth pine had lower morning and afternoon P(n) and G(w), predawn Psi(leaf), daytime Psi(leaf), and soil-to-leaf hydraulic conductance (K(l)), and higher foliar nitrogen concentration. Pole pine values were intermediate between sapling and old-growth pine values for morning G(w) and daytime Psi(leaf), similar to sapling pine for predawn Psi(leaf), and similar to old-growth pine for morning and afternoon P(n), afternoon G(w), K(l), and foliar nitrogen concentration. For the pines, low predawn Psi(leaf), daytime Psi(leaf), and K(l) were associated with low P(n) and G(w). Our data suggest that hydraulic limitations are important in reducing P(n) in old-growth ponderosa pine in northern Arizona, and indicate greater avoidance of soil water stress and greater tolerance of atmospheric water stress by old-growth Gambel oak than by old-growth ponderosa pine.  相似文献   

13.
We investigated variation in height growth, gas exchange, chlorophyll fluorescence and leaf stable carbon isotope ratio among wind-pollinated progenies of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca), ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and western white pine (Pinus monticola Dougl. ex D. Don) from a small group of contiguous stands on the Priest River Experimental Forest in northern Idaho. Photosynthetic variables differed between height classes in the pines, but not in Douglas-fir. Among species and families, tall families of ponderosa pine regained photosynthetic capacity earliest in the spring and maintained it latest in the growing season. Tall families of western white pine had higher instantaneous water-use efficiencies and lower photosynthetic rates than short families on warm days in August.  相似文献   

14.
An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.  相似文献   

15.
At the leaf scale, it is a long-held assumption that stomata close at night in the absence of light, causing transpiration to decrease to zero. Energy balance models and evapotranspiration equations often rely on net radiation as an upper bound, and some models reduce evapotranspiration to zero at night when there is no solar radiation. Emerging research is showing, however, that transpiration can occur throughout the night in a variety of vegetation types and biomes. At the ecosystem scale, eddy covariance measurements have provided extensive data on latent heat flux for a multitude of ecosystem types globally. Nighttime eddy covariance measurements, however, are generally unreliable because of low turbulence. If significant nighttime water loss occurs, eddy flux towers may be missing key information on latent heat flux. We installed and measured rates of sap flow by the heat ratio method (Burgess et al. 2001) at two AmeriFlux (part of FLUXNET) sites in California. The heat ratio method allows measurement and quantification of low rates of sap flow, including negative rates (i.e., hydraulic lift). We measured sap flow in five Pinus ponderosa Dougl. ex Laws. trees and three Arctostaphylos manzanita Parry and two Ceanothus cordulatus A. Kellog shrubs in the Sierra Nevada Mountains, and in five Quercus douglasii Hook and Arn. trees at an oak savanna in the Central Valley of California. Nocturnal sap flow was observed in all species, and significant nighttime water loss was observed in both species of trees. Vapor pressure deficit and air temperature were both well correlated with nighttime transpiration; the influence of wind speed on nighttime transpiration was insignificant at both sites. We distinguished between storage-tissue refilling and water loss based on data from Year 2005, and calculated the percentage by which nighttime transpiration was underestimated by eddy covariance measurements at both sites.  相似文献   

16.
Relative to closed-canopy tropical forests, tree seedlings planted in open grown areas are exposed to higher light intensity, air temperatures, vapor pressure deficit, and greater seasonal fluxes of plant available water than mature tropical forests. The species-specific adaptive capacity to respond to variable precipitation and seasonality in open grown conditions, therefore, is likely to affect species performance in large-scale reforestation efforts. In the present study, we compared the photosynthetic characteristics of eight tropical tree species within and between seasons at two study sites with contrasting dry season intensities. All species except Pseudosamanea guachapele reduced leaf physiological function between the wet and dry seasons. The contrasting severity of seasonal drought stress at the study sites constrained growth rates and photosynthetic characteristics differently. Variation of photosynthetic characteristics at the species level was high, particularly in the dry season. Faster growing species at the less seasonal site, Terminalia amazonia, Inga punctata, Colubrina glandulosa, and Acacia mangium, exhibited a greater adaptive capacity than the other species to down-regulate leaf photosynthesis between seasons. As the dry season was more severe at the more seasonal site, most species strongly reduced physiological function regardless of relative growth rates, except two species (Tectona grandis and P. guachapele) with widespread distributions and relatively high drought tolerance. Our results underscore the need to consider seasonal drought tolerance when selecting tree species for specific reforestation sites.  相似文献   

17.
Four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 degrees N (Skidegate a and Skidegate b) and at 41.3 degrees N (North Bend a and North Bend b), were grown for three growing seasons in ambient (~350 micromol per mol) and elevated (~700 micromol per mol) CO2 concentrations. The clones were grown in stress-free conditions (adequate nutrition and water) to assess the effect of elevated [CO2] on tree physiology. Growth in elevated [CO2] significantly increased instantaneous photosynthetic rates of the clonal Sitka spruce saplings by about 62%. Downward acclimation of photosynthesis (A) was found in all four clones grown in elevated [CO2]. Rubisco activity and total chlorophyll concentration were also significantly reduced in elevated [CO2]. Provenance did not influence photosynthetic capacity. Best-fit estimates of Jmax (maximum rate of electron transport), Vcmax (RuBP-saturated rate of Rubisco) and Amax (maximum rate of assimilation) were derived from responses of A to intercellular [CO2] by using the model of Farquhar et al. (1980). At any leaf N concentration, the photosynthetic parameters were reduced by growth in elevated [CO2]. However, the ratio between Jmax and Vcmax was unaffected by CO2 growth concentration, indicating a tight coordination in the allocation of N between thylakoid and soluble proteins. In elevated [CO2], the more southerly clones had a higher initial N use efficiency (more carbon assimilated per unit of leaf N) than the more northerly clones, so that they had more N available for those processes or organs that were most limiting to growth at a particular time. This may explain the initial higher growth stimulation by elevated [CO2] in the North Bend clones than in the Skidegate clones.  相似文献   

18.
Kitaoka S  Koike T 《Tree physiology》2005,25(4):467-475
Several deciduous broad-leaved tree species, differing in leaf phenology, invade larch (Larix kaempferii (Lamb.) Carrière) plantations in Japan. The understory light environment of larch forests changes drastically between the leafy and leafless periods. To determine how the invading seedlings exploit the changing light environment, and if phenological differences reflect the light- and nitrogen-use traits of the seedlings, we measured leaf phenology, seasonal changes in light-saturated photosynthetic rate (P(sat)), leaf nitrogen (N) content (N(area)), chlorophyll/nitrogen ratio (Chl/N), specific leaf area (SLA) and N remobilization rate (NRMR) over 3 years. The mid-successional or gap-phase species, Magnolia hypoleuca Siebold & Zucc., had a short leafy period and high P(sat) and NRMR. In contrast, two late-successional tree species, Prunus ssiori Friedr. Schmidt, which undergoes leaf flush before larch, and Carpinus cordata Blume, which maintains green leaves until frost, both had low P(sat) and NRMR but exploited the opportunity for growth during the period when the larch canopy trees were leafless. Quercus mongolica Fisch. ex Ledeb. var. crispula (Blume) Ohashi, a mid-late-successional species that underwent leaf flush at the same time as the overstory larch, had values of photosynthetic parameters between those of the gap-phase and late-successional species. Among species, M. hypoleuca and Q. mongolica had higher photosynthetic rates and photosynthetic N-use efficiencies. In all species, the relationship between N(area) and P(sat) showed species-specific yearly fluctuations; however, there was no yearly fluctuation in the relationship between N(area) and P(sat) at CO2 saturation. Yearly fluctuations in the N(area)-P(sat) relationship appeared to be induced by changes in SLA and N-use characteristics, which in turn are affected by climatic variations.  相似文献   

19.
To determine light requirement and adaptability of Fraxinus mandshurica seedlings, the seasonal variations of photosynthetic variables were measured in 3-year-old seedlings grown under four light levels (100%, 60%, 30%, and 15% of full sunlight) with a LI-6400 portable photosynthesis system. The leaf chlorophyll content, special leaf weight, annual height and basal diameter increment of seedlings were also observed. The maximum and minimum values of net photosynthetic rate, maximum rate of carboxylation, an...  相似文献   

20.
Kosugi Y  Matsuo N 《Tree physiology》2006,26(9):1173-1184
Seasonal fluctuations in leaf gas exchange parameters were investigated in three evergreen (Quercus glauca Thunb., Cinnamomum camphora Sieb. and Castanopsis cuspidata Schottky) and one deciduous (Quercus serrata Thunb.) co-occurring, dominant tree species in a temperate broad-leaved forest. Dark respiration rate (Rn), maximum carboxylation rate (Vcmax) and stomatal coefficient (m), the ratio of stomatal conductance to net assimilation rate after adjustment to the vapor pressure deficit and internal carbon dioxide (CO2) concentration, were derived inversely from instantaneous field gas exchange data (one-point method). The normalized values of Rn and Vcmax at the reference temperature of 25 degrees C (Rn25, Vcmax25) and their temperature dependencies (Delta Ha(Rn), Delta Ha(Vcmax)) were analyzed. Parameter Vcmax25 ranged from 24.0-40.3 micromol m(-2) s(-1) and Delta Ha(Vcmax) ranged from 29.1- 67.0 kJ mol(-1). Parameter Rn25 ranged from 0.6-1.4 micromol m(-2) s(-1) and Delta Ha(Rn) ranged from 47.4-95.4 kJ mol(-1). The stomatal coefficient ranged from 7.2-8.2. For the three evergreen trees, a single set of Vcmax25 and Rn25 parameters and temperature dependence curves produced satisfactory estimates of carbon uptake throughout the year, except during the period of simultaneous leaf fall and leaf expansion, which occurs in April and May. In the deciduous oak, declines in Vcmax25 were observed after summer, along with changes in Vcmax25 and Rn25 during the leaf expansion period. In all species, variation in m during periods of leaf expansion and drought should be considered in modeling studies. We conclude that the changes in normalized gas exchange parameters during periods of leaf expansion and drought need to be considered when modeling carbon uptake of evergreen broad-leaved species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号