首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water vapor adsorption isotherms were used for estimation of (apparent) surface areas of samples of limed and unlimed plots of an acidic sandy forest soil. Samples were taken at two microrelief (ridge and furrow) positions from five subsequent 10 cm layers. Values of surface area and CEC correlated linearly with organic matter content but only for four bottom layers. Surface areas and CEC values calculated per the unit mass of organic carbon were higher in upper layers than in lower layers for control samples. For limed samples an opposite trend was observed. The estimated average (apparent) charge densities of organic matter showed a better correlation with humic to fulvic acids ratio. Values of surface charge densities for every investigated profile increased with depth and they were lower in limed than in unlimed profiles.  相似文献   

2.
以在陕西关中土垫旱耕人为土区进行的连续6年定位试验为对象,研究了长期覆盖栽培及施氮量对玉米?小麦轮作体系下土壤有机质、全氮及土壤剖面硝态氮残留量和分布的影响。结果表明,不同栽培模式对土壤有机质和全氮含量的影响为覆草垄沟常规节水,其中覆草模式影响达显著水平。增施氮肥不同程度地提高了土壤有机质和全氮含量。经过12季玉米-小麦的轮作,不同栽培模式0~200cm土壤剖面硝态氮残留量为垄沟节水覆草常规,垄沟和节水栽培模式与常规栽培硝态氮累积量差异达显著水平。随种植年限和施氮量增加,0~200cm土壤中硝态氮累积量明显增加,施240kg·hm-2N(N240)处理0~200cm土壤硝态氮累积量显著高于施120kg·hm-2N(N120)处理。不同施氮量下硝态氮在0~200cm土壤剖面的分布存在差异,与不施氮(N0)和N120处理相比,N240处理下各栽培模式在120cm以下的土壤硝态氮含量随深度增加而显著增加。  相似文献   

3.
Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus–peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300–600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75–150 mg C/100 g) to the high (150–300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35–75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2–11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0–20 cm and from 1.0 to 12.4/ha in the layer of 0–50 cm of different soil types.  相似文献   

4.
通过河北雾灵山5种人工纯林的土壤养分分析,研究了不同林分类型对土壤pH值、有机质、全量养分和速效养分的变化,并对不同土壤养分进行了主成分分析。结果表明:5种不同林分类型的土壤pH值均为弱酸性,其变化范围为4.61~6.31;不同土层土壤有机质表现为:表层(0—10 cm)> 中层(10—20 cm)> 下层(20—40 cm),有机质均值在2.53~9.60 g/kg之间;土壤全磷含量均值为0.20~0.70 g/kg;土壤全氮含量均值为2.38~3.45 g/kg;土壤速效钾含量均值为67.54~169.88 mg/kg;土壤速效磷含量均值在0.84~6.84 mg/kg之间;土壤碱解氮含量均值在65.68~147.88 mg/kg之间;不同林分类型土壤养分综合效应评价,白桦纯林最大,为1.122;落叶松纯林最小,为-0.819。综合来看,随土层厚度增加土壤养分含量减少;阔叶林土壤养分含量大于针叶林。  相似文献   

5.
Hardpan is a major cause of land degradation that affects agricultural productivity in developing countries. However, relatively, little is known about the interaction of land degradation and hardpans. The objective of this study was, therefore, to investigate soil degradation and the formation of hardpans in crop/livestock‐mixed rainfed agriculture systems and to assess how changes in soil properties are related to the conversion of land from forest to agriculture. Two watersheds (Anjeni and Debre Mewi) were selected in the humid Ethiopian highlands. For both watersheds, 0–45 cm soil penetration resistance (SPR, n  = 180) and soil physical properties (particle size, soil organic matter, pH, base ions, cation exchange capacity, silica content, bulk density and moisture content) were determined at 15 cm depth increments for three land uses: cultivated, pasture and forest. SPR of agricultural fields was significantly greater than that of forest lands. Dense layers with a critical SPR threshold of ≥2000 kPa were observed in the cultivated and pasture lands starting at a depth of 15–30 cm but did not occur in the undisturbed forest land. Compared with the original forest soils, agricultural fields were lower in organic matter, cation exchange capacity, and exchangeable base cations; more acidic; had a higher bulk density and more fine particles (clay and silt); and contained less soluble silica. Overall, our findings suggest that soil physical and chemical properties in agricultural lands are deteriorated, causing disintegration of soil aggregates, resulting in greater sediment concentration in infiltration water that clogged up macro‐pores, thereby disconnecting deep flow paths found in original forest soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
  【目的】  全面认知我国苹果园施肥现状,明确苹果园土壤剖面氮磷分布特征,探究减肥增效和地力提升的果园管理技术,为我国苹果产业高质量发展提供理论依据和技术支撑。  【方法】  基于文献资料,制定我国苹果合理化肥施用量;采用实地调查和文献数据相结合的方法,明确和评价我国苹果主产区化肥施用现状;通过田间采样与室内分析,明晰灌区和非灌区苹果园土壤硝态氮和Olsen-P剖面变化特征;基于文献资料,集成苹果园减肥增效、地力提升和优质高产的管理技术。  【结果】  我国苹果园化肥合理施用量为N 150~420 kg/hm2、P2O5 90~330 kg/hm2和K2O 120~420 kg/hm2。目前我国苹果园化肥平均施用量分别为N 905 kg/hm2、P2O5 570 kg/hm2和K2O 675 kg/hm2,氮、磷、钾过量施肥现象普遍且较为严重;施肥结构上,重化肥轻有机肥现象明显,有机肥养分占比仅7.0%。旱作体系下,8年生苹果园土壤与农田相比,0—600 cm土壤剖面硝态氮含量差异不显著,25年生苹果园土壤在20—500 cm土层硝态氮含量显著高于农田,且在120 cm土层出现215 mg/kg的硝态氮峰值;灌区25年生苹果园0—800 cm土壤剖面硝态氮含量均高于100 mg/kg,在380 cm土层出现265 mg/kg的硝态氮峰值,且140—600 cm土层硝态氮含量显著高于旱作25年生苹果园土壤。土壤Olsen-P含量整体表现为0—100 cm土层下降、100—400 cm土层增加和400—600 cm土层基本稳定的趋势;旱作体系下,土壤Olsen-P含量在0—60 cm土层表现为25年生苹果园土壤 > 8年生苹果园土壤 ≈ 农田土壤,而在60—600 cm土层Olsen-P含量差异不显著;灌区25年生苹果园在60—120 cm土层土壤Olsen-P含量高于旱作25年生苹果园,且在80—100 cm土层出现一个14.5 mg/kg的峰值,460—560 cm土层也表现为灌溉果园的Olsen-P含量高于雨养果园的趋势。水肥一体化和推荐施肥是现实苹果园减肥增效的关键技术,有机无机肥配施、果园生草、施用生物炭是提高苹果园肥料利用效率及土壤肥力的重要途径。  【结论】  我国苹果园过量施肥和不平衡施肥问题严重;高量施肥背景下长期苹果种植导致土壤深层剖面硝态氮和有效磷累积,无效化风险高,且灌溉加剧了氮、磷的淋溶风险;水肥一体化和苹果养分专家系统等推荐施肥,以及有机无机肥配施、果园生草、施用生物炭等是实现我国苹果园减肥增效和地力提升的关键技术,在今后苹果园管理方面,应加强不同生态区适宜的综合技术研究。  相似文献   

7.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The dependences between negative charge and pH for organic matter of limed and unlimed profiles of sandy acidic forest soils were determined on the base of ion exchange and titration curves measurements. Subtracting the titration curves of the supernatant from the titration curves of the respective suspensions the quantities of base consumed by solid phases were determined. They were interpreted in terms of negative charge after corrections with the quantities of initial exchangeable basic cations and exchangeable hydrogen. For investigated organic material the charge increased slowly in acidic pH region and much faster in alkaline pH region. The zones of the fast increase of charge occured at higher pH's for deeper horizons, enriched with fulvic acids. The observed changes of organic matter charge due to liming were related to the increase of fulvic to humic acids ratio. The negative charges of organic matter in limed and unlimed profiles estimated for high pH were better correlated with fulvic to humic acids ratio than when estimated for lower pH levels.  相似文献   

9.
The effects of continuous sugarcane (Saccharum officinarum) cropping on the properties of a cohesive Yellow Latosol were studied in the region of the Coastal Tablelands, Northeast Brazil. Four areas were studied at Caeté mill, municipality of São Miguel dos Campos, Alagoas State, involving a native forest (Tn), and sugarcane fields cultivated for periods of 2 years (T2), 18 years (T18) and 25 years (T25). Samples were collected from each area at 0–0.2 and 0.2–0.4 m depth, to determine total organic C, physical fractionation of soil organic matter and consistence limits. Undisturbed samples were collected to determine wet aggregate mean weight–diameter, dry mean weight diameter and aggregate stability. In relation to the soil under native forest, total organic C and particulate organic matter contents were reduced after 2 years of cultivation. Sugarcane cropping for a longer period promoted a recuperation of soil organic matter content. The decrease of total organic C and reduction in aggregate stability and plastic limit after 2 years of sugarcane cultivation rendered the soil more susceptible to compaction.  相似文献   

10.
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing.  相似文献   

11.
在宁南山区黄土丘陵区开展了退耕还林还草工程效益监测研究,测定了不同坡位退耕还林还草地的土壤养分。对土壤养分单因子分析结果表明:在同一坡面上,随着坡位的降低,退耕还林还草地0—100 cm土层土壤有机质、全氮、全磷、速效氮、速效磷平均含量增加;从不同坡位退耕还林还草地各层土壤养分含量来看,随着土层深度的增加,土壤有机质、全氮、全磷、速效氮、速效磷、速效钾含量在降低。说明半干旱黄土丘陵区林带间种植的苜蓿经营粗放,加剧了土壤养分的失调。  相似文献   

12.
以黑河中游荒漠绿洲过渡带斑块植被区土壤为研究对象,对土壤含水量与土壤有机质含量空间变异特征及两者相关性进行研究,并对土壤含水量和土壤有机质含量的空间变异函数模型进行拟合。结果表明:(1)20~40 cm土层的土壤含水量空间变异性最为强烈,C_V=1.780;而40~60 cm土层的土壤有机质含量空间变异性最为强烈,C_V=0.561。(2)0~120 cm土层的土壤含水量空间变异函数理论模型均为指数模型;0~60 cm土层的土壤有机质含量空间变异函数理论模型为纯块金模型;而60~120 cm土层的土壤有机质含量空间变异函数理论模型为指数模型和球状模型。(3)土壤含水量和土壤有机质含量均随土层深度的增加而相应的增加,且二者之间呈显著对数相关关系,R~2=0.9597。  相似文献   

13.
三江平原不同土地利用方式下土壤有机碳的动态变化   总被引:14,自引:2,他引:12  
迟光宇  王俊  陈欣  史奕 《土壤》2006,38(6):755-761
以三江平原不同开垦年限的水田及旱地为研究对象,并以沼泽化草甸和天然林地为对照,分层采集土样,测定其土壤有机C含量、pH值及全N含量。在此基础上借助SPSS软件和统计分析技术,探讨了不同土地利用类型各层土壤中有机C含量的垂直分布特征及其与pH值、N素的相关关系。结果表明:土壤有机C的垂直分布随土壤深度和土地利用类型的变化而变化;与沼泽化草甸相比,开垦10年和25年的水田表层土壤有机C含量分别减少49.3%(P<0.01)和14.3%(P<0.05),开垦5年和18年的旱地表层土壤总有机C量比对照分别减少81.9%(P<0.01)和68.3%(P<0.01);林地及开垦18年的旱地土壤pH值均与土壤有机C含量呈显著负相关,相关系数分别为-0.578(P<0.05)和-0.965(P<0.01);农田开垦前后,土壤有机C含量与全N含量呈显著正相关,相关系数均在0.580(P<0.05)以上。  相似文献   

14.
刺槐林和柠条林土壤剖面理化性质对比及相关性分析   总被引:1,自引:0,他引:1  
为了研究黄土高原退耕林地土壤理化性质变化特征,探索土壤剖面不同深度土壤有机碳(SOC)及相关因素的相互响应机制,对安塞县纸坊沟流域1975年柠条林(N75)、1974年农地(H74)和1978年刺槐林(C78)100 cm深度土壤剖面的有机碳、全N、粒度、碳酸钙进行了差异度分析和线性相关性分析,结果表明:两个退耕林地SOC和全N含量在0—100 cm深度都有增加,但是C78主要表现在0—20 cm深度,而N75则主要表现在20—100 cm深度。相关度分析表明,H74在20—100 cm深度SOC含量、C/N值与0.002—0.02 mm粒径含量达显著、极显著相关,C78在40—100 cm深度SOC含量与<0.002 mm粒径含量显著相关,C/N值与<0.02 mm粒径含量由0—100 cm的负相关变为正相关。结果证明,退耕后柠条林地SOC和全N含量的变化主要表现在深层土壤上,刺槐林地的变化则主要表现在浅层土壤上;农地和刺槐林地深层土壤SOC主要吸附在细颗粒土壤上,性质较稳定。  相似文献   

15.
Because carbon dioxide (CO2) concentration is rising, increases in plant biomass and productivity of terrestrial ecosystems are expected. However, phosphorus (P) unavailability may disable any potential enhanced growth of plants in forest ecosystems. In response to P scarcity under elevated CO2, trees may mine deeper the soil to take up more nutrients. In this scope, the ability of deep horizons of forest soils to supply available P to the trees has to be evaluated. The main objective of the present study was to quantify the relative contribution of topsoil horizons and deep horizons to P availability through processes governed by the activity of soil micro-organisms. Since soil properties vary with soil depth, one can therefore assume that the role of microbial processes governing P availability differs between soil layers. More specifically, our initial hypothesis was that deeper soil horizons could substantially contribute to total plant available P in forested ecosystems and that such contribution of deep horizons differs among sites (due to contrasting soil properties). To test this hypothesis, we quantified microbial P and mineralization of P in ‘dead’ soil organic matter to a depth of 120 cm in forest soils contrasting in soil organic matter, soil moisture and aluminum (Al) and iron (Fe) oxides. We also quantified microbiological activity and acid phosphomonoesterase activity. Results showed that the role of microbial processes generally decreases with increasing soil depth. However, the relative contribution of surface (litter and 0–30 cm) and deep (30–120 cm) soil layers to the stocks of available P through microbial processes (51–62 kg P ha?1) are affected by several soil properties, and the contribution of deep soil layers to these stocks vary between sites (from 29 to 59%). This shows that subsoils should be taken into account when studying the microbial processes governing P availability in forest ecosystems. For the studied soils, microbial P and mineralization of P in ‘dead’ soil organic matter particularly depended on soil organic matter content, soil moisture and, to a minor extent, Al oxides. High Al oxide contents in some sites or in deep soil layers probably result in the stabilization of soil organic compounds thus reducing microbiological activity and mineralization rates. The mineralization process in the litter also appeared to be P-limited and depended on the C:P ratio of soil organic matter. Thus, this study highlighted the effects of soil depth and soil properties on the microbial processes governing P availability in the forest spodosols.  相似文献   

16.
Abstract

In Tigray, Ethiopia, land degradation is a dominant environmental problem and hence the regional government has undertaken restoration measures on degraded soils since 1991. The present study was aimed to assess the impact of land uses and soil management practices on soil properties, and consequently on soil quality of degraded soils. The catchments selected were Maileba and Gum Selassa, and land uses included cultivated (CL), grazing (GL), plantation (PA) and area exclosure (AE). Replicated soil samples were collected from topsoil and profiles of four land-use types in both catchments. Soils in area exclosure showed higher soil organic carbon (SOC), total N and extractable K than grazing land, cultivated land and plantation area mainly at 0–40 cm soil depth. Estimated soil organic carbon stock at Maileba in 0–40 cm depth varied between 54 to 74 Mg C ha?1, being lowest in cultivated land and highest in area exclosure, and the soil organic carbon stock in area exclosure represents 63% of total carbon stock stored in the profile. Soil organic carbon stock (0–40 cm) at Gum Selassa ranged between 33 to 38 Mg C ha?1, being higher in cultivated land and lower in plantation area. Soil quality index (SQI) of area exclosure (0.794) at Maileba and cultivated land (0.721) at Gum Selassa scored highest among all land uses, and the order was area exclosure>grazing land>plantation area>cultivated land at Maileba and cultivated land>grazing land>plantation area at Gum Selassa, highlighting the effectiveness of area exclosure in restoring soil quality of degraded soils.  相似文献   

17.
土壤碳库管理指数(CPMI)可以比较准确地发现人为因素对土地利用的干扰情况。以伊犁河谷不同土地利用类型(耕地、林地、草地和荒地)为研究对象,分析了不同土地利用类型土壤有机碳(SOC)含量、活性有机碳含量及其在SOC中的分配情况,各类有机碳含量之间的相关性、CPMI。研究表明:(1)不同土地利用类型SOC含量和水溶性有机碳(WSOC)含量有显著差异,SOC含量为草地 > 林地 > 耕地 > 荒地;WSOC含量为耕地(最高) > 荒地(最低);易氧化碳(ROC)含量为草地最低;在0—20 cm和20—40 cm土层,微生物量碳(MBC)含量为草地(最高) > 林地(最低);ROC含量为荒地高于草地。不同土地利用类型SOC含量均随土层深度增加而降低;ROC含量均随土层深度增加而升高;除林地外,其他样地MBC含量均随土层深度增加呈先升高后降低趋势,而WSOC含量均随土层深度增加而逐渐降低。(2)不同土地利用类型下ROC,MBC和WSOC所占SOC比例各不相同,且碳库的活度主要取决于ROC所占比例,ROC所占比例为荒地 > 耕地 > 林地 > 草地;MBC所占比例为荒地 > 耕地 > 草地 > 林地;WSOC所占比例为耕地 > 林地 > 荒地 > 草地。同一土地利用类型各活性有机碳所占比例情况为ROC > MBC > WSOC。(3)不考虑土层深度影响,耕地ROC含量与MBC含量呈极显著线性负相关;林地SOC含量与ROC含量呈显著线性负相关;荒地SOC含量与WSOC含量呈极显著线性正相关。不同土地利用类型下SOC,ROC,MBC,WSOC含量之间线性相关程度总体偏低。(4)同一土地利用类型,CPMI均随土层深度的加深先增大后减小;0—20 cm土层的CPMI为林地 > 荒地(100) > 耕地 > 草地。土地利用类型由荒地、草地、耕地转变为林地,有利于CPMI的提高,有利于土壤培肥,促进碳循环。  相似文献   

18.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha−1 year−1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg−1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha−1 year−1 exhibited thick sola with low inorganic carbon content (mean 3 g kg−1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions.  相似文献   

19.
东北黑土有机碳的分布及其损失量研究   总被引:11,自引:0,他引:11  
为了分析东北黑土土壤有机碳(SOC)的分布特征及其开垦以来黑土SOC的损失程度,我们于2004~2005年在黑龙江和吉林两省采集了32个自然黑土剖面样品,在每个自然黑土样品附近对应采集32个景观条件相似的耕作黑土样品。结果表明,自然黑土样品0~30cm土层SOC含量平均为32.20 g kg-1,最高可达63.46 g kg-1,黑龙江省自然黑土SOC含量(34.55 g kg-1)高于吉林省(23.80 g kg-1)。耕作土壤SOC平均含量为22.71 g kg-1,远低于自然土壤。受温度的影响,随着纬度的增加,自然黑土与耕作黑土SOC含量逐渐递增。由于土壤侵蚀以及耕垦和去除作物残留物等农业管理措施的综合作用,使得耕作黑土表层SOC含量小于自然黑土。与自然黑土相比,耕作黑土0~10cm土层SOC损失量在26.84%~46.57%之间,亚表层损失相对较少。黑土SOC含量下降也是土壤水土流失致使黑土层变薄的一个直接表现。耕作黑土表层流失厚度可以通过自然与耕作黑土剖面SOC含量的分异差值来估算。通过对土壤剖面上SOC的分布进行校正剔除土壤侵蚀的影响后得到的同等深度SOC含量的差值才可视为由耕作以及有机质输入量差异等因素造成的SOC损失量。未经校正而进行的自然黑土和耕作黑土同一深度SOC含量的比较可能过高估计了农业管理措施对土壤SOC损失量的影响。  相似文献   

20.
The iodine content in successive 10 cm horizons of eighteen soil profiles from England and Wales was determined and correlated with contents of‘free’ aluminium and iron oxides (oxalate-soluble) and organic matter. The pattern of change in iodine content with depth varied considerably with soil type. In the rendzina soils, the content was relatively high in the surface 10 cm but declined markedly with depth. In the podsols, iodine was low at the surface but increased in the B horizon: in one of these soils an iron pan of about 1 cm thickness had an iodine content as high as 37.6 mg/kg. In two soils derived from Ordovician, and one from igneous, rock material, the iodine content was relatively high (up to 25 mg/kg) with maximum values at intermediate depths. In contrast, soils derived from river alluvium and from lowland clays generally had low iodine contents (< 6 mg/kg) which showed little variation with depth in the profile. In a peat soil the iodine content was relatively high in the horizons above 60 cm but was low (1. 3 mg/kg) in the underlying clay. In all 154 samples from the eighteen sites, iodine content was closely correlated with oxalate-soluble aluminium (r= 0.834***) but not with oxalate-soluble iron (r= 0. 35) or organic matter (r= 0.37). However, in the five most acidic soils, with pH below 4. 8, the iodine content was more closely correlated with iron than with aluminium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号