首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Contamination of groundwater by nitrate is a worldwide environmental issue. A better knowledge of nitrate sorption characteristics by soils contributes to efficient fertilizer use and prevents aquifer contamination. In volcanic soils, nitrate sorption is induced by variable charges due to the presence of amorphous materials and aluminum (Al) and iron (Fe) oxides. Anion transport in packed and intact columns was investigated in a Mexican Allophanic Andisol, under different permanent flow regimes in unsaturated conditions and several NO3 ?‐N and Br? input concentrations. In the packed columns, the NO3 ?‐N adsorption in the soil was nonlinear. In the intact columns, the retardation coefficient variation was directly correlated to the increase of amorphous material with depth. The presence of preferential flow in the intact columns significantly increased the mobility and velocity of nitrate moving through the columns, whereas in the packed columns, NO3 ?‐N fate was only affected by soil chemical composition and mineralogy.  相似文献   

2.
Studies on selenium adsorption were conducted on seleniferous and non‐seleniferous soils of north‐west India. Soils were equilibrated with graded levels of Se ranging from 1 to 100 μg ml—1 tagged with 75Se in the presence of sulphate, nitrate and phosphate ions, generally being applied to soils as inorganic fertilizers. The adsorption of Se on different soils, both in the presence and absence of competing anions, increased with increase in the level of Se added. Adsorption of Se conformed to Langmuir equation. In the absence of any competing anions, adsorption maxima of Se for different soils ranged from 270 to 461 μg g—1. The corresponding values decreased appreciably in the presence of competing anions; per cent decrease ranged from 3 to 21 at 10 μg SO4‐S ml—1, from 8 to 40 at 60 μg NO3‐N ml—1 and 32 to 56 at 15 μg H2PO4‐P ml—1. The bonding energy of Se in different soils decreased by 33 to 66 per cent in the presence of only phosphate ions. The changes in bonding energy were inconsistent in the case of nitrate and sulphate ions. At equal concentration of added P and Se, the amount of P adsorbed was 2 to 3 times the amount of Se adsorbed. With increasing concentration of Se, greater amounts of S were released in the equilibrium solution. The distribution coefficients (Kd) decreased significantly in the presence of different anions; the effect was conspicuous in the case of phosphate ions.  相似文献   

3.
ABSTRACT

Nitrate (NO3 -N) leaching in tropical soils, which are more weathered, is influenced by their mineralogical, physical, and chemical characteristics. Thus, the present study aimed to evaluate the effect of the variation of net electrical charge on the mobility of nitrate, applied as potassium nitrate (KNO3) or calcium nitrate (Ca(NO3)2), in samples from A and B horizons of three Red-Yellow Latosols (Oxisols), with different mineralogical and textural characteristics. Hydrochloric acid (HCl) or sodium hydroxide (NaOH) volumes were added to previously sterilized soil samples in order to condition five hydrogen potential (pH) values, obtaining different net electrical charges. The experiment was carried out with leaching columns under laboratory conditions. The soil columns were percolated with solutions of KNO3 or Ca(NO3)2 or water (control). An increase in positive net charges was significant and varied according to the soil and percolating solution; in general, it resulted in an increase of up to 50% in nitrate adsorption in some soils. Larger amounts of adsorbed nitrate were observed in the columns filled with the B horizon of the clayey gibbsitic Red-Yellow Latosol, showing adsorption of 85% for a positive net charge of 2 cmolc kg?1. Regarding kaolinitic soils, lower adsorption was observed in the medium-textured kaolinitic Red-Yellow Latosol, which had lower clay content and positive net charge. Application of Ca(NO3)2, as a percolating solution, increased nitrate adsorption compared to the application of KNO3. This effect may be attributed to the increase in positive net charge promoted by calcium (Ca2+), being more evident for the highest negative net charges.  相似文献   

4.
Simulation of anion transport in undisturbed soil cores under steady-state flow conditions Miscible displacement experiments with undisturbed soil columns were carried out in the laboratory. Objective of the experiments was to collect information about the transport of Cl? and NO3? through field soils. The experiments were carried out with a forest soil and an agricultural soil. The flow velocity of the chloride and the nitrate solution was either 1 cm/day or 0,3 cm/day. Of each soil there were 5 replicates. The effluent of each of the columns was analyzed and the collected data were used for model calculations. It was found that the breakthrough curves of Cl? and NO3? were similar in shape. For the well-aggregated forest soil the apparent diffusion coefficient was much larger than for the agricultural soil. For both soils practically all of the chloride could be recovered in the effluent, but for nitrate considerable losses within the soil column were noted. It was also found that the chloride breakthrough could be described with a simple convection-dispersion equation. However a reduction of the total pore space, accounting for anion exclusion, was needed. Furthermore it was observed that for nitrate an additional sink term in the convection-dispersion equation was needed to account for the observed nitrate losses. It appears that the transport of nitrate and chloride through the soils that were studied can be described mathematically, provided the anion exclusion space and the rate of nitrate losses are known. The nature of the anion exclusion and the nitrate transformation needs further study.  相似文献   

5.
In the quest for better understanding of cation movement through undisturbed soils, leaching experiments on 300-mm long undisturbed soil columns of two contrasting soils were carried out. One soil was a weakly-structured alluvial fine sandy loam, the other a well-structured aeolian silt loam. About 2000 mm of solutions of MgCl2 and Ca(NO3)2 of 0·025 M were applied at unsaturated water flow rates of between 3 and 13 mm h?1. Solute movement was monitored over several weeks by collecting effluent under suction at the base. In the sandy loam anion transport was influenced by exclusion from the double layer, whereas in the Ramiha soil anion adsorption occurred. Cation transport was described by coupling the convection-dispersion equation with cation exchange equations. Good simulations of the Mg2+ and Ca2+ concentrations in the effluent and on the exchange sites were obtained if 80% of the exchangeable cations, as measured using the 1 M ammonium acetate method, were assumed to be active. Local physical or chemical disequilibrium did not need to be explicitly taken into account. About 400 kg ha?1 of native potassium was leached from the alluvial soil, but only about 10 kg ha?1 was leached from the aeolian soil. The convection-dispersion equation coupled with exchange theory was found to describe cation transport under unsaturated flow through undisturbed soil satisfactorily.  相似文献   

6.
Anion retention is important in highly weathered soils that contain large amounts of iron and aluminium oxides with surfaces of variable charge. Sorption mechanisms retard anionic solute transfer through these soils. We determined the retardation factor for nitrate in highly weathered Ferralsols from New Caledonia from dynamic experiments using a transient‐flow method, and we evaluated the effect of soil solution concentration and organic matter content. A simple method with sectionable tubes was used to determine the nitrate isotherm during non‐steady‐state water flow under unsaturated conditions. The topsoil retarded the movement of nitrate, and the sorption followed a linear isotherm. In subsoils, retardation factors were larger and increased from 1.15 to 2.05 at soil pH as the NO3‐N concentration of the input solution decreased from 71.43 to 0.35 mm , indicative of a non‐linear isotherm. Positive surface charge sites were considered to be of two types: one with strong affinity for nitrate at small concentrations and one with weak affinity for adsorption of nitrate at larger concentrations. This type of isotherm with high‐ and low‐energy sites is similar to those found for oxyanions and heavy metals. The related anion exchange capacity was larger than that usually observed in soils of variable charge. Not all exchange sites were detected with our method, and some sites were obviously not available for nitrate retention.  相似文献   

7.
Abstract

The attribute that ion‐exchange resins remove ions from solutions moving through them can be used to measure nitrate transport through soils. The characteristics of nitrate adsorption by resins must be known to interpret nitrate accumulation on ion‐exchange resins embedded in soil. The extent to which anion exchange resins retain NO3‐ from soil leachate was measured in 15.9 cm diam.by 60 cm long intact cores of Nolin (fine silty mixed mesic Dystric Fluventic Eutrochroept) soil. A NC3 ‐selective resin and a non‐selective resin were tested. Columns were fertilized at a rate of 300 kg N/ha and 150 kg Br/ha and leached with 50 cm of water. Under these conditions, both resins retained approximately 80% of the NO3‐ and Br leached through the soil. This compared with greater than 95% retention in laboratory columns containing only resin. The difference in retention was attributed to different flow through the resin associated with the method of resin emplacement.  相似文献   

8.
Bypass flow, the vertical flow of free water along the walls of macropores or preferential flow paths in the soil, can lead to movement of fertilizer nutrients beyond the reach of plants. Fertilizer type and the rate of application, as well as the amount, frequency, and intensity of rainfall, can influence the amount of fertilizer nitrogen (N) loss in leaching or bypass flow. The effect of fertilizer N form and rate of application on N recovery in bypass flow in a Kenyan Vertisol was determined. Calcium nitrate and ammonium sulfate, used to supply nitrate (NO3 ?)‐N and ammonium (NH4 +)‐N, respectively, were surface‐broadcast to 40‐cm‐long undisturbed soil columns at equivalent rates of 50, 100, and 200 kg N ha?1. Using a rainfall simulator, two rainfall events (30 mm of water applied in 1 h) were applied to the soil columns, one before and the other after fertilizer application. Total N, NO3 ?‐N, and NH4 +‐N concentrations in the bypass flow were determined after the second rainfall event. The application of NH4 +‐N, regardless of the rate, had no effect on N recovery in the bypass flow. When nitrate N was applied, the amount of fertilizer N recovered in the bypass flow significantly increased with the rate of NO3 ?‐N application. Of the total N in the bypass flow, 24 to 48% was derived from the soil, the bulk of which was organic N. It is concluded that following the application of NO3 ?‐N, bypass flow is an important avenue of loss of both fertilizer and soil N from Vertisols.  相似文献   

9.
The effect of Cl?,SO 4 2? , CH3COO?, and NO 3 ? anions on the adsorption of copper, lead, and zinc by an ordinary chernozem has been studied. The effect of the anions on the adsorption of Cu2+, Pb2+, Zn2+ ions is significant but uncertain. It has been shown that the attendant anions affect the shape of the adsorption isotherms, which are described by the Langmuir, Freundlich, or Henri equations. The constants of the adsorption from a nitrate solution calculated from the Langmuir equation (K L) decrease in the following order: Cu2+ > Pb2+ >> Zn2+. The values of the maximum adsorption (C max) decrease in the following order: Cu2+ ≥ Zn2+ > Pb2+ for acetate solutions and in the series Pb2+ > Zn2+ ≥ Cu2+ for nitrate solutions. The values of the Henry constants (K H) calculated for the adsorption of the same cations from chloride solutions decrease in the same order as the values of K L. The CH3COO? anion has the highest effect on the constant values. The NO 3 ? and Cl? anions “switch their places” depending on the attendant cation, but their effect is always lower than that of the acetate anion. The values of C max for copper and zinc are most affected by the CH3COO? anion, and the adsorption of zinc is most affected by the Cl? and NO 3 ? anions. The assessment of the mobility of the adsorbed cations from the extraction with ammonium acetate (pH 4.8) has shown that the content of the desorbed metals is always lower than the content of the adsorbed cations and varies from 0.025 to 83%. According to their mobility, the adsorbed metals form the following order: Zn2+ > Pb2+ > Cu2+. The effect of the attendant anions on the extractability of the adsorbed cations decreases in the following order: chlorides > sulfates > acetates > nitrates.  相似文献   

10.
The reactions of methyl nitrite (CH3ONO), a gaseous product of NO?2 decomposition in soils, were studied by exposure of soils in closed vessels to the gas. The N transformations occurring in soils at different soil-water states were assessed by measuring CH3ONO and other gaseous forms of N in the gas space, soil inorganic N (NH4+, NO?2, NO3?) and incorporation of CH3O15NO into the soil organic N fraction. The initial rate of uptake of CH3ONO increased with decreasing soil-water content, but the rate of hydrolysis decreased as soil-water content decreased below – 33kPa matric potential. Uptake was not affected by y-irradiation of soils. Adsorption isotherms conformed to the Langmuir equation in each of 22 oven-dry soils studied. Langmuir adsorption maxima were positively correlated with the clay contents of the soils, and adsorption was reversible to some extent at all soil-water states. Small amounts of added CH3ONO were recovered as N2 and N2O and as 15NH4+ in γ-irradiated soils. From 60 to 72% of added CH3O15NO was recovered by Kjeldahl digestion; this was indicative of a chemical reaction with soil organic matter. The results suggest that the physical process of adsorption of CH3ONO by clay minerals and the chemical fixation of CH3ONO by soil organic matter are key factors controlling the atmospheric concentration of CH3ONO, and that the combined effect of these processes, together with hydrolysis in the soil solution, will inhibit the emission of CH3ONO formed in N-fertilized soils.  相似文献   

11.
Abstract

We compared the use of mixed-bed ion exchange resin capsules (RC), suction cups (SC), pan lysimeters (PL), and subsurface drainage (DR) for the detection of nitrate movement through a clayey soil where onion (Allium cepa L.) had been cultivated over a period of seven months. At the topsoil level, solutions collected with SC showed higher concentrations of NO3 ? than the PL-collected samples. At 80-cm depth, however, the concentrations of NO3 ? were higher for the DR and PL samples than for the SC samples, suggesting that bypass or macropore flow was the primary mechanism of NO3 ? transport to subsurface drainage or groundwater, while solutions collected by SC mostly represented solutions inside soil aggregates. The use of the resin capsule method resulted in higher values of NO3 ? at 15- than at 50-cm depth initially but the trend was reversed after sufficient leaching and plant uptake. High and significant correlations were obtained between the amount of NO3 ? adsorbed on RC at 15-cm depth and the mean concentration of NO3 ? in the DR samples during the RC installation period and between the NO3 ? adsorbed on RC at 50-cm depth and the mean NO3 ? concentration of PL samples at 80-cm depth. Such results indicate that the RC method which enables the detection of nitrate transport via macropore flow is a promising technique for nitrate leaching measurements.  相似文献   

12.
徐明岗  季国亮 《土壤学报》2001,38(2):204-211
研究了我国典型3种可变电荷土壤和4种恒电荷土壤在陪伴阳离子分别为K+、Na+、Ca2+时和1mmolL-1KCl、K2SO4支持电解质中NO-3的吸附.结果表明,NO-3吸附量随pH的增加而减小.在添加相同浓度NO-3时,3种可变电荷土壤对NO-3的吸附量顺序为Ca(NO3)2>KNO3>NaNO3>KNO3+KCl>KNO3+K2SO4;在初始NO-3浓度0.5~5mmolL-1的范围内,吸附量随浓度变化的关系符合Langmuir等温吸附式.由此求出与NO-3吸附结合能有关的常数(K)在不同共存离子存在下数值较小且差异不大,因此认为不同陪伴阳离子和不同伴随阴离子对NO-3吸附的电性机理影响不大,只是改变了土壤表面的正电荷数量从而使吸附量发生变化.4种恒电荷土壤对NO-3的吸附量通常很小,其中在Ca(NO3)2介质中较在其他介质中稍大,最大吸附量仅为1.5mmolkg-1左右,约为可变电荷土壤的1/10,且在浓度较低时常观察到负吸附.  相似文献   

13.
The effects of temperature and water potential on nitrification were investigated in two Iowa soils treated with Stay‐N 2000. The soils were incubated at 10, 20, and 30 °C after soil water potentials of ?1, ?10, or ?60 kPa were applied to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and termination period of nitrification (t s). The highest K max were 18 and 24 mg kg?1 d?1 nitrate (NO3 ?)–nitrogen (N), respectively, at 30 °C and ?10 kPa in both the Nicollet (fine‐loamy, mixed, superactive, mesic Aquic Hapludoll) and Canisteo (fine‐loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) soils and reduced to 4 and 16 mg kg?1 d?1 NO3 ?‐N when Stay‐N 2000 was added. The extension of t′ due to the addition of Stay‐N 2000 was as high as 7 d in the Nicollet soil at 10 °C and ?1 kPa and as little as 2 d in the Canisteo soil at 20 °C and ?10 kPa.  相似文献   

14.
Abstract

A long‐term soil incubation and column nutrient leaching study was conducted to determine nitrogen (N)‐mineralization rates of selected Florida Histosols with drained and intermittent‐flooded conditions. Five surface soils from the Everglades Agricultural Area (EAA) were packed in columns (5‐cm i.d. containing the 0‐ to 15‐cm depth of each soil) and leached with 0.01M CaC12 followed by distilled water every 25 d for 1 yr. Drained columns were treated with a minus‐nitrogen‐phosphorus (NP) solution followed by applying ‐0.97 MPa tension to remove excess solution. Flooded columns received the same minus‐NP solution, but were flooded to a depth of 3 cm. Both treatments were incubated for 25‐d periods, solution sampled, and treatments reapplied. Because flooding conditions could not be maintained during the sampling period, this treatment is referred to as intermittent flooded. The ammonium‐nitrogen (NH4 +‐N) released from drained soils accounted for less than 6% of the total soluble N released from all soils, compared to more than 30% released from flooded soils. There were no differences in the amounts of soluble organic N from drained and intermittent flooded soils. Total soluble N from the surface 15‐cm of drained soils ranged from 217 to 509 kg‐ha‐1yr‐1, with 50 to 67% released as nitrate‐nitrogen (NO3 ‐N). In contrast, total soluble N released from flooded soils ranged from 168 to 345 kg‐ha‐1yr‐1, with less than 3% released as NO3 ‐N.  相似文献   

15.
Nitrate (NO3?) can contribute to surface water eutrophication and is deemed harmful to human health if present at high concentrations in the drinking water. In grazed grassland, most of the NO3?‐N leaching occurs from animal urine‐N returns. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3? leaching in three different soils from different regions of New Zealand under two different rainfall conditions (1260 mm and 2145 mm p.a.), and explore the relationships between NO3?‐N leaching loss and ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA). The DCD nitrification inhibitor was found to be highly effective in decreasing NO3?‐N leaching losses from all three soils under both rainfall conditions. Total NO3?‐N leaching losses from the urine patch areas were decreased from 67.7–457.0 kg NO3?‐N/ha to 29.7–257.4 kg NO3?‐N/ha by the DCD treatment, giving an average decrease of 59%. The total NO3?‐N leaching losses were not significantly affected by the two different rainfall treatments. The total NO3?‐N leaching loss was significantly related to the amoA gene copy numbers of the AOB DNA and to nitrification rate in the soil but not to that of the AOA. These results suggest that the DCD nitrification inhibitor is highly effective in decreasing NO3? leaching under these different soil and rainfall conditions and that the amount of NO3?‐N leached is mainly related to the growth of the AOB population in the nitrogen rich urine patch soils of grazed grassland.  相似文献   

16.
Abstract

Nitrate (20 mg N03‐ N l?1) was leached through 180 cm columns of oxisol subsoil until the leachate attained the initial nitrate concentration. Leaching was continued with water until no nitrate was detectable in the leachate.

The Δ15N for the first aliquot of leachate containing nitrate was 2.2 units lower than that of the added solution indicating that 15Nwas preferentially adsorbed to 14N. The breakthrough curve for nitrate indicated that nitrate adsorption decreased after six pore volumes. The implications for modelling nitrate leaching are discussed.  相似文献   

17.
Abstract

The 2M potassium chloride (KCl) extraction method used to measure soil nitrate (NO3 ‐N) concentrations in soils may introduce some artifacts caused by soil sampling, processing, and handling. Furthermore, this method provides soil NO3 ‐N concentrations for soil sampled at a particular time, whereas the dynamics of this anion in situ need to be better understood. In order to develop a reliable in situ method as an alternative, an anion exchange membrane (AEM) was tested for its ability to adsorb NO3 ‐N from a soil cropped to corn (Zea mays L.) and amended with manure or inorganic nitrogen (N). In a field study, we compared the amount of NO3 ‐N adsorbed on an AEM and extracted with the 2M KCl method. The AEM was calibrated in the laboratory and placed at 15‐cm soil depth for 2‐wk periods during the corn growing season. Nitrate adsorption on the AEM and KCl‐extractable NO3 ‐N were larger in the inorganic N treatment than in the manure or the control treatments throughout the growing season. The NO3 ‐N concentrations measured by the AEM method were correlated with NO3 ‐N extracted with 2M KCl (r2 = 0.78***), suggesting that the AEM method could be used to measure NO3 ‐N concentrations in agricultural soils.  相似文献   

18.
华北山前平原典型厚包气带硝态氮分布累积规律   总被引:5,自引:1,他引:4  
梁慧雅  王仕琴  魏守才 《土壤》2017,49(6):1179-1186
包气带是连接大气层和含水层水分和养分转换的纽带,也是农田NO_3~–-N分布和累积的重要场所和向含水层淋失的通道,因此研究包气带土壤中NO_3~–-N的分布累积规律对防止地下水NO_3~–-N污染至关重要。本文以中国科学院栾城试验站典型的厚包气带为对象,在无施肥处理(N0)和施氮肥600 kg/(hm~2·a)(N600)两种处理的多年试验田中,利用Geoprobe获取0~10.5 m深度土壤样品,研究厚包气带NO_3~–-N垂向分布、累积规律,并分析其影响因素。结果表明:N0中NO_3~–-N基本保持不变,长年施氮肥600 kg/(hm~2·a)使得NO_3~–-N淋溶至10.5 m,并在深层包气带中形成累积,累积的峰值由土壤的质地和含水量决定;NO_3~–-N的分布和累积主要受水分运移、土壤质地和反硝化作用影响。  相似文献   

19.
Diverting the infiltrating water away from the zone of N application can reduce nitrate–nitrogen (NO3–N) leaching losses to groundwater from agricultural fields. This study was conducted from 2001 through 2005 to determine the effects of N-application methods using a localized compaction and doming (LCD) applicator and spoke injector on NO3–N leaching losses to subsurface drainage water and corn (Zea mays L.)–soybean (Glycine max L.) yields. The field experiments were conducted at the Iowa State University’s northeastern research center near Nashua, Iowa, on corn–soybean rotation plots under chisel plow system having subsurface drainage ‘tile’ system installed in 1979. The soils at the site are glacial till derived soils. The N-application rates of 168 kg-N ha?1 were applied to corn only for both the treatments each replicated three times in a randomized complete block design. For combined 5 years, the LCD N-applicator in comparison with spoke injector showed lower flow weighted NO3–N concentrations in tile water (16.8 vs. 20.1 mg L?1) from corn plots, greater tile flow (66 vs. 49 mm), almost equivalent NO3–N leaching loss with tile water (11.5 vs. 11.3 kg-N ha?1) and similar corn grain yields (11.17 vs. 11.37 Mg ha?1), respectively, although treatments effects were found to be non-significant (p?=?0.05) statistically. The analysis, however, revealed that amount and temporal distribution of the growing season precipitation also affected the tile flow, NO3–N leaching loss to subsurface drain water, and corn–soybean yields. Moreover, the spatial variability effects from plot to plot in some cases, resulted in differences of tile flow and NO3–N leaching losses in the range of three to four times despite being treated with the same management practices. These results indicate that the LCD N-applicator in comparison with spoke injector resulted in lower flow weighted NO3–N concentrations in subsurface drain water of corn plots; however, strategies need to be developed to reduce the offsite transport of nitrate leaching losses during early spring period from March through June.  相似文献   

20.
Abstract

The adsorption of nutrient elements is one of the most important solid‐ and liquid‐phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3, organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r2 values for the Langmuir isotherm were highly significant (r2=0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号