首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Patterns in larval transport of coastal species have important implications for species connectivity, conservation, and fisheries, especially in the vicinity of a strengthening boundary current. An Ocean General Circulation Model for the Earth Simulator particle tracking model was used to assess the potential dispersal of Eastern King Prawn (EKP) larvae Melicertus (Penaeus) plebejus, an important commercial and recreational species in Eastern Australia. Particles were exposed to a constant natural mortality rate, and temperature‐dependent growth (degree‐days) was used to determine the time of settlement. Forward and backward simulations were used to identify the extent of larval dispersal from key source locations, and to determine the putative spawning regions for four settlement sites. The mean dispersal distance for larvae was extensive (~750–1,000 km before settlement), yet the northern spawning locations were unlikely to contribute larvae to the most southern extent of the EKP range. There was generally great offshore dispersal of larvae, with only 2%–5% of larvae on the continental shelf at the time of settlement. Our particle tracking results were combined with existing site‐specific reproductive potentials to identify the relative contributions of larvae from key source locations. Although mid‐latitude sites had only moderate reproductive potential, they delivered the most particles to the southern coast and are probably the most important sources of larval EKP for the two southern estuaries. Our modelling suggests that mesoscale oceanography is a strong determinant of recruitment success of the EKP, and highlights the importance of both larval dispersal and reproductive potential for understanding connectivity across a species’ range.  相似文献   

2.
The harvest of bay scallops (Argopecten irradians) from Buzzards Bay, Massachusetts, U.S.A. undergoes large interannual fluctuations, varying by more than an order of magnitude in successive years. To investigate the extent to which these fluctuations may be due to yearly variations in the transport of scallop larvae from spawning areas to suitable juvenile habitat (settlement zones), a high‐resolution hydrodynamic model was used to drive an individual‐based model of scallop larval transport. Model results revealed that scallop spawning in Buzzards Bay occurs during a time when nearshore bay currents were principally directed up‐bay in response to a persistent southwesterly sea breeze. This nearshore flow results in the substantial transport of larvae from lower‐bay spawning areas to settlement zones further up‐bay. Averaged over the entire bay, the spawning‐to‐settlement zone connectivity exhibits little interannual variation. However, connectivities between individual spawning and settlement zones vary by up to an order of magnitude. The model results identified spawning areas that have the greatest probability of transporting larvae to juvenile habitat. Because managers may aim to increase scallop populations either locally or broadly, the high‐connectivity spawning areas were divided into: (i) high larval retention and relatively little larval transport to adjoining settlement areas, (ii) both significant larval retention and transport to more distant settlement areas, and (iii) little larval retention but significant transport to distant settlement areas.  相似文献   

3.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

4.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

5.
The pelagic larval duration (PLD) period of fish can influence dispersal, recruitment, and population connectivity, thereby potentially informing best strategies for fisheries management. Computer models were used to simulate the dispersal of larvae of three species, representing a range of PLDs, from the Pacific island of Guam and neighboring islands for a 9‐year period (2004–2012) to gain insight into the best management strategies for these species. The species included two springtime spawners with shorter and longer PLDs, scribbled rabbitfish (Siganus spinus; 33 days) and yellowfin goatfish (Mulloidichthys flavolineatus; ~90 days maximum), and a fall spawner with a similarly long PLD, bluespine unicornfish (Naso unicornis; ~94 days maximum). An ocean circulation model coupled with a particle dispersal model provided simulated numbers of larvae settling at each island in relation to the island where they were spawned. Graph analysis was used to examine generational connections between islands. For S. spinus, self‐seeding was the dominant means of replenishment at Guam. Local management actions to maintain adequate spawning stock may be a primary control on long‐term sustainability for that fishery. In contrast, N. unicornis and M. flavolineatus populations at Guam were reliant on outside sources for 92%–98% of larval supply. For them, identifying and negotiating the preservation of upstream spawning potential in the Marshall Islands and Federated States of Micronesia will be needed. Guam played a relatively minor role in generational connectivity across the region. Shortest paths spanning the region often did not pass through Guam, or there were equally short paths through other islands.  相似文献   

6.
Many demersal marine fish species depend on a dispersive larval stage that connects geographically discrete sub‐populations. Understanding connectivity between these sub‐populations is necessary to determine stock structure, which identifies the appropriate spatial scale for fishery management. Such connectivity is poorly understood for King George whiting (Sillaginodes punctatus; Perciformes) in South Australia's gulf system, even though spawning grounds and nursery areas are adequately defined. In response to declines in commercial catches and estimated biomass, this study aimed to determine the most important spawning grounds and nursery areas to recruitment, and the connectivity between them. A biophysical model was seeded with particles according to the distribution and density of eggs throughout the spawning area in 2017 and 2018. Despite inter‐annual differences in the origins of particles, dispersal pathways and predicted settlement areas remained consistent between years. Predicted settlement was generally highest to nursery areas only short distances from regional spawning grounds, consistent with previous hydrodynamic models. However, the model also predicted that spawning in one region could contribute to recruitment in an adjacent region later in the spawning season, which aligned with the breakdown of thermohaline fronts at the entrance of each gulf. The connectivity between spawning grounds and nursery areas predicted by the model is supported by spatio‐temporal patterns in the otolith chemistry of pre‐flexion larvae and settled juveniles. Consequently, the most parsimonious explanation is that the populations of King George whiting in South Australia's gulf system constitute a single, panmictic stock, which has implications for fishery management.  相似文献   

7.
The spiny lobster Panulirus argus is of ecological and commercial importance in the South Florida coast of the continental USA and throughout the Intra‐Americas Sea. Essential spiny lobster habitat in South Florida is primarily located in the Florida Keys coastal zone (including the Dry Tortugas), where the dynamic regional circulation coupled with the long planktonic larval duration (6–12 months) of P. argus raises questions of larval retention and recruitment. Locally spawned phyllosomata entrained in the Florida Current are likely to be expatriated out of the Straits of Florida, which implies that the local spiny lobster population is sustained by the transport of larval recruits from upstream locations. We examined the physical processes that may influence recruitment. Transport processes in the Keys coastal zone are spatially variable. Observed and modelled data suggest that the upper Keys is a point of onshore larval transport via the inshore meandering of the Florida Current, and the lower Keys to Dry Tortugas region apoint of retention through wind‐driven onshore/countercurrents and eddy recirculation. Eddies that propagate between the Dry Tortugas and the lower Keys facilitate the exchange of larvae between the Florida Current and the coastal zone. Northerly wind events associated with cold fronts can enhance recirculation of larvae in the upper Keys. The association of older larvae with the Florida Current front supports the hypothesis that spiny lobster larval recruits come from upstream sources in the Caribbean.  相似文献   

8.
A major challenge in marine ecology is describing patterns of larval dispersal and population connectivity, as well as their underlying processes. We used a biophysical model to simulate dispersal of eastern oyster, Crassostrea virginica, larvae and connectivity among a network of 10 no‐take reserves in a shallow, wind‐driven estuary to assess the relative importance of spawning location, spawning date, larval behavior, larval mortality, and adult reproductive output to predicted dispersal and connectivity patterns. The location (i.e., natal reserve) and date of spawning relative to physical processes, particularly frequency of wind reversals, were the dominant drivers of dispersal and connectivity patterns. To a lesser extent, larval behavior (i.e., 3D vertical advection and ontogenetic depth regulation) and mortality modified dispersal and connectivity, whereas spatiotemporal variability in adult reproductive output was of minimal importance. Over a 21‐day larval duration, mean dispersal distance of passive surface particles ranged from 5 to 40 km. Reserves were too small (1 km2) relative to mean dispersal distances to promote extensive local retention (median 2%) and spaced too far apart (typically ~50 km) to promote extensive inter‐reserve connectivity (median 2%). Limited connectivity and local retention may preclude the network from being self‐sustainable, thereby limiting its long‐term conservation and management benefits. In reserve systems characterized by limited connectivity, management efforts should focus on increasing connectivity by increasing the number or size of reserves to realize the benefits of improved adult demographics within reserves.  相似文献   

9.
The Japanese sand lance (Ammodytes personatus) population in the Seto Inland Sea shows large fluctuations every few years. Its recruitment to the fishery resources is much more dependent on the survival rate of 0-age fish than is the case for other fish species because 0-age fish directly recruit to next-year spawning adults. Since the 0-age fish population depends on its larval population, which is easily influenced by natural and human impacts, high larval mortality due to predation by adults and high dispersion of larvae by wind-driven currents from spawning grounds to other locations can have very important effects on stock fluctuations. A numerical model of population dynamics of the sand lance in the eastern Seto Inland Sea was developed that focuses on wind-induced transport and adult predation of the larvae. The model successfully simulated the two-year periodic fluctuation and was consistent with actual fluctuations in fishery catches. It suggests that the various coefficients given in the model are appropriate to explain the actual population dynamics of the sand lance. The model shows that adult predation on the larvae plays a very important role in the two-year periodic fluctuation, and the maximum predation rate is estimated to be ten individuals per day. Wind-induced transport modifies the impact of this predation. Variances in the two-year periodic fluctuation become smaller with weaker westerly wind velocity. The appropriate transport rates from Bisan Strait and the Harima-nada Sea are estimated to be 0.04 d-1 and 0.01 d-1, respectively.  相似文献   

10.
We assessed by numerical modeling the coastal fish larval dispersion along the southern coast of Mallorca (Balearic Islands, NW Mediterranean) with the objective of determining the factors that contribute to successful recruitment. We assumed that fish larvae dispersal is mainly regulated by physical transport. Currents are mainly wind driven in this area; therefore, changes in wind forcing have a first‐order impact on larval transport. The synoptic wind patterns were systematically analyzed based on self‐organizing map analysis. The wind fields were clustered using a neural network pattern recognition approach into two modes, producing opposite along‐shelf flow. The seasonal changes between spring and summer in the dominance of either mode modulate the along‐shelf circulation, producing flow shifts under some circumstances. This variability in the wind regime was consistent throughout the 10 years analyzed (2000–2009). Using the Princeton Ocean Model (POM) and a particle‐tracking algorithm, we analyzed the effect of wind‐forced currents in the connectivity among near‐shore habitats. We show that, at the spatial scale considered, the coastal morphology and stochastic wind forcing favor local recruitment (mean of 30% self‐recruitment). Maximum transport distances of 20–30 km were typically associated with particles left to drift for 21 days. The implications for the performance of the four marine protected areas near SW Mallorca Island are discussed. Our results suggest that, although wind episodes determine the fate of short‐time spawning events, on a seasonal basis, regular larval supply to coastal zones is ensured by wind stochasticity.  相似文献   

11.
The Western Australian dhufish (Glaucosoma hebraicum), an open-water marine finfish, has been identified as a potential species for aquaculture and a 4 y research project has concentrated on broodstock collection and maintenance, spawning and larval rearing. This paper describes treatments which were developed for the ectoparasites and diseases of broodstock fish. These included bacterial and fungal infections, Cryptocaryon irritans, Haliotremasp., an unidentified axinid monogenean, the isopod Aega cyclops and copepod Caligus sp. Treatments based on betadine, formalin, freshwater, malachite green, oxytetracycline (terramycin), 2-phenoxyethanol, potassium permanganate and trichlorphon (neguvon) were all tried. The most effective treatments against parasites were a freshwater bath or a combined freshwater bath and anaesthesia with 2-phenoxyethanol. Monogeneans on the gills were difficult to control and exophthalmia was an unresolved problem.  相似文献   

12.
Data from stock assessment surveys, published research and climate sensors were linked to model the interaction between fishing, physical‐oceanographic processes and spatial patterns of larval settlement for western king prawn [Penaeus (Melicertus) latisulcatus]. This information was used to evaluate the trade‐off between larval recruitment and catch during fishing periods that demand high prices but coincide with spawning. Total rates of larval settlement were maximized when tidal currents and atmospheric physical‐forcing components were coupled with simulations of larval swimming behaviour under average gulf temperatures. Average gulf temperatures sustained longer larval durations and increased larval settlement rates by over 12% compared with warmer gulf conditions simulated under a scenario of global warming. Reproductive data coupled with outputs from the biophysical model identified consistent inter‐annual patterns in the areas contributing to larval settlement success. Areas located in the north‐east, and central‐west of the fishery, consistently contributed to over 40% of all larvae reaching a settlement in each year. Harvest sensitivity analyses indicated that changes in the spatial patterns of pre‐Christmas fishing could lead to improvements in overall rates of the larval settlement while maintaining or improving the levels of catch. Future studies to refine the model inputs relating to physical processes, larval behaviour and mortality rates for P. latisulcatus coupled with surveys of juvenile prawn abundance to ground truth the modelled predictions, would allow stock recruitment relationships to be more closely examined and inform adaptive management of the fishery in the future.  相似文献   

13.
14.
Transport of larvae by ocean currents is an important dispersal mechanism for many species. The timing and location of spawning can have a large influence on settlement location. Shifts in the known spawning habitat of fish, whether due to climate or the discovery of new spawning stock, can influence the distribution of juveniles and our understanding of connectivity. The globally distributed species; Pomatomus saltatrix, is one such example where a previously unrecognised summer spawning event and a more southern latitudinal extent was recently reported for the southwest Pacific population. Although restrictions are in place to protect the traditional spawning event, the importance of the newly recognised summer spawning event is uncertain. Here, we investigate larval dispersal of P. saltatrix using particle tracking simulations to identify the contributions of the different spawning events to settlement. By modelling dispersal of larvae released in northern and mid‐latitude regions over the Austral spring and summer, we show that the newly recognised mid‐latitude summer spawning event contributes over 50% of the larvae reaching southern latitudes. This is due to a reduced (1–2 days) pelagic larval duration (associated with temperature), resulting in reduced larval mortality, and the seasonal (summer) strengthening of the East Australian Current (EAC) transporting particles ~50 km further south. These findings demonstrate that in dynamic boundary current systems such as the EAC, the final settlement location of larvae that are transported by ocean currents can vary considerably depending on the timing and location of spawning and that multiple spawning events are important for maximum dispersal.  相似文献   

15.
No‐take zones (NTZs) can generate higher larval production by sessile, sedentary and site‐attached species per unit area than in exploited areas, and may increase recruitment and yield compared to status quo management. Whilst NTZs may be considered an essential part of optimal management, few studies have specifically compared the effects of NTZs with those of correctly applied gear and effort controls. A yield‐per‐recruit (YPR) population model, based on the sedentary abalone Haliotis laevigata, was used to compare the effects of management by minimum landing size (MLS), effort limitation and NTZs, either singularly or in combination. Initially, a minimum basic YPR model was used. Three additional assumptions were sequentially added to the model to see if they affected conclusions drawn from the model. The additional assumptions were the inclusion of: (i) a length–fecundity relationship; (ii) an age‐dependent natural mortality function; and (iii) mortality of undersized individuals due to fishery operations. In the absence of undersized mortality caused by fishing, under virtually all conditions the population is best managed with a combination of MLS and effort control, without any NTZs. For simulations that included mortality of undersized individuals in the fished area, under nearly all circumstances NTZs were considered an essential part of optimal fishery management, and management incorporating NTZs greatly increased the sustainable yield that could be taken.  相似文献   

16.
Understanding the mechanisms that influence the successful recruitment of marine species is one of the great challenges in marine science, particularly for species that undergo a protracted larval phase. Here we apply a bio‐physical individual‐based model (IBM) which couples data from a high‐resolution oceanographic model with temperature‐related survival characteristics for the early life stage of a temperate marine fish. The IBM was run retrospectively for the years 1993–2007 with spawning locations occurring around Tasmania, Australia. Meso‐scale oceanographic features led to individuals spawned on the west coast, and to a lesser extent the south coast, being washed ashore prior to achieving a competent size to actively influence their migratory paths. Individuals spawned on the east coast had significantly higher survival rates. Temperature‐induced mortality was relatively consistent across years. This indicates that the dispersal envelopes, of pre‐flexion larvae, across all years are predominately within the thermal niche of this species. To further understand the effect of temperature on survival we integrated global climate model warming scenarios into the model. The results indicated that around the year 2050 the predicted warming would have a minor positive effect on the survival of individuals but by 2100 the pejus temperature will frequently be exceeded leading to a significant decline in survival, particularly towards the northern end of the dispersal range.  相似文献   

17.
The ability of larvae to move beyond the spatial range of adult migrations can be critical to the resilience of populations that aggregate to spawn. We reviewed the literature and unpublished information on larval transport modeling, reef fish spawning aggregations, and marine protected area (MPA) management to identify alternatives for Cuban spawning site conservation. Larval transport information is available at annual and decadal scales for eight Cuban sites for five species of snappers. Connectivity patterns were examined: (a) within Cuban regions, (b) among Cuban regions, and (c) among other countries. We compared this information with the distribution of protected areas relative to spawning sites, site management attributes, and potential alternatives. Of eight focal spawning sites, seven are in protected areas and one is proposed. Southeast and north‐central Cuba had highest estimated within‐region retention levels. Southwest and northwest sites exported relatively more larvae out‐of‐region. Southern regions produced larvae that reached Jamaica, the Cayman Islands and Haiti. All northern regions can export larvae to the southern Bahamas. The regions and sites within are geomorphologically diverse with variable fishing and socio‐economic attributes. Information on stock status and protected area efficacy is limited and field assessments of aggregation status are needed for multispecies spawning sites. Few management plans address spawning conservation or network connectivity opportunities for MPAs. An alternative is development of one or more regional workgroups of protected area specialists, fishery scientists, expert fishers, and other stakeholders. Temporal closures of fisheries before and during spawning season could also amplify effectiveness of current gear‐ and zoning‐based management tools.  相似文献   

18.
The Chilean blue mussel Mytilus chilensis is an important commercial species. However, little has been published on the population genetics of this species, despite the need to implement management and conservation policies. Randomly amplified polymorphic DNA‐polymerase chain reaction analysis was used to estimate genetic variation within and between eight natural populations along the whole range of its Chilean natural distribution (ca. 1900 km from Arauco (VIII Region) to Punta Arenas (XII Region)). The values of Nei's unbiased genetic distance, D (0.030–0.107), among populations were small, despite the large geographic separation. A mantel test using 50 000 randomizations showed evidence for a significant correlation (r=0.74, P<0.05) between genetic and geographic (coastal) distance. Punta Arenas population was the most genetically differentiated from the others, although the scale of differentiation was not large (D=0.076–0.107). The levels of gene flow (Nm=1.55) found in this study prevent differentiation among populations by genetic drift. This is the result of the long‐lived planktotrophic larvae of M. chilensis, which provides this species with considerable dispersal ability throughout its range, which is favoured by the ocean currents along the Chilean coast. A restricted larval dispersal towards the north due to the Cape Horn Current derived from the West Wind Drift could be the cause of the higher genetic differentiation of Punta Arenas population from the northern populations. For management purposes of the M. chilensis fishery, the results provide no evidence for discrete stocks, with the possible exception of the Punta Arenas population. The present study provides the baseline data in order to continue further characterization of these mussel populations, considering the great increase in aquaculture of this species.  相似文献   

19.
The poleward flowing East Australian Current (EAC) drives sporadic upwelling, entrains coastal water and forms the western Tasman Front (wTF), creating a mosaic of water types and larval transport routes along south eastern Australia. The spatial distribution, otolith chemistry and growth rates of larval sardine (Sardinops sagax) were examined to infer spawning location and larval transport. A gradient of increasing larval size from north to south along the shelf was not detected but was evident between the shelf and offshore in the wTF. Here larvae were larger and older. Based on the occurrence of newly hatched larvae, spawning by S. sagax between southern Queensland and mid New South Wales (NSW) was more extensive than previously reported. The otolith chemistry from two wTF larval size classes differed, implying different origins. The otolith chemistry of wTF post‐flexion larvae was similar to larvae from northern NSW, whereas wTF flexion larvae were similar to larvae observed nearby from mid‐NSW. Two possible larval transport routes, direct and indirect, are inferred from otolith chemistry, current velocities and a previously published particle tracking study. Either larvae from northern NSW were advected south and entrained with younger larvae directly into the wTF, or larvae from a range of shelf regions were advected around the southern edge of an anticyclonic eddy, to join younger larvae directly entrained into the wTF. Based on the co‐occurrence of larval ages and sizes in the wTF and their advection routes, the wTF appears to be an important larval retention zone.  相似文献   

20.
In order to investigate the impact of climate change on egg and larval transport of Japanese anchovy (Engraulis japonicus) off Kyushu Island western Japan, we conducted particle‐tracking simulations on transport success/failure to fishing grounds from 1960 to 2007. The modeled transport success since the mid‐1990s increased and decreased in the offshore and coastal zones, respectively, compared with the 1960s and 1970s. The estimated northward shift of the spawning ground and weakened Tsushima Warm Current contributed to increase in modeled transport success to the offshore zone. Conversely, the weakening trend of the modeled onshore current in the Goto‐Nada Sea combined with the northward shift of the spawning ground resulted in unsuccessful larval transport. These results suggest that fluctuations in juvenile and subadult anchovy catches in this area may be attributable to changes in the physical environment. The present study showed that changes in transport success induced by oceanographic fluctuations related to climate change, have the potential to affect anchovy recruitment off the western coast of Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号