首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Heterobasidion parviporum and Heterobasidion annosum are widely distributed root‐rot fungi that infect conifers throughout Europe. Infection of conifer stumps by spores of these pathogens can be controlled by treating fresh stumps with a competing non‐pathogenic fungus, Phlebiopsis gigantea. In this study, growth of three Latvian strains of P. gigantea and the biological control agent ‘Rotstop’ strain was evaluated in stem pieces of Norway spruce, Scots pine, lodgepole pine, Douglas‐fir, Weymouth pine, Siberian larch and Sitka spruce. The growth rates of one H. parviporum and one H. annosum isolate were also measured in the same stem pieces. The growth rate of P. gigantea varied greatly in wood of different conifer species. It was higher in the three pine species, lower in Norway spruce and lowest in Sitka spruce and Siberian larch, and in Douglas‐fir, this fungus did not grow. The largest area of wood occupied by P. gigantea was in lodgepole pine. Growth of Latvian isolates of P. gigantea in the wood of Pinus and Picea species was comparable to that of the Rotstop isolate. Consequently, stump treatment with local P. gigantea isolates should be recommended. However, our results suggest that Douglas‐fir stump treatment against Heterobasidion by P. gigantea may be ineffective and other stump treatment methods should be considered.  相似文献   

2.
In the Western Italian Alps (WIA), the three European species of the forest pathogen Heterobasidion spp. can coexist in the same area. Heterobasidion parviporum Niemelä & Korhonen and Heterobasidion abietinum Niemelä & Korhonen are normally found in areas with a significant presence of their respective primary hosts, spruce (Picea spp.) and fir (Abies spp.). The host/niche occupied by Heterobasidion annosum (Fr.) Bref. in the region still remains unclear. Although Scots pine (Pinus sylvestris), a major host for this fungal species in other parts of Europe, is abundant in the region, little or no evidence of disease caused by H. annosum is visible in this tree species. Two different, but not mutually exclusive, hypotheses can explain the presence of H. annosum: (1) Scots pines are infected but largely asymptomatic and (2) H. annosum has adapted to different hosts. An analysis of Heterobasidion species was performed in two natural, mixed‐conifer forests using traditional isolation techniques and novel direct molecular diagnosis from wood. In a subalpine stand of mixed spruce (Picea abies), larch (Larix spp.), and Swiss stone pine (Pinus cembra), 18 naturally infected spruces and larches only yielded H. parviporum. A Swiss stone pine in the same stand was extensively colonized by both H. parviporum and H. annosum. In a second subalpine stand, an analysis of 18 spruce stumps and nine Swiss stone pine stumps yielded both H. parviporum and H. annosum isolates. Pine stumps had been mostly colonized by H. parviporum prior to tree felling, suggesting that this species may be secondarily infected by the locally predominant Heterobasidion species (i.e. H. parviporum). Results of our analysis also indicated that primary colonization of spruce stumps (e.g. through basidiospores) was caused by both H. parviporum and H. annosum, while secondary infection of such stumps was mostly because of H. parviporum.  相似文献   

3.
Natural colonization by the root and butt rot causing fungi Heterobasidion spp. on Norway spruce (Picea abies) stumps following thinning and treatment with the biological control agent Phlebiopsis gigantea was investigated on three sites in southern Sweden 6 years after treatment. The fully treated stumps and control stumps were excavated and sampled to compare the survival of Heterobasidion spp. in the long term. Six years post‐treatment, 47 and 11% of untreated and treated stumps, respectively, had Heterobasidion infection. There was no difference in the relative infected area in discs collected from the butt and the roots for the different treatments. Control efficacy was 83% for treated stumps. After 6 years, there were no apparent differences between the remaining infections in treated compared with those in untreated stumps regarding the number of colonies, their size or relative infection area. Although infections, 3 months after treatment with P. gigantea, were significantly fewer and smaller than in untreated stumps, Heterobasidion inoculum can survive for at least 6 years in the stump and, when it does, constitute a risk for neighbouring trees.  相似文献   

4.
Two Rotstop® preparations, one containing a Phlebiopsis gigantea strain from Finland (Rotstop F) and the other one from Sweden (Rotstop S), were used in different concentrations to treat thinning stumps of Picea abies against spore infections by Heterobasidion spp. in southern Sweden. Trees were cut on three sites during the summer of 2004, and 285 stumps were treated manually ensuring 100% coverage. Spore concentrations in the treatment suspensions were ca 5 × 106 and 10 × 106 spores/l, and approximately 10 ml of suspension was applied per 100 cm2 of stump surface. An additional 31 stumps on one of the sites were treated mechanically with Rotstop S; in this treatment the spore concentration was high, about 20 × 106 spores/l, but the coverage was incomplete. Three months later there was a significant reduction in frequency and relative areas of Heterobasidion spp. infections on stumps with manual treatment compared with the untreated stumps. However, there was no significant difference between the preparations or the concentration of active ingredient in terms of their reduction of Heterobasidion infection. Mechanical treatment with incomplete coverage failed to control infection. Therefore, in conditions of moderate Heterobasidion spore load in the environment there seems to be no reason to use higher concentrations of P. gigantea in the treatment of spruce stumps.  相似文献   

5.
The biological control agent Rotstop® composed of a suspension of spores of Phlebiopsis gigantea (Fr.) Jül. is widely used for protecting conifer stumps from aerial infection by Heterobasidion species. The efficacy of Rotstop application on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) stumps was determined in several locations and at different seasons in Latvia. Mean efficacy in controlling natural infection by Heterobasidion spp. in spruce stumps was 64%, calculated on the basis of number of infected stumps, and 89%, calculated on the basis of area of infected wood on sample discs cut from the stumps. Corresponding proportions for pine were 82% and 95%. The results show that Rotstop can be successfully used for stump treatment in Latvia, although improved efficacy is desirable, particularly in spruce. A Latvian isolate of P. gigantea, selected from numerous isolates in preliminary tests, was included in one experiment and was shown to be as effective as the Rotstop isolate. In untreated spruce stumps Heterobasidion spp. and P. gigantea were present in the same stump three times more frequently than in untreated pine stumps. Heterobasidion spp. infection in untreated spruce stumps was low when P. gigantea covered more than 10% of stump dissection.  相似文献   

6.
The properties of 64 heterokaryotic strains of Phlebiopsis gigantea, isolated mostly from Norway spruce stumps, were tested for asexual spore production, growth rate and competitive ability against Heterobasidion spp. on agar medium, and for growth rate in spruce wood. Eighteen isolates were also tested for the efficacy of control against Heterobasidion spp. in stem pieces of spruce. The results revealed high variation in traits between different P. gigantea isolates. The efficacy of control against Heterobasidion spp. and the growth rate in spruce wood were closely related to each other (r = 0.727, p < 0.001). These preliminary tests indicate that the growth rate of a P. gigantea strain in spruce wood is the most important characteristic determining its efficiency in controlling the infection and spread of Heterobasidion spp. in spruce stumps.  相似文献   

7.
In an experiment established on three Norway spruce sites in southern Sweden, the ability of five strains of Phlebiopsis gigantea, including the commercial strain Rotstop®, and two Trichoderma formulations to control natural Heterobasidion spp. spore infections was compared. At each site 160 trees were felled, and the resulting stumps were treated with spore suspensions of the seven fungal preparations. Twenty stumps at each site were left untreated as control stumps. When sampled 9 months after treatment, two of the P. gigantea strains (1984 and 1985) were the most effective at preventing infection by Heterobasidion spp. The other three P. gigantea strains were less effective, and two Trichoderma formulations did not significantly reduce Heterobasidion spp. infections.  相似文献   

8.

The spread of Heterobasidion parviporum Niemelä & Korhonen in roots of Norway spruce was studied in three unthinned first rotation stands of Norway spruce [Picea abies (L.) Karst.] on former agricultural land in south-western Sweden. Heterobasidion parviporum was inoculated at stump height into the trunk of 135 standing trees in a randomized block design. One year after inoculation, two-thirds of the trees were thinned out and one-third was left standing. Half of the stumps left by thinning were treated with spores of Phlebiopsis gigantea (Fr.) Jül and half were left untreated. The spread of H. parviporum was examined both 3 and 5 yrs after inoculation. The rate of spread of H. parviporum and the proportion of infected roots were found to be significantly higher in the root systems of the stumps than in those of the standing trees. Treatment with P. gigantea had no significant effect on the development of H. parviporum in the stumps. There was a tendency 5 yrs after inoculation, however, for a lower proportion of H. parviporum-infected roots in the stumps treated with P. gigantea than in the untreated stumps. In conclusion, thinning of infected Norway spruce was found to increase the rate of spread of H. parviporum in the root systems of the infected trees, which could increase the risk of a rapid build-up of infection in the remaining stand.  相似文献   

9.
The effectiveness against Heterobasidion natural airborne infections on Norway spruce stumps was tested for six treatments: aqueous suspension of Phlebiopsis gigantea oidiospores, 10%, 20% and 30% aqueous urea solutions, 4% copper oxychloride aqueous solution, and borax powder. The experiment was carried out in four naturally regenerated forests in the western Alps, each characterized by a different airborne inoculum potential. Within each stand, all treatments, with the exception of urea 10%, were effective and resulted in colonized areas of stumps significantly lower than controls. The effect of ambient spore loads on the stump colonization is discussed.  相似文献   

10.
Two species of the tree pathogenic fungus Heterobasidion spp. exist in Sweden, Heterobasidion annosum s.s. and Heterobasidion parviporum. Both species are known to infect Norway spruce (Picea abies). The aim of the study was to examine the interspecific competition between H. annosum s.s. and H. parviporum as well as their colonization rate in fresh Norway spruce wood. Equal amount of conidiospores from each species was sprayed together on 30 fresh, previously uninfected, Norway spruce billets. After incubation in a greenhouse, the proportion of Heterobasidion spp. colonies belonging to each species was recorded. Of the 196 colonies isolated from the upper part of billets, 195 were H. parviporum. All isolated colonies further down in the billets were H. parviporum. To study the colonization rate, H. annosum s.s. and H. parviporum were sprayed alone on 30 spruce billets each, incubated and growth recorded both vertically and horizontally. H. parviporum grew further down in the billets (p = 0.008) and covered a larger area (p < 0.001) than H. annosum s.s. While H. annosum s.s. and H. parviporum both infected fresh Norway spruce wood H. parviporum outgrew and outcompeted H. annosum s.s during the early colonization stage.  相似文献   

11.
Abstract

Pine stumps are not being treated against Heterobasidion spp. in Sweden. To determine whether they should be, the frequency of stump infections and the species of Heterobasidion involved were investigated in nine newly thinned pure Scots pine (Pinus sylvestris L.) stands in southern Sweden. The incidence of Heterobasidion was measured in roots of standing Scots pine in another 15 stands. Infections by both H. annosum (Fr.) Bref. s.s. and H. parviporum Niemelä & Korhonen were numerous in stumps six months after a summer thinning. The pathogen, mostly H. annosum, was found in 44 of 60 sampled root systems, from 14 of the 15 stands. Twenty of the infected pines were assessed as healthy on the basis of crown symptoms while 24 trees had defoliated crowns. Infected root systems were most frequent among trees with thin crowns in stands on former agricultural land, where previous thinnings had been carried out during the growing season when airborne spores are plentiful. The study suggests that stump treatment may be a profitable way to reduce disease development in Scots pine monocultures on sandy soils as well as in mixtures with Norway spruce [Picea abies (L.) Karst.] on any soil.  相似文献   

12.
Fungal isolations and genetic fingerprinting were used to determine whether Phlebiopsis gigantea stump treatment against Heterobasidion annosum sl. using a single genotype (Rotstop) would affect the genetic diversity of P. gigantea populations. The survival time of P. gigantea was longer in Norway spruce (Picea abies) stumps compared to Scots pine (Pinus sylvestris) as no isolates were obtained from pine stumps 6 years after treatment, whereas in about half of the spruce stumps the fungus was still present. The usage of Rotstop did not seem to increase the occurrence of the fungus 5 years after the treatment in fresh (1‐year‐old) untreated stumps within the same forest stands. All the isolates from the 6‐year‐old treated spruce stumps were identical in genotype with the Rotstop‐strain, whereas all isolates from the fresh untreated spruce and pine stumps differed from it. Within the treated pine stand, the biocontrol usage seemed to have caused a slight reduction in genetic markers not related to Rotstop, but there were no statistically significant differences between the marker frequencies and the local natural population. Thus, Rotstop is not likely to cause any immediate threat to the genetic diversity of P. gigantea.  相似文献   

13.
Spatial distribution of Heterobasidion genets over a period of ca 50 years in two successive generations of Norway spruce (Picea abies) was unravelled. The genets were first identified in 1993 in a naturally regenerated 43‐year‐old spruce stand that had been thinned the previous winter. Heterobasidion parviporum was found in 17.5% of the old stumps of the previous spruce generation. Nine genets were identified on the study plot; seven of them were present in old stumps of the previous tree generation and two only in the new spruce generation. Eighteen spruce trees of the new generation were infected, 15 of them by vegetative growth of genets originating from the old stumps. The study plot was investigated again in 2005. No new genets had been established after thinning, and three old genets had died out. The remaining genets had infected five new trees, most likely from the thinning stumps of diseased trees. At the age of 56 years, 16.1% of the residual spruces were infected by Heterobasidion. The results of this study suggest that if spore infection to stumps of spruce can be prevented, the decay frequency caused by H. parviporum will not necessarily increase in successive generations.  相似文献   

14.
Management of a Norway spruce stand planted on a site infected by Heterobasidion coll. is problematic because the fungus spreads vegetatively from the colonized stumps of the previous generation to the new seedlings. Growing of mixed stand with more resistant tree species has been suggested to decrease the economic losses caused by butt rot in Norway spruce trees. The mechanistic simulation model Rotstand describing the spread of Heterobasidion coll. in coniferous stands of southern Finland was used to study the effect of planting Scots pines around colonized clear‐felling stumps of Norway spruce of the previous generation. Planting of Scots pines in clusters around colonized stumps markedly decreased the butt rot of Norway spruce trees at the age of 20 years and at clear felling. If the same number of Scots pines were planted randomly, the effect was weak. When the average diameter of colonized clear‐felling stumps was 30 cm, a Scots pine circle with a radius of 3 m resulted in the highest soil expectation value (SEV) at 2% discounting rate, whereas with 40‐cm stump diameter, a 4‐m radius produced the highest SEV. When the proportion of Heterobasidion parviporum in the old colonized stumps was 50% instead of 95%, planting pines around colonized stumps still clearly decreased the butt rot at the age of 20 years and in final felling.  相似文献   

15.
The natural establishment of the root and butt rot causing fungus Heterobasidion annosum s.l. on Norway spruce (Picea abies) thinning stumps treated with Phlebiopsis gigantea was investigated on seven sites in southern Sweden. The trees were cut during summertime and the stumps were treated with different patterns simulating the effect of mechanical stump treatment with a single‐grip harvester. Sampling was conducted 3 and 12 months after treatment. At both samplings, the best control was obtained when 100% of the stump surface was covered by P. gigantea: in contrast, untreated control stumps showed the highest incidences of H. annosum s.l. infection at both sampling times. However, 30 and 26% of the fully covered stumps at the first and second samplings, respectively, were diseased, and question the efficacy of treating Norway spruce stumps with this biological control agent in Sweden.  相似文献   

16.
Growth rates of H. annosum s.s. and H. parviporum were investigated in the functional sapwood of young Pinus sylvestris and Picea abies plants as an indicator of the relative susceptibilities of the hosts to these pathogens. The stems of 520 five‐year‐old P. abies and 321 four‐year‐old P. sylvestris plants were inoculated and the extent of infection determined 16 weeks later. H. annosum s.sgrew further than H. parviporum in P. sylvestris sapwood, while in P. abies, no differences between the two Heterobasidion spp. were found. Both H. annosum s.s. and H. parviporum spread faster in the sapwood of P. abies than in P. sylvestris. There was high within‐host species variation in growth rates for both P. sylvestris and P. abies suggesting it may be possible to identify tree genotypes with lower susceptibility.  相似文献   

17.
18.
Two studies were undertaken in a young New Zealand Pinus radiata stand to find a biological control agent for armillaria root disease caused by Armillaria novae‐zelandiae. Fresh thinning stumps were inoculated with saprophytic basidiomycete species as wooden dowel cultures or as homogenized aqueous mycelial suspensions, while all stumps were also inoculated with dowel cultures of A. novae‐zelandiae. After a period of between one and two years, no differences were found among test fungi in the percentage of Armillaria species isolated from stumps. However, inoculation of Stereum sanguinolentum as homogenate, and of Phlebiopsis gigantea, Sistotrema brinkmannii, Hypholoma acutum and Rigidoporus concrescens as dowel cultures, significantly increased their isolation incidence in comparison with stumps not treated by these species. Phlebiopsis gigantea, Resinicium bicolor and Rconcrescens were also isolated with greater frequency nearer to their dowel inoculation points. Results suggest that Pgigantea and Ssanguinolentum should be included in further testing. However, a future trial is likely to be more effective if evaluation is directed towards the portion of the stump below the soil surface, particularly the root system.  相似文献   

19.
Fruiting of Heterobasidion on cull pieces and stumps of Norway spruce was investigated in cutting areas and mature spruce stands located in southern Finland. Cull pieces of variable size and showing butt rot were left on three clear‐cut areas and in one thinned stand. Additionally, a part of the cull pieces was transported to mature forest sites with closed canopy. During the succeeding 3–4 years the cull pieces were investigated annually for sporocarps of Heterobasidion, and the area of actively sporulating pore layer of each sporocarp was measured. Root bases of spruce stumps in the logging areas were excavated and sporocarps found on the stumps also measured. At the onset of the experiment, Heterobasidion spp. were isolated from 76% of the cull pieces showing butt rot; 85% of the isolates were identified as H. parviporum and 15% as H. annosum s.s. During the following 3–4 years sporocarps were found on 20% of the 1938 cull pieces where Heterobasidion butt rot was initially detected visually. Sporocarp formation was promoted by advancement of butt rot, increasing cull piece diameter and end‐to‐end ground contact, but restricted by the colonization of the cull piece by Stereum sanguinolentum. Between‐site differences were significant but could not be explained by differences in tree cover. At the end of the investigation period the average sporulating area of Heterobasidion sporocarp per metre of cull piece was higher than the average sporulating area per stump at three of four logging sites. Hence, leaving cull pieces containing Heterobasidion butt rot at logging areas in southern Finland can considerably increase local production of Heterobasidion spores.  相似文献   

20.
The efficacy of 30% aqueous urea solution, borax powder and spore suspensions of Phlebiopsis gigantea and Trichoderma harzianum against establishment of artificially inoculated Heterobasidion abietinum on Abies cilicica was tested both in the field and in a simulated stump treatment experiment carried out in a growth chamber. In the field, in each of the four selected stands 20 fresh stumps per control agent were treated and 20 stumps were left as untreated controls. In two of the stands, the treatments were applied in June and in the two others in November. Stumps were sampled twice, at 6‐ and 12‐months after treatment. In the growth chamber, 10 log pieces per treatment and control were used, and sampling performed after 6‐week incubation. Results of the urea and borax treatments were consistent between the experiments; the mean efficacies were 98.8 and 99.4% in the growth chamber, and 80.2–91.3 and 89.4–90.1% in the two samplings of the field experiment, respectively. Despite the high efficacies of the P. gigantea (85.9%) and T. harzianum (97.5%) treatments in the growth chamber, efficacies of these biological control agents in the field were 47.1–49.2 and 61.3–65.5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号