首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Zhu YY  Fang H  Wang YY  Fan JX  Yang SS  Mew TW  Mundt CC 《Phytopathology》2005,95(4):433-438
ABSTRACT Glutinous rice cultivars were sown after every fourth row of a nonglutinous, hybrid cultivar in an additive design. The glutinous cultivars were 35 to 40 cm taller and substantially more susceptible to blast than was the nonglutinous cultivar. Interplanting of glutinous and nonglutinous rice reduced the incidence and severity of panicle blast on the glutinous cultivars by >90%, and on the nonglutinous cultivar by 30 to 40%. Mixing increased the per unit area yield of glutinous rice by 80 to 90% relative to pure stand, whereas yield of the nonglutinous cultivar was essentially unaffected by mixing. To determine whether the different plant heights and canopy structures may contribute to a microclimate that is less favorable to blast infection, we monitored the moisture status of the glutinous cultivars in pure stand and mixture at 0800 h by measuring relative humidity at the height of the glutinous panicles using a swing psychrometer and by visually estimating the percentage of leaf area covered by dew. Averaged over the two seasons, the number of days of 100% humidity at 0800 h was 20.0 and 2.2 for pure stands and mixtures, respectively. The mean percentage of glutinous leaf area covered by dewwas 84 and 36% for the pure stands and mixtures, respectively. Although other mechanisms also were operative, reduced leaf wetness was likely a substantial contributor to panicle blast control in the mixtures.  相似文献   

2.
Two susceptible barley cultivars and two moderately resistant advanced breeding lines were grown as pure stands and as the 11 possible equi-proportional mixtures over three field seasons, in the presence of scald and net blotch. Plots were either inoculated with infested straw, or non-inoculated and sprayed with fungicide. On average, the variety mixtures restricted leaf disease development by 12%. However, mixtures of either or both susceptible cultivar/s with the moderately resistant line 1861018 restricted disease severity by 20-32%. Generally, the mixtures did not increase yield relative to the mean of the pure stands. However, in the year of highest disease severity, yield was increased by 7% owing to mixing in the inoculated plots. In addition, one mixture consistently increased yield (mean of 4%) and one mixture had consistently lower yields (mean of 6%)) over years and inoculation treatments. Thus, careful evaluation is required in this environment and with these genotypes in order to identify mixtures with positive effects on disease control and yield.  相似文献   

3.
The use of cultivar mixtures is increasingly practical in wheat stripe rust management. Field experiments with wheat cultivar mixtures were conducted to determine their effects on temporal and spatial patterns of stripe rust epidemics in three regions. In the Beijing and Gangu fields, where the epidemics were caused by artificial inoculation, disease incidence and the area under the disease progress curve (AUDPC) of the cultivar mixtures were significantly lower (P < 0.05) than those of the susceptible pure stands. We defined the relative effectiveness of cultivar mixture on disease development related to that in pure stands (REM). The results demonstrated that in many treatments of mixtures of susceptible cultivar with resistant cultivars at various ratios in different locations, their effects on disease reduction were positive (REM < 1). The reduction of epidemic rate in cultivar mixtures expressed in either early season or late season depended on the initial pattern of disease and cultivar mixture treatments. Semivariograms were used to determine the spatiotemporal patterns of disease in the Gangu field. The spatial analysis showed clear spatial patterns of the disease in all four directions of the fields on susceptible pure stands but not on cultivar mixtures. The results implied that the mechanisms of cultivar mixture on disease management might include the interruption of disease spatial expansion and a physical barrier to pathogen inoculum by resistant cultivars.  相似文献   

4.
Five winter wheat cultivars, six two-component cultivar mixtures, and one four-way mixture were grown in the presence of yellow rust, eyespot, both diseases, and neither disease for three seasons. On average, mixtures reduced the severity of yellow rust relative to their component pure stands by 53%. The four-component mixture provided better yellow rust control than did the two-way mixtures. Eyespot severity was reduced through mixing only in the absence of yellow rust and by only three of the seven mixtures (mean reduction = 13%). Yellow rust was 13% less severe in the presence of eyespot, and eyespot was 10% more severe in the presence of yellow rust. Averaged over all years, the mixtures increased yield relative to the pure stands by 6·2, 1·7, 7·1, and 1·3% in the presence of yellow rust, eyespot, both diseases, and neither disease, respectively. Two mixtures provided significant yield increases over the means of their component pure stands (7% and 9%) in the presence of eyespot even though one of them did not significantly reduce eyespot severity. Accounting for all disease treatments and years, four mixtures provided distinctly higher yield increases than the other three. In mixtures containing a resistant cultivar and a cultivar susceptible to eyespot, yield loss by the susceptible cultivar was not compensated for by increased yield of the resistant cultivar. The mixtures showed improved yield stability relative to the pure stands, with the four-component mixture being particularly stable.  相似文献   

5.
The multiplication of Soil-borne wheat mosaic virus (SBWMV) was studied in mixtures of two winter wheat (Triticum aestivum) cultivars, one susceptible (Soissons) and the other resistant (Trémie). Two seed mixtures of susceptible and resistant varieties in ratios of 1 : 1 and 1 : 3 and their component pure stands, i.e. each variety grown separately, were grown in a field infected with SBWMV. The presence of the virus was detected using DAS-ELISA from January to May. The resistant cultivar Trémie showed no foliar symptoms nor could the virus be detected in the leaves or roots. In May, about 88% of plants of susceptible cultivar Soissons grown in pure stands were infected. At this time, the disease reduction relative to pure stands was 32.2% in the 1 : 1 mixture and 39.8% in the 1 : 3 mixture. Optical density (OD) values from ELISA of the infected plants in the two mixtures were consistently lower than that of the infected plants in cultivar Soissons in pure stands. The ELISA index (EI) calculated using three scales of OD values was 65.5% in the susceptible cultivar in pure stands. The value for this index was 19.1% in the 1 : 1 mixture and 7.9% in the 1 : 3 mixture. The plants of the resistant cultivar Trémie infected in the same field and transferred in January to a growth cabinet at 15 °C multiplied the virus and produced viruliferous zoospores. These results show that the resistant cultivar Trémie plays a role in disease reduction in the cultivar mixtures in field conditions. Possible reasons for this are discussed.  相似文献   

6.
Wheat yellow rust (WYR), caused by Puccinia striiformis f. sp. tritici (PST), is a major disease of wheat, and deployment of a single cultivar often leads to disease epidemics. Effect of inoculum level, foliar fungicide spray, and wheat cultivar mixtures were evaluated on disease development in the field and greenhouse in Nepal. Treatments were arranged in a split–split plot design with three replications in both experiments. Two inoculum levels of PST (low and high) were main plot factors; nontreated control and foliar spray of fungicides (Mancozeb and Bayleton) were subplot factors; and two-component cultivar mixtures, composed of different ratios of a susceptible (S) and a resistant (R) cultivars (90:10, 80:20, and 50:50, 100:0, and 0:100) were sub–subplot factors. WYR severity was assessed at different time intervals, and disease development was calculated as area under the disease progress curve (AUDPC). Inoculum level did not cause significant differences in AUDPC in the field but did in the greenhouse. Foliar spray of fungicides reduced the AUDPC in the greenhouse and field. In both experiments, AUDPC values were low in cultivar mixtures compared with a pure stand of a susceptible cultivar. As the proportion of resistant cultivar increased compared with the susceptible cultivar in the S:R mixture component, disease severity decreased with a consequent increase in grain yield. The greater yield obtained with cultivar mixtures compared with only the susceptible cultivar, independent of inoculum level and fungicide spray in the field, revealed a promising strategy to manage WYR in Nepal.  相似文献   

7.
The cause of rice grain spotting (dirty panicles) in Nigeria was studied. The fungus isolated most frequently from discoloured grains was Sarocladium attenuatum . Pathogenicity studies showed that it was capable of causing dirty panicle disease in the absence of insects. Disease severity increased with increasing inoculum. This is the first evidence that S. attenuatum is one of the major causes of dirty panicle disease of rice in Nigeria. Four isolates of S. attenuatum from different locations did not differ significantly in their virulence to three rice cultivars under upland conditions. Inoculations of cultivar BG 6850 at panicle initiation and booting resulted in severe disease and indicated the potential of the fungus to reduce yields. Trials under upland conditions of 69 cultivars of Oryza sativa and 89 of O. glaberrima indicated considerable variation in reactions, dwarf cultivars being generally more susceptible than taller ones.  相似文献   

8.
ABSTRACT Cultivar mixtures can reduce potato late blight severity on susceptible cultivars. While alternating rows of susceptible and resistant cultivars would be more acceptable than random mixtures for commercial use, they increase the genotype unit area, which is an unfavorable factor for mixture efficiency, and have been minimally efficient when disease pressure is high. The effects of disease pressure on the performance of alternating rows of cultivars possessing various types and levels of resistance were investigated in 2000 and 2001 near Quito, Ecuador, where natural pressure of late blight is high. The experiments included the highly susceptible cvs. Cecilia in 2000 and LBr37 in 2001, as well as C114 (moderately resistant) and PAN (highly resistant), planted as pure stands and as the three possible two-way combinations. Different disease pressures were obtained with three spraying schedules of a contact fungicide: nontreated, one spray every second week, and one spray weekly. The area under the disease progress curve (AUDPC) on the susceptible cultivar was 0 to 20% less in mixed than in pure plots when no fungicide was applied, 13 to 26% less with a biweekly application of fungicide, and 32 to 53% less with a weekly application. These values are comparable to those obtained in previous experiments in smaller plots with designs maximizing the distance between susceptible plants. No significant differences in mixture performance were observed according to the resistant cultivar included. Effects on yield were minimal, because of the impact of factors other than late blight. Disease pressure therefore appears as a major factor conditioning the efficiency of potato cultivar mixtures against late blight.  相似文献   

9.
ABSTRACT The effect of elevated atmospheric CO(2) concentration on rice blast and sheath blight disease severity was studied in the field in northern Japan for 3 years. With free-air CO(2) enrichment (FACE), rice plants were grown in ambient and elevated ( approximately 200 to 280 mumol mol(-1) above ambient) CO(2) concentrations, and were artificially inoculated with consist of Magnaporthe oryzae. Rice plants grown in an elevated CO(2) concentration were more susceptible to leaf blast than those in ambient CO(2) as indicated by the increased number of leaf blast lesions. Plants grown under elevated CO(2) concentration had lower leaf silicon content, which may have contributed to the increased susceptibility to leaf blast under elevated CO(2) concentrations. In contrast to leaf blast, panicle blast severity was unchanged by the CO(2) enrichment under artificial inoculation, whereas it was slightly but significantly higher under elevated CO(2) concentrations in a spontaneous rice blast epidemic. For naturally occurring epidemics of the sheath blight development in rice plants, the percentage of diseased plants was higher under elevated as opposed to ambient CO(2) concentrations. However, the average height of lesions above the soil surface was similar between the treatments. One hypothesis is that the higher number of tillers observed under elevated CO(2) concentrations may have increased the chance for fungal sclerotia to adhere to the leaf sheath at the water surface. Consequently, the potential risks for infection of leaf blast and epidemics of sheath blight would increase in rice grown under elevated CO(2) concentration.  相似文献   

10.
Four winter wheat ( Triticum aestivum ) cultivars and three two-component cultivar mixtures were planted in a replacement series both inoculated with or protected from yellow rust ( Puccinia striiformis ) in three environments. Each cultivar was susceptible to one or two of the rust races used. Mixtures yielded, on average, 7 and 4% more than their component pure stand means under inoculated and rust-free conditions, respectively. Though all yield components were affected by yellow rust, seed weight was the component that was most consistently influenced. The component genotypes within mixtures varied considerably with respect to yield, and the yield of the same component cultivar included in different mixtures sometimes differed significantly. The correlation between yellow rust severity/tiller and grain yield/tiller in mixture differed among cultivars and depended on their companion cultivar. Variance component analysis indicated that yellow rust was the most important experimental variable influencing grain yield. There was no relationship between yield of the cultivars in pure stands and their yields or competitive abilities in mixture. Disease did not change the competitive ranking of cultivars in mixture. Mixtures with complementary, negative, and overcompensatory interactions were identified. On average, mixtures showed no greater yield stability than did pure stands.  相似文献   

11.
Cowger C  Mundt CC 《Phytopathology》2002,92(6):617-623
ABSTRACT The effects of host genotype mixtures on disease progression and pathogen evolution are not well understood in pathosystems that vary quantitatively for resistance and pathogenicity. We used four mixtures of moderately resistant and susceptible winter wheat cultivars naturally inoculated with Mycosphaerella graminicola to investigate impacts on disease progression in the field, and effects on pathogenicity as assayed by testing isolate populations sampled from the field on greenhousegrown seedlings. Over 3 years, there was a correspondence between the mixtures' disease response and the pathogenicity of isolates sampled from them. In 1998, with a severe epidemic, mixtures were 9.4% less diseased than were their component pure stands (P = 0.0045), and pathogen populations from mixtures caused 27% less disease (P = 0.085) in greenhouse assays than did populations from component pure stands. In 1999, the epidemic was mild, mixtures did not reduce disease severity (P = 0.39), and pathogen populations from mixtures and pure stands did not differ in pathogenicity (P = 0.42). In 2000, epidemic intensity was intermediate, mixture plots were 15.2% more diseased than the mean of component pure stands (P = 0.053), and populations from two of four mixtures were 152 and 156% more pathogenic than the mean of populations from component pure stands (P = 0.043 and 0.059, respectively). Mixture yields were on average 2.4 and 6.2% higher than mean component pure-stand yields in 1999 and 2000, respectively, but the differences were not statistically significant. The ability of mixtures challenged with M. graminicola to suppress disease appears to be inconsistent. In this system, host genotype mixtures evidently do not consistently confer either fitness benefits or liabilities on pathogen populations.  相似文献   

12.
The vertical distribution of leaf blast lesions caused by the fungus Pyricularia grisea was studied to estimate the degree of leaf blast suppression in rice multilines in experimental paddy fields for 4 years. Leaf blast in 1 : 1 and 1 : 3 mixtures of susceptible rice cultivar Sasanishiki and its resistant near-isogenic line, Sasanishiki BL7, developed slower than that in pure stands of Sasanishiki. The average distance of lesions on leaves from the ground in the 1 : 3 mixtures was significantly lower than that in the pure stands at the end of leaf blast epidemics (at booting stage). This result shows that the distribution of leaf blast lesions in the upper layer differs between the susceptible pure stands and the 1 : 3 mixtures at the end of leaf blast epidemics.  相似文献   

13.
The use of cultivar mixtures to control foliar fungal diseases is well documented for windborne diseases, but remains controversial for splash‐dispersed diseases. To try to improve this strategy, a cultivar mixture was designed consisting of two wheat cultivars with contrasted resistance to Mycosphaerella graminicola , responsible for the rainborne disease septoria tritici blotch (STB), in a 1:3 susceptible:resistant ratio rather than the 1:1 ratio commonly used in previous studies. The impact of natural STB epidemics in this cultivar mixture was studied in field experiments over 4 years. Weekly assessments of the number of sporulating lesions, pycnidial leaf area and green leaf area were carried out on the susceptible cultivar. In years with sufficient STB pressure, disease impacts on the susceptible cultivar in the mixture were always significantly lower than in the pure stand (e.g. 42% reduction of pycnidial leaf area for the three upper leaves in 2008 and 41% in 2009). In years with low STB pressure (2010 and 2011), a reduction of disease impacts was also shown but was not always significant. After major rainfall events, the number of sporulating lesions observed on the susceptible cultivar after one latent period was reduced on average by 45% in the mixture compared to the pure stand. All the measurements showed that a susceptible cultivar was consistently protected, at least moderately, in a mixture under low to moderate STB pressure. Therefore, the results prove that the design of an efficient cultivar mixture can include the control of STB, among other foliar diseases.  相似文献   

14.
Cultivar mixtures can stabilize yield and reduce pathogen spread in plant populations. A field experiment was performed to determine (a) whether a large difference between the cultivars in the mixture (e.g., plant height or earliness) would have an impact on mixture performance, and (b) whether such differences would modify the classical rules for mixture design. Mixtures were constituted from wheat cultivars with diversity for many traits, including plant height, flowering date, disease resistance, and yield potential. The field experiment was conducted over 3 years, testing each year 72–90 mixtures of two, four, or eight cultivars, and their corresponding pure stands. Disease severity and yield of cultivar mixtures were strongly related to the mean values of the component cultivars in pure stands. Despite the considerable diversity of the mixtures tested, the classic rules (e.g., proportion of susceptible cultivars) already tested in mixtures with similar height and earliness were effective for decreasing disease severity. Agronomic heterogeneity for traits such as plant height, yield potential, or earliness of the cultivars in mixtures did not have a negative impact on disease severity and yield relative to pure stands. Increasing the number of cultivars in the mixture from two to eight had no impact on the mean disease severity and yield of the mixtures, but reduced the variability of disease severity and yield in the mixture relative to pure stands. These results suggest that it may be possible to increase within-field wheat diversity by combining more contrasting cultivars in mixtures than was previously thought.  相似文献   

15.
Pure stands of a yellow rust-susceptible wheat cultivar, pure stands of a resistant cultivar, and a 1 : 1 random mixture of resistant and susceptible cultivars were compared to populations in which strips or hills of the cultivars were alternated to attain genotype units (units of the same host genotype) that were larger in area than that of a single wheat plant. These four host populations were grown in plots of different sizes in order also to alter the number of units per host population. The goal was to determine if increasing the number of genotype units in mixed populations of large genotype units improved disease control relative to pure-line populations by increasing the amount of inoculum exchange among genotype units. Random mixtures of the two cultivars always provided better disease control than did alternating strips or hills. Evidence for an effect of genotype unit number on the efficacy of mixtures for rust control was found in only one of three experiments. Random mixtures of the two cultivars increased grain yield relative to the pure stand mean, but alternating strips did not.  相似文献   

16.
Magnaporthe oryzae is the fungal plant pathogen that causes rice blast. The sources of primary inoculum and overwintering mode of the fungus remain largely unknown. The effect of rice residues on the onset of blast epidemics and the potential for survival of M. oryzae in the residues were studied in upland conditions in Madagascar. Blast disease was observed in a 3‐year field experiment in three treatments: with either infected or uninfected rice residues on the soil surface, or without rice residues. Leaf blast incidence was significantly higher in the treatment with infected rice residues than in the two other treatments at the early stages of the epidemic. In a second set of trials, the survival of M. oryzae on rice residues was monitored. Infected rice stems were placed by lots in three places: on the mulch of rice residues, under the mulch, and buried at a depth of 10 cm in the soil. Each month, samples were taken from the field and tested for sporulation. The survival of the blast fungus decreased rapidly on the stems buried in the soil but remained high for the other conditions. Sporulation of the fungus was observed on stems left on the mulch for up to 18 months. It is concluded that under field conditions, the presence of infected rice residues could initiate an epidemic of blast. The results of this study may help in designing effective management strategies for rice residues infected by M. oryzae.  相似文献   

17.
ABSTRACT Experiments were conducted in farmers' fields at two locations of the irrigated lowlands of Laguna province in southern Luzon island, Philippines, during the wet seasons of 1993 and 1994. Nine rice populations were studied including pure stands, two-component mixtures, two-gene combinations of backcrossed lines containing varying combinations of the bacterial blight resistance genes Xa-4, xa-5, and Xa-10, and a non-isogenic cultivar containing Xa-4 and partial resistance to bacterial blight. The area under the disease progress curve (AUDPC) of both gene combinations studied was significantly less than the single most effective gene of each combination deployed singly. A mixture of a susceptible and a resistant line expressed an AUDPC significantly less than the mean of its component pure stands, but two other mixtures did not. The cultivar IR20, which contains both Xa-4 and partial resistance, reduced the AUDPC by about two-thirds as compared with IR-BB4, which contains Xa-4 and little or no partial resistance.  相似文献   

18.
Late blight, caused by Phytophthora infestans , is the most severe disease of potato worldwide. Controlling late blight epidemics is difficult, and resistance of host cultivars is either not effective enough, or too easily overcome by the pathogen to be used alone. In field trials conducted for 3 years under natural epidemics, late blight severity was significantly lower in a susceptible cultivar growing in rows alternating with partially resistant cultivars (mixtures) than in unmixed plots of the susceptible cultivar alone. Partially resistant cultivars behaved similarly in unmixed and mixed plots. Mixtures of cultivars reduced disease progress rates and sometimes delayed disease onset over unmixed plots, but did so significantly only for the slowest epidemic. This suggests that reduction of area under the disease progress curve (AUDPC) in mixtures resulted from the cumulative action of minor effects. Disease distribution was focal in all plots at all dates, as shown by Morisita's index values significantly exceeding 1. Significant yield increases for the susceptible cultivar, and occasionally for the partially resistant ones, were observed in mixed-cultivar plots compared with single-cultivar plots. These results show that cultivar mixtures can significantly reduce natural, polycyclic epidemics in broadleaved plants attacked by pathogens causing rapidly expanding lesions.  相似文献   

19.
Leaf blast suppression in multilines was evaluated based on the number of susceptible lesions observed in a pure stand of susceptible rice cultivar Sasanishiki, and in 1 : 1 and 1 : 3 mixtures of Sasanishiki and a resistant near-isogenic line, Sasanishiki BL4 or BL7, from 1998 to 2001. The number of lesions first observed in fields in the 1 : 1 and 1 : 3 mixtures were close to theoretical numbers calculated using the number of lesions observed in the pure stands and the ratios of the susceptible Sasanishiki in the mixtures. The ratio of the number of lesions in the 1 : 1 and 1 : 3 mixtures to the number in the pure stand was 0.29 and 0.09, respectively. The relationship between these ratios and the ratios of susceptible Sasanishiki in mixtures was defined in an equation to estimate the degree of leaf blast suppression. Validation studies for the ratios of the number of lesions in the 1 : 1 and 1 : 3 mixtures to the number in the pure stand were conducted in two different locations and showed that the ratios are almost acceptable. The calculated autoinfection to alloinfection ratio was 1.3 and 1.4 in the 1 : 1 and 1 : 3 mixtures, respectively, suggesting that the calculated ratio will affect the degree of leaf blast suppression. Thus, predictors were obtained to estimate leaf blast suppression for effective blast control in multilines.  相似文献   

20.
抗感品种混植对水稻主要病害的效应   总被引:15,自引:0,他引:15  
 1986-1988年利用抗感品种混植对水稻主要病害的效应进行了研究。结果表明:(1)对稻瘟病抑制作用显著,尤以对叶瘟效果最好(F=46.55,P<0.01)。与应发病值相比,其相对抑制效果:病叶率减少74.23%,病情指数降低85.30%。单植的病害日侵染速率(r)比混植高一倍以上。病情严重度与组合内抗感比例密切相关(r=0.951··)且呈幂函数关系:?=3.3918×7.4446x。(2)对稻纹枯病和稻白叶枯病均有一定效应,但不如稻瘟病显著。文中还对混植机理及存在问题进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号