首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cinnamate‐4‐hydroxylase (CA4H), a cytochrome P450‐dependent monooxygenase, plays crucial roles in phenylpropanoid metabolism and plant defense. Previously, the authors showed that the expression of CA4H was induced in response to an allelopathic substance in Eupatorium adenophorum. Here, the full‐length cDNA of EaCA4H was cloned by using rapid amplification of cDNA ends. The 1518 bp open reading frame of EaCA4H was deduced to encode a protein of 505 amino acid residues. Like other CA4H proteins, the predicted EaCA4H polypeptides contained conserved domains of cytochrome P450. A Southern blot analysis indicated that at least five copies of EaCA4H exists in the genome of E. adenophorum. Subcellular localization revealed nuclear‐localized EaCA4H–green fluorescent protein fusion protein in onion epidermal cells. Heterologous silencing of endogenous CA4H in tobacco by a conserved EaCA4H fragment resulted in reduced expressions of key enzymatic genes and the production of downstream flavonoids in the phenylpropanoid pathway. Intriguingly, similar effects were observed in transgenic tobacco plants overexpressing EaCA4H. Altogether, the results indicate that the disturbed expression of CA4H in plants leads to relatively low expression levels of key enzymatic genes and the accumulation of the flavonoids that are involved in phenylpropanoid metabolism.  相似文献   

2.
3.
4.
5.
Marker‐free transgenic tobacco (Nicotiana tabacum) lines containing a chitinase (ChiC) gene isolated from Streptomyces griseus strain HUT 6037 were produced by Agrobacterium‐mediated transformation. One marker‐free transgenic line, TC‐1, was retransformed with the wasabi defensin (WD) gene, isolated from Wasabia japonica. Of the retransformed shoots, 37% co‐expressed the ChiC/WD genes, as confirmed by western and northern analyses. Southern blot analysis showed that no chromosomal rearrangement was introduced between the first and the second transformation. Transgenic lines either expressing ChiC or WD, or co‐expressing both genes were challenged with Fusarium oxysporum f.sp. nicotianae (Fon). Assessment of in vitro plant survival in the presence of Fon showed that transgenic lines co‐expressing both genes had significantly enhanced protection against the fungus (infection indices 0·0–1.·2) compared with corresponding isogenic lines expressing either of the genes (infection indices 2·5–9·8). Whole‐plant infection indices in transgenic lines were significantly related (r = 0·93, P < 0·01) to the extent of root colonization of the host, which ranged from 2·1% to 11·3% in lines co‐expressing both genes, and from 16·8% to 37·7% in lines expressing just one of the genes (compared with 86·4% in non‐transformed controls). Leaf extracts of transgenic lines also inhibited mycelial growth of Fon in vitro and caused hyphal abnormalities.  相似文献   

6.
Quorum sensing in Gram‐negative bacteria is regulated by diffusible signal molecules called N‐acyl‐l ‐homoserine lactones (AHLs). These molecules are degraded by lactonases. In this study, six Bacillus simplex isolates were characterized and identified as a new quorum‐quenching species of Bacillus. An aiiA gene encoding an AHL‐lactonase was identified based on evidence that: (i) it showed high homology with other aiiA genes of Bacillus sp.; (ii) the deduced amino acid sequence contained two conserved regions, 104SHLHFDH111 and 165TPGHTPGH173, characteristic of the metallo‐β‐lactamase superfamily; and (iii) the protein had zinc‐dependent AHL‐degrading activity. Additionally, the expression of the aiiA gene was significantly up‐regulated by 3‐oxo‐AHL. The AHL‐lactonase inhibited multiplication of the 3‐oxo‐C6‐AHL‐producing plant pathogen Erwinia amylovora sy69 both in vitro and in planta. The results provide support for the use of the quorum‐quenching functionality of B. simplex in the integrated control of the devastating fire blight pathogen.  相似文献   

7.
Two sesquiterpene‐derivative compounds, 4,7‐dimethyl‐1‐(propan?2‐ylidene)–1,4,4a,8a‐tetrahydronaphthalene‐2,6(1H, 7H)‐dione (DTD) and 6‐hydroxy‐5‐isopropyl‐3,8‐dimethyl?4a,5,6,7,8,8a‐hexahydronaphthalen‐2(1H)–one (HHO), are the major putative allelochemicals of the aqueous leachates of Ageratina adenophora. A laboratory experiment was conducted, using the hydroponic method, to evaluate the cellular and ultrastructural changes in the seedling roots of upland rice under the stress of DTD and HHO. The subsequent changes were observed in the treated upland rice roots in comparison with their controls. The scanning electron microscopy results showed that the DTD‐treated root tip cells turned into an irregular arrangement and shape and that most of them were wizened, with a poor cytoplasm. In the HHO treatment, the root tips had many irregularly shaped cells, with a greater number of sloughing cells, as well as short, wide cells that resulted in spherical and wider, but shorter, roots. At the ultrastructural level, DTD and HHO induced irregularly shaped and lobed nuclei, increased cytoplasmic vacuolation, reduced ribosome density and dictyosomes, and a reduced number of mitochondria in the cells, which indicated limited protein transportation and a reduced capability to export substances for cell development and growth in the upland rice seedling roots. The overall effect of HHO on the upland rice seedlings was more pronounced than that of DTD.  相似文献   

8.
Septoria tritici blotch caused by the fungus Zymoseptoria tritici is one of the most devastating foliar diseases of wheat. Knowledge regarding mechanisms involved in resistance against this disease is required to breed durable resistances. This study compared the expression of defence and pathogenicity determinants in three cultivars in semicontrolled culture conditions. The most susceptible cultivar, Alixan, presented higher necrosis and pycnidia density levels than Altigo, the most resistant one. In Premio, a moderately resistant cultivar, necrosis developed as in Alixan, while pycnidia developed as in Altigo. In noninfectious conditions, genes coding for PR1 (pr1), glucanase (gluc) and allene oxide synthase (aos) were constitutively expressed at a higher level in both Altigo and Premio than in Alixan, while chitinase2 (chit2), phenylalanine ammonia‐lyase (pal), peroxidase (pox2) and oxalate oxidase (oxo) were expressed at a higher level in Premio only. Except for aos, all genes were induced in Alixan during the first steps of the symptomless infection phase. Only pox2, oxo, gluc and pal genes in Altigo and pal, chs and lox genes in Premio were up‐regulated at some time points. Basal cultivar‐dependent resistance against Z. tritici could therefore be explained by various gene expression patterns rather than high expression levels of given genes. During the necrotrophic phase, Z. tritici cell wall‐degrading enzyme activity levels were lower in Altigo and Premio than in Alixan, and were associated more with pycnidia than with necrosis. Similar tissue colonization occurred in the three cultivars, suggesting an inhibition of the switch to the necrotrophic lifestyle in Altigo.  相似文献   

9.
Peach gummosis, caused by Botryosphaeria spp. fungi, is the process of gum accumulation and exudation in plants. Ethephon (2‐chloroethylphosphonic acid) has profound effects on plants, including enhanced production of secondary metabolites and regulation of plant diseases. This study investigates the effects of application of ethephon before and after inoculation with Lasiodiplodia theobromae on gum formation. Gum formation was promoted by ethephon treatment prior to pathogen inoculation, but inhibited by ethephon applied after the pathogen. The inhibitory effect was counteracted by 1‐methylcyclopropane, which is an ethylene signal inhibitor. 1‐methylcyclopropane also promoted gum formation. Exposure of three isolates of Botryosphaeria to ethephon inhibited mycelial growth. Both treatment methods increased the sugar content at 12 and 24 h post‐inoculation (hpi). However, the sucrose, glucose and fructose contents were significantly higher in shoots with ethephon post‐treatment (application of ethephon after the pathogen inoculation) than those in shoots with ethephon pre‐treatment (application of ethephon prior to pathogen inoculation) at 48 and 72 hpi. The expression of two putative senescence‐related genes, SEN2 and SEN4, were significantly enhanced in pre‐ and post‐treated shoots with ethephon at 24, 48 and 72 hpi. Ethephon application also up‐regulated expression of the pathogenesis‐related protein PR4 while down‐regulating PR1a and PR10. The results show that ethephon has a dual function in regulating gum formation by affecting both the peach shoots and the pathogen.  相似文献   

10.
A preinoculative soil drench application of 0·5 mm β‐aminobutyric acid (BABA) significantly inhibited colonization of oilseed rape (Brassica napus, susceptible cultivar Falcon) by Verticillium longisporum and also prevented plant stunting caused by the pathogen. To better understand the defence responses induced by BABA, the presence of occlusions in the plant hypocotyl, levels of salicylic acid (SA) and hydrogen peroxide (H2O2), phenylalanine ammonia lyase (PAL) activity and expression of PR‐1 and PDF1.2 genes were examined. Transverse sections through the hypocotyl region of BABA‐treated plants showed clear vessels surrounded by phenol‐storing cells, in contrast to numerous obstructed vessels in water‐treated plants, in response to the pathogen. A significant increase in SA levels was observed in the hypocotyls of both water‐ and BABA‐treated plants in response to the pathogen; however, SA levels were unrelated to disease resistance. The level of H2O2 decreased in both treatments in response to the pathogen. A significant increase in PAL activity was observed in hypocotyl tissues of BABA‐treated plants. The expression patterns of PR‐1 and PDF1.2 were similar in the two treatments in response to the pathogen, indicating no involvement of these genes in resistance. The results indicate a similar organ specificity of the plant hypocotyl for chemically induced internal resistance as for genotype‐related resistance, two phenomena which, however, are based on contrasting cytological responses in the vascular tissues. Nonetheless, evidence is provided that the activity of the phenylpropanoid pathway plays a crucial role in both types of resistance.  相似文献   

11.
12.
A method to assess anti‐oxidant activity quantitatively is presented. In this method, free radicals (OH·) were produced from the Fenton reaction. Electron spin resonance spectroscopy (ESR) was then used to determine the effectiveness of five anti‐oxidants to scavenge the free radicals. Anti‐oxidant activity was assessed as the percentage reduction of the ESR signal intensity relative to that of a control after 10 min. The order of the potency of the antioxidants at 4.8 mM was: caffeic acid > o‐coumarin > 6,7‐dihydroxy‐4‐methylcoumarin > catechin > scopoletin. In addition, pro‐oxidant activity (a higher ESR signal intensity than that of the control) was observed for catechin and scopoletin at low concentrations (below 3.6 mM ). © 2000 Society of Chemical Industry  相似文献   

13.
A novel DNA‐chip hybridization assay that uses the ras‐related GTP‐binding protein 1 gene (Ypt1) was developed for the identification of several devastating Phytophthora species. The hybridization was conducted in a portable microfluidic lab‐on‐a‐chip device for fast and accurate detection of 40 Phytophthora, two Pythium and one Phytopythium species. Moreover, the functionality of the Ypt1 region was examined in comparison to an array for the internal transcribed spacer (ITS) region by in silico modelling. The difference in species‐specific capture probe sequences was lower for the ITS than for the Ypt1 region. While ITS‐probes of Phytophthora ramorum, Phytophthora fragariae and Phytophthora lateralis cross‐reacted with up to 11 non‐target species, Ypt1‐probes were specific except for P. fragariae/Phytophthora rubi. First analyses of artificially inoculated Rhododendron leaves successfully demonstrated the usability of the respective capture probes for the Ypt1 and the ras‐related plant protein Rab1a gene region. The on‐chip hybridization enabled the detection of up to 1 pg μL?1 target DNA depending on the species examined. Due to the complementarity of ITS and Ypt1 genetic features, the use of multiple loci is recommended to identify targets of different taxonomic rank.  相似文献   

14.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

15.
Breeding resistance to whitefly‐transmitted begomoviruses is an important goal of tomato breeding programmes worldwide. So far, resistance to begomoviruses in tomato has been achieved using wild species, and at least five resistance genes (Ty genes) have been studied. The present study was undertaken to combine Ty‐2 and Ty‐3 and to determine the effect of pyramiding on infection of tomato by three diverse begomovirus species. The diagnostic ability of the markers linked to Ty genes was assessed and marker‐assisted selection was used to develop pyramided tomato lines from the crosses between Ty stocks. Five stable pyramided tomato lines that differ in fruit morphology and yield potential were developed. The horticultural performance of pyramided lines in field trials showed that the yield and horticultural traits are well maintained in the plants. The response of these lines was assessed using agroinoculation and field tests in a disease hotspot. The pyramided lines and Ty‐3‐carrying lines exhibited a high level of resistance to the monopartite and two bipartite begomoviruses tested. The pyramided tomato lines developed in this study could be important genetic resources for sustainable tomato production in areas affected by tomato leaf curl virus disease. The combined results of disease resistance tests also showed that Ty‐3 is critical for achieving broad‐spectrum resistance. The limitations of relying on a single gene and the importance of pyramiding are discussed in the light of available evidence on frequent recombination in begomoviruses.  相似文献   

16.
The vegetation cover during the non‐cropping season could have important implications for the maintenance and recovery of soil fertility, as well as for biodiversity conservation in croplands. In this study, five fertilization regimes (control: non‐fertilization; N: inorganic N fertilization; P: inorganic P fertilization; NPK: balanced fertilization with inorganic N, P and K; NPKM: balanced NPK plus farmyard manure) were conducted from 1981 in a double‐rice (Oryza sativa L.)‐cropping system in subtropical China. The effects of long‐term fertilization were investigated on the weed growth, diversity and community structure during the fallow period. The results showed that, relative to the control, both inorganic fertilization alone (N, P and NPK) and NPKM in the rice‐growing season significantly increased the weed density and biomass during the fallow period in the paddy field. There was no significant difference in the weed species richness (the number of species) among the treatments. Compared with the control, fertilization tended to reduce the weed diversity (Shannon's H′) and evenness (Shannon's E), especially in the N treatment. Long‐term fertilization resulted in a significant shift in weed community's composition during the fallow period. The weed community's structure was affected by soil nutrients in the order P > N > K.  相似文献   

17.
18.
19.
All isomers of α‐asarone [(E)‐4‐prop‐1‐enyl‐1,2,5‐trimethoxybenzene] were tested for their feeding deterrent activity against adults of Sitophilus granarius and Tribolium confusum and larvae of Trogoderma granarium and Tribolium confusum. (E)‐2‐prop‐1‐enyl‐1,3,5‐trimethoxybenzene exhibited the strongest deterrent activity against all the species tested. The total coefficients of deterrency for this compound were 140.6 and 169.7 for Tribolium confusum adults and larvae, respectively, and 144.9 and 104.6 for larvae of Trogoderma granarium and adults of Sitophilus granarius, respectively. © 2000 Society of Chemical Industry  相似文献   

20.
Avena fatua of the family Poaceae is one of the most common and economically damaging grass weeds. Resistance to herbicides that inhibit acetyl‐coenzyme A carboxylase and acetolactate synthase activities has recently been detected in A. fatua. The resistance may be due to mutations in the herbicide targets and/or enhanced herbicide metabolism resulting from changes in gene expression, including in genes involved in detoxifying herbicide active ingredients. To analyse gene expression, stable housekeeping genes must be experimentally determined and used for data normalisation. In this study, A. fatua plants were treated with different herbicide types and plant materials were harvested at three time points following treatment. Six candidate reference genes (18S rRNA, ACT, EF1α, GAPDH, TBP, and TUB) were selected, sequenced and analysed by RT‐qPCR. The resulting data were assessed using four algorithms from the RefFinder software to determine gene expression stability. We identified TBP and GAPDH as the most stably expressed A. fatua reference genes following herbicide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号