首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most plant nutrients are optimally available when soil pH is close to neutral. In this experiment the effects of Thiobacillus and Mycorrhiza on nutrient uptake and grain yield of maize were studied on an alkaline soil as a factorial experiment with randomized complete blocks design. Treatments consisted of Mycorrhiza fungi (M): inoculated (m1) and noninoculated (m0), Thiobacillus (T): inoculated (t1) and noninoculated (t0), and sulfur (S) (S0, S1: 250, and S2: 500 kg ha?1). Inoculation of Mycorrhiza, Thiobacillus, and S application decreased soil pH and increased grain yield and seed oil content. The lowest soil pH and the greatest S content were obtained from the combination of Thiobacillus and 500 kg ha?1 S. Inoculation of Thiobacillus and S application significantly decreased root colonization. The greatest iron (Fe) content was in the combination of Mycorrhiza inoculation and 500 kg ha?1 S. Grain P content significantly increased with Mycorrhiza inoculation and S application. The greatest grain yield obtained from combination of Thiobacillus with 500 kg ha?1 S.  相似文献   

2.
Organic amendments recycle nutrients, but N2O emissions are both environmental and agronomic concerns. We conducted a 4-year field experiment to determine no-till barley (Hordeum vulgare L.) yield and nutrient uptake and soil N2O emissions following a single application of six amendment treatments: (1) no amendment (Check); (2) synthetic N fertilizer (Fert); (3) fresh beef cattle feedlot manure (ManureF); (4) beef cattle feedlot manure compost (CompostR); (5) beef cattle feedlot manure composted with cattle mortalities (CompostM); and (6) separated solids from anaerobically digested cattle feedlot manure (ADM). Barley grown in Year 1 (2006), Year 2 (2007), and Year 4 (2009) (with Year 3 (2008) under fallow) had higher grain yields from ManureF (4.73 Mg ha?1) in Year 2 and ADM (6.30 Mg ha?1) in Year 4 (p < 0.05) than other treatments. The grain N and P contents were not affected (p > 0.05), but N uptake over 3 years (112.8 kg N ha?1 yr?1), and P uptake in Year 1 (19.1 kg ha?1 yr?1) and Year 2 (14.3 kg ha?1 yr?1) from ManureF, were higher (p < 0.05×) than other treatments. The cumulative N2O emissions from ManureF in Year 1 (1.488 kg N ha?1) and from ADM in Year 2 (1.072 kg N ha?1) were higher (p < 0.05) than other treatments while the fraction of applied N emitted as N2O was small (0.00 to 0.79%) and not affected by treatment. However, the percentages of applied N emitted as N2O from compost and ADM were similar to synthetic fertilizer and livestock manure.  相似文献   

3.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

4.
An experiment was conducted to study the response of maize to magnesium (Mg) and to find out the residual effect of Mg and green manure (GM) on transplanted aman (T. aman) rice in the maize–GM–T. aman cropping pattern. There were six treatments: T1 (recommended dose of fertilizer (RDF) + 0 kg Mg + 2 t CaCO3 ha?1), T2 (RDF + 10 kg Mg + 2 t CaCO3 ha?1), T3 (RDF + 20 kg Mg +2 t CaCO3 ha?1), T4 (RDF + 30 kg Mg + 2 t CaCO3 ha?1), T5 (RDF) and T6 (2 t CaCO3 ha?1). The response of maize to Mg was quadratic and the optimum dose of Mg was found to be 19 kg ha?1, which resulted in maximum yield of 10,507 kg ha?1. The residual effect of Mg along with GM and reduced dose of chemical fertilizer resulted in significant increase of grain yield of rice. Thus, N250P60K100Mg19S40Zn5B2 kg ha?1 for maize, only 20 kg N ha?1 for GM (Sesbania) and N60P9K33S10Zn1B1 kg ha?1 for T. aman appeared as the best combination for maximizing the productivity and may be recommended for this pattern at non-calcareous light-textured soils of Bangladesh. Application of lime increased soil pH, and this together with fertilizer and GM tended to improve soil fertility and thus may be recommended for soil amelioration.  相似文献   

5.
A power plant that utilizes turkey manure as fuel to produce energy was built in Benson, Minnesota, and started full energy production in 2007. The plant was built to meet legislative requirements governing the use of renewable sources to generate energy in Minnesota. Although the use of turkey manure as biofuel generates energy, it also results in turkey manure ash (TMA) as a by‐product that contains phosphorus (P), potassium (K), sulfur (S), and zinc (Z) as well as other essential and nonessential elements. A 2‐year study was conducted to compare TMA with triple‐superphosphate and potassium chloride fertilizers as a source of nutrients for alfalfa (Medicago sativa) at three locations: Lamberton, Morris, and Appleton, Minnesota. The soils at Lamberton and Appleton were acidic with P and K concentrations ranging from medium‐high to very high, whereas the soil at Morris was alkaline with high concentrations of P and K. The experiment consisted of a control (0 P and 0 K) and annual and split applications of TMA and fertilizer. Annual TMA and fertilizer rates were 84 kg P2O5 ha?1, 118 kg K2O ha?1, and 34 kg S ha?1. Split rates were 42/42 kg P2O5 ha?1, 59/59 kg K2O ha?1, and 17/17 kg S ha?1. However, because of an overestimation of citrate‐soluble P in 2005 for the TMA, the total amount of available P applied with the TMA for the 2‐year study was 168 kg P2O5 ha?1 compared with 286 kg P2O5 ha?1 for the fertilizer. In the first year, fertilizer resulted in greater alfalfa biomass yield than TMA and the control, whereas in the second year, alfalfa yields with TMA and fertilizer were similar and both more than the control. In 2005, TMA resulted in more copper (Cu) and S tissue concentrations than the fertilizer. In 2006, application of both sources increased tissue P and S concentrations compared with the control. The TMA increased tissue Cu concentration and Zn plant uptake compared with fertilizer. Bray P1–extractable soil P concentrations were less with TMA and control treatments than with the fertilizer treatments. Ammonium acetate–extractable soil sodium (Na) concentrations were greater with TMA than with fertilizer and the control. By the second year, both ash and fertilizer treatments resulted in more K uptake than the untreated control with no difference in K uptake between the two sources or time of application. Both sources were effective in increasing P uptake compared with the untreated control. TMA was shown to be an effective source of nutrients for alfalfa production.  相似文献   

6.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   

7.
A field experiment was conducted to assess the effect of microbial inoculants and inorganic fertilizers for sustaining the yield of soybean. Application of 100% recommended dose of fertilizer (RDF) gave significantly highest yield (2433 kg ha?1) over 75% RDF (2317 kg ha?1) and without RDF (2205 kg ha?1). Seeds inoculated with Rhizobium (Bradyrhizobium japonicum) and phosphate-solubilizing bacteria (2480 kg ha?1) gave significantly highest soybean yield over without inoculation (2191 kg ha?1). Rhizobium and phosphate-solubilizing bacteria with 100% RDF (2674 kg ha?1) gave significantly highest seed yield than rest of the treatment combinations. Root nodules and their dry weight were remained un-influenced due to fertilizer levels, whereas in bio-fertilizers, it was significantly higher with Rhizobium inoculation (24.3 and 408 mg, respectively) followed by dual inoculation of Rhizobium and PSB. 100% RDF and dual inoculation with Rhizobium and PSB earned Rs. 47916/- and Rs. 51182/- net returns per ha, respectively.  相似文献   

8.
With regard to the low cation-exchange capacity and large saturated hydraulic conductivity of sandy soils, a field experiment was carried out in 2006–2007 to determine the impact of zeolite on nitrogen leaching and canola production. Four nitrogen (N) rates (0, 90, 180, and 270 kg ha–1) and three zeolite amounts (3, 6 and 9 t ha?1) were included as treatments. The results demonstrated that the highest growth parameters and seed yield were attained with 270 kg N ha?1 and 9 t zeolite ha?1. However, the highest and the lowest seed protein percentage and oil content were obtained with 270 kg N ha?1 accompanied by 9 t zeolite ha?1, respectively. Nitrate concentration in drained water was affected by nitrogen and zeolite. The lowest and highest leached nitrate values were found in control without N and zeolite (N0Z0) and in treatments with the highest N supply without zeolite (N270Z0), respectively. In general, nitrogen-use efficiency decreased with an increase in N supply. Application of 9 t zeolite ha?1 showed higher nitrogen use efficiency than other zeolite amounts. Also, application of more N fertilizer in soil reduced nitrogen uptake efficiency. In total, application of 270 kg N ha?1 and 9 t zeolite ha?1 could be suggested as superior treatment.  相似文献   

9.
To study the effects of phosphorus (P) fertilizer (cow manure, phosphorus solublizing bacteria) and sowing density on seed production of alfalfa, an experiment was laid out in a three-replicated split-split plot design with four phosphorus fertilizer rates (0, 30, 60 and 90 kg ha?1) in main plots, three phosphorus-solublizing bacteria (9, 41strains, and no bacteria) in sub-plots and three sowing densities (2, 6 and 10 kg ha?1) in sub-sub plots. The highest seed yield resulted from 60 and 90 kg P ha?1. Application of bacteria strain 41 was more efficient than bacteria strain 9 in seed yield and 1000-seed weight. Seed yield at 6 seed kg ha?1 treatment was higher than 10 kg ha?1, although there was no significant difference between them. Based on the results of this experiment the triple application of P60, B41 and SD6 could be recommended as the best treatment for seed production of alfalfa (Cultivar ‘Nikshahri’) under the semi-saline condition.  相似文献   

10.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

11.
Abstract

The carbon (C) budget of managed grassland in a cool-temperate region of Japan was estimated using a combination of eddy covariance and the biometric method for five years, to evaluate the effect of manure application. Chemical fertilizer was applied to the fertilizer (F) plot at a rate of 79 ± 20 kg N ha?1 yr?1. In the manure (M) plot, dairy cattle manure was applied at a rate of 10 Mg fresh matter ha?1 yr?1 (1923 ± 407 kg C ha?1 yr?1, 159 ± 68 kg N ha?1 yr?1). There was no significant difference in seasonal gross primary production (GPP) and harvest between the treatment plots, indicating that both fertilizer and manure can increase the biomass production. Annual net ecosystem production (NEP) and ecosystem respiration (RE) was significantly different between the treatment plots. The difference in RE, and between M and F plots approximates heterotrophic respiration of manure (RHm), which ranged from 0.9 to 1.3 Mg C ha?1 yr?1. Average annual RHm was 1.1 ± 0.4 Mg C ha?1 yr?1, and accounted for 56% of the total amount of applied manure C. The annual net biome production (NBP) in the M plot (from 0.0 to 1.5 Mg C ha?1 yr?1) was significantly higher than in the F plot (?1.4 to 0.5 Mg C ha?1 yr?1). The long-term effect of manure application combined with chemical fertilizer did not reduce grass production compared with chemical fertilizer only; however, manure application decreased the NEP throughout manure decomposition, and long-term manure application enhanced the NBP.  相似文献   

12.
The effects of four treatments upon the N content of rice crop and soil in 1m2 irrigated microplots were compared: (1) PK fertilization + Sesbania rostrata (inoculated stems) ploughed in as green manure when it was 52 days old. (2) PK fertilization + S. rostrata (non-inoculated stems) ploughed in as green manure. (3) PK fertilization + ammonium sulphate (60kg N ha?1). (4) PK fertilization alone (control).The application of chemical N fertilizer (treatment 3) increased the grain yield by 169 g m?2 (1.69t ha?1). whereas incorporating S. rostrata as green manure resulted in a grain yield increase of 372 g m?2 (3.72t ha?1). N2 fixed by S. rostrata was estimated to be at least 26.7 g m?2 (267kg N ha?1), one third being transferred to the crop and two thirds to the soil.  相似文献   

13.
Field experiments were conducted in 2010 and 2011 at the Agricultural College of Shiraz University to evaluate the effects of cattle manure and nitrogen (N) fertilizers on soil properties such as soil organic carbon (SOC), soil organic nitrogen (SON), soil electrical conductivity, soil pH and corn yield under two tillage systems. Treatments included tillage systems in two levels as conventional tillage and reduced tillage as subplots, cattle manure (0, 25 and 50 tons ha?1) and N fertilizer (0, 125 and 250 kg N ha?1) as sub-subplots. Results showed that SOC and SON were significantly affected by tillage system in both years of the experiment. SOC and SON were higher in reduced tillage compared to conventional tillage. Tillage system had no significant effect on grain yield, plant height and 1000 seed weight. Increased cattle manure rates at 25 and 50 tons ha?1 increased grain yield by 27% and 38%, respectively, in 2010 and 25% and 25% in 2011. The results showed that application of cattle manure combined with N fertilizer might be an efficient management to increase soil productivity in southern Iran, in soils with poor organic content. Additionally, reduced tillage showed to be an efficient method to increase soil organic matter.  相似文献   

14.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

15.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

16.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

17.
Maize yield is often limited by zinc (Zn) deficiency. The objectives of this study were to (i) evaluate maize yield response to Zn applied at four different rates, (ii) evaluate the yield response and agronomic efficiency of maize to the application of a complex fertilizer, MicroEssentials SZ (12N–40P–0K–10S–1Zn), compared to different rates of monoammonium phosphate (MAP) + ammonium sulfate (AS) + zinc sulfate (ZnSO4), and (iii) evaluate the association between tissue Zn concentration and soil-test Zn with the maize response to Zn fertilizer. Eleven experiments were carried out during the 2010, 2011, and 2012 growing seasons throughout eight states in the USA. Treatments consisted of four Zn rates of a physical blend of MAP + AS + ZnSO4 (0, 2.24, 4.48, 6.72, and 11.2 kg/ha Zn) and MicroEssentials SZ at a Zn rate of 2.24 kg/ha Zn. Nitrogen, phosphorus (P), and sulfur (S) rates were balanced across treatments (40 kg/ha P, 22 kg/ha S) and fertilizers were broadcast and incorporated immediately prior to planting. Treatment and location main effects were significant (P < 0.001) on corn yields, whereas the interaction treatment × location was not (P = 0.33). Maize responded positively to Zn fertilization; average yields across locations increased from 10,540 kg ha?1 without Zn to 11,530 kg ha?1 with 11.21 kg Zn ha?1 applied as a physical blend. The yield response and Zn agronomic efficiency of maize with the application of the complex fertilizer at a rate of 2.24 kg Zn ha?1 averaged 1004 kg ha?1 and 448 kg maize kg Zn?1, respectively, significantly higher (P < 0.1) than the yield response and Zn agronomic efficiency with the application of a physical blend with the same Zn rate, which averaged 293 kg ha?1 and 131 kg maize kg Zn?1, respectively. The Zn concentration in plant tissue of unfertilized plots varied greatly and was not related to the maize response to Zn fertilizer (r = 0.01; P = 0.98). With respect to soil Zn, a negative but nonsignificant relationship was found between maize response to Zn fertilizer and soil-test Zn (r = ?0.51; P = 0.16).  相似文献   

18.
The growth and yield performance of green maize (Zea mays), followed by a late-season vegetable cowpea (Vigna unguiculata), was assessed with two rates of three different types of organic-based fertilizers (OBFs) fortified with an inorganic nutrient source. There was also an inorganic fertilizer treatment of NPK 20–10–10 applied at 300 kg ha?1 and a no-fertilizer control treatment. Maize growth was affected by fertilizer type and rate. Organic fertilizer, applied at 5 t ha?1, 3 weeks before maize released enough nutrients to have comparable growth as inorganic fertilizer. Applying the OBF at 2.5 t ha?1 was inadequate to give comparable growth. Application of fortified OBF with total nitrogen content higher than 2.4% N at 5.0 t ha?1 gave maize grain yields comparable with NPK fertilizer. Cowpea yields following early-season maize were highest with DPW + NPK. They were significantly lower with 2.5 t ha?1 of the OBFs. Application of the IAR&T-OBF (OBF made by Institute of Agricultural Research and Training) and decomposed poultry waste (DPW) + NPK at 5.0 t ha?1 gave comparable seed yields significantly higher than OYO-OBF (OBF made by Oyo State Government of Nigeria). NPK fertilizer application supported early-season maize cultivation, but it was not adequate to support the following cowpea. OBF should have nitrogen content up to 2.4% and applied at 5.0 t ha?1 to support an early-season maize cultivation with a late-season cowpea.  相似文献   

19.
ABSTRACT

Low concentrations of P and organic manure in savanna soils limit cowpea response to rhizobia. The study was conducted to determine the combined effect of P and organic manure on cowpea response to rhizobia in a factorial experiment arranged in randomized complete block design with three replications on smallholder farmers’ fields in northern Ghana in 2015. The factors were two levels of Bradyrhizobium inoculant, two levels of P fertilizer, three treatments of manure (fertisoil, cattle manure, and no manure). Addition of Bradyrhizobium inoculant to P and fertisoil significantly increased shoot biomass yield from 1677 kg ha?1 in the plots without Bradyrhizobium inoculation to 1913 kg ha?1. Likewise, the addition of Bradyrhizobium inoculant to P and cattle manure significantly increased shoot biomass from 1437 kg ha?1 to 1813 kg ha?1. Grain yield increases of 1427 and 1278 kg ha?1 were obtained over the control when either fertisoil or cattle manure and P, respectively, were added to Bradyrhizobium inoculant. The value cost ratio for adding Bradyrhizobium inoculant to phosphorus and fertisoil was two indicating that it could be attractive to risk-averse smallholder farmers. The study demonstrated the potential of the combined application of organic matter and P to improve cowpea response to Bradyrhizobium inoculation.  相似文献   

20.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号