首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
大喂入量水稻联合收获机脱粒清选装置的设计与试验   总被引:1,自引:0,他引:1  
为适应我国现阶段高产水稻的收获要求,自主研发了大喂入量履带式全喂入联合收获机。论述了切流脱粒分离装置、锥形螺旋喂入装置、斜置纵轴流脱粒分离装置和双出风口多风道离心风机清选装置等主要工作部件的结构与设计参数,提出了配套动力90~100k W、可承载6~7t的履带式行走底盘技术方案,突破了传统履带式底盘承载能力≤5t的限制。田间试验结果显示:该机收获产量9 000kg/hm2水稻时,总损失率为1.2%,含杂率1.0%,破碎率0.9%,机具生产率0.8 hm2/h,其各项技术性能指标均符合设计要求。该斜置切纵流全喂入履带式联合收获机喂入量达到了8.89kg/s,喂入量明显提高。该研究为大喂入量联合收获机的设计提供了参考。  相似文献   

2.
为了适应西南丘陵山区的作业环境,改善脱粒分离损失较大、含杂较高且容易堵塞的问题,提高水稻机械化收获水平,设计了可满足1.0喂入量的小型联合收割机。通过对比试验分析双切流脱粒分离装置脱粒清选性能,对脱粒滚筒不同钉齿布置形式、滚筒线速度进行了优选。试验结果表明:双切流小型联合收割机收获水稻的最佳组合方式为:第1滚筒采用弓齿结构、滚筒线速度为19m/s,第2滚筒采用钉齿结构、滚筒线速度为20m/s时,脱粒分离效果较好。优化后的4LZ-1.0小型收割机在水稻收割试验时,含杂率为1.28%,损失率为1.6%,破碎率为0.17%,生产率为0.12hm2/h,满足设计要求。  相似文献   

3.
横轴流双滚筒脱粒分离装置设计与试验   总被引:7,自引:2,他引:5  
详细论述了一种横轴流双滚筒脱粒分离装置的总体结构、脱粒滚筒与凹板的设计方案,脱粒滚筒采用短纹杆-板齿结构,分离滚筒采用带螺旋叶片钉齿滚筒结构.室内台架试验表明,该装置可适合较大喂入量、难脱水稻脱粒分离,具有脱净率高、夹带损失率小、脱出物中含杂率小且分布均匀等特点.田间性能测试表明:当收获单产11 625 kg/hm~2的梗稻,喂入量为4.32 kg/s时,该机总损失率为1.94%、脱粒损失率0.89%、破碎率0.84%、含杂率0.20%.各项技术指标均达到了设计要求.  相似文献   

4.
纵轴流双螺旋滚筒的设计与试验分析   总被引:1,自引:0,他引:1  
为解决目前国内大豆机械收获出现的损失率大、含杂率高、破碎率高的问题,设计出一款纵轴流双螺旋脱粒滚筒。由于滚筒工作环境及工作载荷复杂,为防止脱粒滚筒在脱粒工作过程与其他结构引起共振或者谐振而影响脱粒效果和机具损坏,利用ANSYS Workbench对设计的纵轴流双螺旋脱粒滚筒进行模态分析。模态分析结果表明:纵轴流双螺旋脱粒滚筒的1阶固有频率为43.881Hz,远大于滚筒自转和发动机自转产生的激励频率,螺旋滚筒结构是安全的。以收获速度为试验因素,破碎率、含杂率、损失率为试验指标,对纵轴流双螺旋脱粒滚筒与普通齿杆脱粒滚筒的作业效果进行对比试验,得出纵轴流双螺旋脱粒滚筒损失率、破碎率、含杂率最大为0.153 9、4.75、3.86,普通杆齿脱粒滚筒最小损失率、破碎率、含杂率为0.502、6.85、0.29。试验结果表明:设计的螺旋脱粒滚筒的破碎率、损失率均低于普通滚筒,能够满足大豆收获的需求。该研究可以为大豆收获脱粒装置的设计提供参考。  相似文献   

5.
籽粒收获是我国玉米收获发展方向,但黄淮海地区高含水率夏玉米脱粒收获时籽粒破碎率、损失率和含杂率高。为推动高含水率玉米籽粒收获机械化进程,研制一种智能玉米籽粒联合收获机,设计一种低损摘穗与秸秆处理一体化割台,通过摘穗板间隙、拉茎辊转速、割台高度等主要参数调整,实现割台高效低损摘穗;设计一种适于高含水率玉米的纵轴流脱粒滚筒结构,通过优化脱粒滚筒、分离凹板和顶盖结构,调整脱粒系统工作参数,提高脱净率,降低破碎率;开发玉米收获机精准智能控制系统,集成导航定位、基准行自动引导作业、割台高度自动仿形、关键部件转速实时监测、故障报警等技术。田间试验表明:该机生产率0.73 hm~2/h,总损失率1.32%,籽粒破碎率4.47%,籽粒含杂率2.1%,满足设计与使用要求。  相似文献   

6.
阐述了4LYBl-2.0型油菜联合收获机的总体结构,以及伸缩割台、脱粒分离、清选装置等主要工作部件的设计.田间性能测试表明:该机总损失率为5.7%、破碎率0.3%、含杂率2%,各项技术指标达到了油菜机械化收获的要求.  相似文献   

7.
4LYB1-2.0型油菜联合收获机主要部件的设计   总被引:6,自引:1,他引:5  
阐述了4LYB1-2.0型油菜联合收获机的总体结构,以及伸缩割台、脱粒分离、清选装置等主要工作部件的设计。田间性能测试表明:该机总损失率为5.7%、破碎率0.3%、含杂率2%,各项技术指标达到了油菜机械化收获的要求。  相似文献   

8.
切纵流双滚筒联合收获机脱粒分离装置   总被引:4,自引:0,他引:4  
提出了一种喂入量为4~5 kg/s的履带式切纵流双滚筒联合收获机的总体配置方案,论述了切纵流双滚筒脱粒分离装置切流脱粒滚筒、切流凹板、过渡口、纵轴流滚筒和纵轴流凹板等结构与运动参数的设计。田间试验与性能测试表明:该机收获水稻时喂入量达到4.86 kg/s时,整机损失率为1.47%,破碎率为0.2%,各项技术指标达到了设计要求。  相似文献   

9.
为进一步提升自行研制的小区小麦种子收获机工作性能,降低和改进一代样机采用梳脱割台所造成的籽粒飞溅损失大,脱粒装置喂料口及其罩壳内部易滞种、堵塞等问题,对4GX-100型小区小麦种子收获机进行改进设计。结合样机传动系统方案,对其双层收获割台、伸缩拨指式锥型脱粒装置进行设计,确定锥型滚筒结构参数(喂入段、脱粒段长度,大、小段面尺寸),对脱粒元件结构参数、数量及周向分布进行计算,获得锥型滚筒转速在406~610r/min之间,伸缩拨指长度为172.5mm,其偏心距为40mm。为降低样机收获作业时的滞种率,利用离散元软件EDEM建立脱粒物料颗粒模型(小麦籽粒、短茎秆),对锥型脱粒装置内脱粒物料的运动迁移过程进行模拟仿真与特征解析,分析研究脱粒物料中小麦籽粒的平均速度、位移随脱输时间的变化规律。改进样机田间作业性能试验表明,当样机喂入量达到0.52kg/s时,整机总损失率为1.18%,种子破碎率为0.13%,含杂率为0.64%,滞种率为0.02%,生产率可达0.18hm2/h,仅需短暂空转便可快速清机;整机运行平稳,脱粒装置喂料口及罩壳内部无堵塞现象,伸缩拨指式锥型脱粒装置能够有效抓取、脱输喂入物料,具有较强的适应性,作业机各项性能指标符合设计要求与技术标准的规定。  相似文献   

10.
荞麦具有不同于普通谷物的收获特性,而两段式收获被认为是其最佳的机械化收获方式。目前,关于荞麦两段式捡拾收获的脱粒分离装置的试验研究鲜有报道。为此,在自行研制的切流-横轴流双滚筒捡拾收获试验平台上进行了荞麦的脱粒分离试验研究,即采用四因素三水平的正交试验,研究了荞麦籽粒含水率、喂入量、脱粒滚筒线速度和脱粒间隙对破碎率、含杂率、损失率和脱分功率等性能指标的影响规律。结果表明:影响荞麦脱粒分离性能的试验因素重要性次序依次为籽粒含水率、脱粒间隙、滚筒线速度及喂入量;荞麦两段式捡拾收获最优的脱粒分离作业参数为籽粒含水率20%、脱粒间隙35 mm、脱粒滚筒线速度17.27 m/s、喂入量1.2 kg/s;最优脱粒分离作业参数下脱出物中各类杂余占比较小,表明装置适用于荞麦两段式捡拾收获的脱粒分离作业。研究可为两段式荞麦捡拾收获机的脱粒分离装置研发提供理论支撑和试验支持,对荞麦产业的机械化发展具有重要意义。  相似文献   

11.
为满足我国现阶段高产水稻的高效收获要求,提出了一种喂入量为7~9kg的履带式新型斜置切纵流双滚筒联合收获机的总体配置方案,论述了斜置切纵流双滚筒脱粒分离装置中切流脱粒滚筒、切流凹板筛、锥形螺旋过渡喂入装置、斜置纵轴流滚筒和纵轴流凹板筛的结构设计,确定了各个工作部件的工作参数。田间试验表明:该装置在收获水稻喂入量为8.57kg/s时,脱粒损失率为0.79%,籽粒破碎率为0.1%,各项性能指标均达到设计要求;同时,在喂入量增大时,该装置各工作部件功耗较为平稳,适应性较强。  相似文献   

12.
单切双横流脱粒分离装置参数试验与优化   总被引:4,自引:0,他引:4  
李耀明  周伟  徐立章  孙韬  唐忠 《农业机械学报》2015,46(5):62-67,92
为解决全喂入式联合收获机收获秆青叶茂难脱高产水稻时脱粒分离损失大且容易出现堵塞的问题,设计了单切双横流脱粒分离装置,在单切双横流脱粒分离装置试验台上,通过对比试验分别对凹板筛栅条轴向间距、顶盖导向板个数和滚筒轴间距进行了优选,得到优选结构参数为:第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流凹板筛栅条轴向间距分别为10 mm、16 mm和16 mm,第Ⅱ横轴流和第Ⅲ横轴流顶盖导向板的个数都为4个,第Ⅰ切流和第Ⅱ横轴流以及第Ⅱ横轴流和第Ⅲ横轴流滚筒轴间距分别为645 mm和667.5 mm;在得到的优选结构参数下,以喂入量、脱粒间隙和滚筒转速为试验因素进行正交试验,并运用模糊综合评价法和极差分析得出试验范围内切双横流水稻脱粒分离装置的优选工作参数为:喂入量为5 kg/s,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒间隙分别为40 mm、35 mm和40 mm,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流滚筒转速分别为550 r/min、600 r/min和750 r/min。在此参数下,得到单切双横流脱粒分离装置的性能指标为:未脱净率0.05%,夹带损失率0.36%,脱粒总损失率0.41%,第Ⅰ切流、第Ⅱ横轴流和第Ⅲ横轴流脱粒滚筒功耗分别为3.33 k W、21.26 k W和12.58 k W,脱粒滚筒总功耗37.17 k W,脱出物杂余质量分数14.37%。  相似文献   

13.
半喂入联合收获机回转式栅格凹板脱分装置设计与试验   总被引:2,自引:0,他引:2  
针对半喂入联合收获机在收获高产水稻时容易发生脱粒滚筒堵塞、影响作业效率等问题,设计了可沿脱粒滚筒圆弧方向循环运转的回转式栅格凹板脱粒分离装置。对被脱物质点进行了受力分析,建立了回转式凹板的动力学微分方程;在自行设计的回转式栅格凹板脱分装置试验台上进行了二次旋转组合试验,建立了脱粒滚筒转速x1、回转栅格凹板线速度x2、夹持喂入链速度x3对损失率y1、破碎率y2、含杂率y3和脱分选功耗y4等工作性能指标的回归分析模型,并进行了多目标优化计算。结果表明:动态的回转栅格凹板可有效防止脱粒滚筒堵塞;最佳工作参数组合为x1=550 r/min,x2=1 m/s,x3=1.2 m/s,对应y1=2.14%、y2=0.2%、y3=0.6%。田间对比试验表明:具有回转式栅格凹板脱分装置的试验机收获高产稻时可全幅快速顺畅作业,工作效率比固定式栅格凹板的对比机提高30%以上。经法定机构检测,各项性能指标符合国家标准规定。  相似文献   

14.
一种水稻联合收割机的应用研究   总被引:1,自引:0,他引:1  
从分析水稻跨区机械化收获的技术现状入手,对海城地区广泛使用久保田488型水稻收割机的作业性能进行了试验研究.结果表明,该机收获水稻的作业速度为1.65 m/s,时间利用系数为77.85%,理论生产率为0.861 hm2/h,实际生产率为0.671 hm2/h,作业效率较高;机械收获综合损失率为1.035%,其中脱粒损失率为0.325%,分离与清选的损失率为0.71%,粮食清洁率为98.60%.水稻联合收获收取的作业费为1050元/hm2,毛收入为704元/h,用联合收割机收获水稻比分段收获可降低成本450元/hm2.试验同时发现,该机存在的主要问题是履带等易损部件的寿命较短,故障率为22.15%,可靠性有待提高.  相似文献   

15.
草谷比对多滚筒脱粒分离装置性能影响的试验研究   总被引:1,自引:0,他引:1  
为研究不同草谷比的水稻对多滚筒联合收获机脱粒分离装置的功耗、脱粒损失率及杂余含量的影响,在多滚筒脱粒分离装置试验台上采用切轴流滚筒与双横轴流滚筒组合式3滚筒脱粒分离装置(简称切轴轴3滚筒脱粒分离装置),在相同结构参数和工作参数下对喂入不同草谷比的水稻(即不同茎秆长度的水稻)进行脱粒分离性能对比试验。试验结果表明:喂入茎秆长度越短的水稻(即草谷比越小)。脱粒滚筒功耗和脱出物杂余含量越低,但脱粒损失率越高,在保证脱粒损失率≤0.6%并尽可能降低多滚筒脱粒分离装置功耗和杂余含量的情况下选取最佳喂入水稻长度为675mm,当喂入量为4.5kg/s且喂入水稻长度为675mm时.切轴轴3滚筒脱粒分离装置的总功耗为22.47kW,脱粒损失率为0.587%,脱出物杂余含量为6.92%。  相似文献   

16.
为进一步提升胡麻脱粒物料分离清选作业机的工作性能,采用数值模拟仿真试验方法分析确定获得的单因素参数,以喂料装置振幅、物料层调节厚度和吸杂风机转速为自变量,以籽粒含杂率和清选损失率为响应值,依照Box-Behnken试验设计原理,采用三因素三水平响应面分析方法,分别建立了各因素与籽粒含杂率和清选损失率之间的数学模型,并对各因素及其交互作用进行分析。结果表明:3个因素对籽粒含杂率影响的主次顺序为吸杂风机转速、喂料装置振幅和物料层调节厚度,对清选损失率影响的主次顺序为吸杂风机转速、物料层调节厚度和喂料装置振幅;作业机最佳工作参数为:喂料装置振幅16.5 mm、物料层调节厚度7.0 mm、吸杂风机转速1 775 r/min(即对应的吸杂风机转速变频频率为59.2 Hz)。验证试验表明,籽粒含杂率和清选损失率均值分别为7.86%和1.58%,说明在最优工作参数下作业机能够降低胡麻脱粒物料在机械化分离清选过程中的含杂与损失程度。  相似文献   

17.
针对现有马铃薯联合收获机薯土秧杂分离效果差、伤薯破皮严重以及后续清选除杂成本高等问题,采用双筛薯杂分离、拨板摘薯、人工辅助分拣除杂、缓存集薯装包和随重渐降卸包相结合的作业方式,研制了一种装包卸包型马铃薯联合收获机,该机具主要由松土限深装置、挖掘装置、双筛式薯杂分离装置、拨板摘薯装置、人工辅助分拣平台以及集薯装包卸包装置等部分组成。在阐述总体结构和工作原理的基础上,对双筛薯杂分离过程和拨板摘薯过程进行力学分析,明确了马铃薯运动轨迹和碰撞特征;拨板摘薯装置可实现薯秧脱附分离,降低损失率;缓存集薯装包与随重渐降卸包技术,可实现缓存和装包状态自动切换,确保不停机柔性集薯与减损卸包。试验结果表明,当作业速度为3.01、3.95 km/h时,生产率分别为0.39、0.51 hm2/h,伤薯率分别为1.68%和1.44%,破皮率分别为2.05%和1.71%,含杂率分别为1.75%和1.96%,损失率分别为1.56%和1.52%,各项性能指标均满足相关标准要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号