首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fates and residue depletion of enrofloxacin (ER) and its metabolite ciprofloxacin (CP) were examined in giant freshwater prawns, Macrobrachium rosenbergii, following either single oral (p.o.) administration of ER at a dosage of 10 mg/kg body weight (b.w.) or medicated‐feed treatment at the feeding concentration of 5 g/kg of feed for five consecutive days. The concentrations of ER and CP in prawn muscle tissues were measured simultaneously using high‐performance liquid chromatography (HPLC) equipped with a fluorescence detector. Muscle tissue concentrations of ER and CP were below the detection limit (LOD, 0.015 μg/g for ER; 0.025 μg/g for CP) after 360 and 42 h, following single p.o. administration respectively. Peak muscle concentration (Cmax) of ER was 1.98 ± 0.22 μg/g whereas CP was measurable at concentrations close to the detection limit of the analytical method after p.o. administration at a single dosage of 10 mg/kg b.w. The concentration of ER in prawn muscle tissue with respect to time was analyzed with a non‐compartmental pharmacokinetic model. The elimination half‐life and area under the curve of ER were 39.33 ± 7.27 h and 168.7 ± 28.7 μg·h/g after p.o. administration at a single dose of 10 mg/kg·b.w. respectively. In medicated‐feed treated group, ER was detectable in prawn muscle tissue 11 days postdosing at the dose of 5 g/kg of feed for five consecutive days, which is the value corresponding to the maximum residue limit (MRL) of ER in animal products. The maximum concentrations of ER and CP were 2.77 ± 0.91 and 0.06 ± 0.006 μg/g during medicated‐feed treatment and postdosing respectively. The values of elimination half‐life and absorption half‐life of ER after single p.o. administration at a dosage of 10 mg/kg b.w. corresponded well with the values determined from medicated‐feed treated group, showing 41.01 ± 6.62 and 11.36 ± 3.15 h respectively in M. rosenbergii. Based on data derived from this study, to avoid the ER residue in prawn muscle, it should take at least 11 days postcessation of medicated feed containing ER at the dose concentration of 5 g/kg of feed twice a day at a rate of 1% of total body weight for five consecutive days to wash out the drug from the muscle of M. rosenbergii.  相似文献   

2.
The metabolism and excretion of enrofloxacin were studied when applied as oral solution to chicken broilers for five consecutive days. Sixty 9‐day‐old broilers were isolated within an intensively rearing poultry farm during enrofloxacin therapy (15.5 mg/kg per day). The excreta of the isolated broilers were collected daily, 9 days after therapy termination, for 13 consecutive days, and analyzed for the presence of enrofloxacin and its metabolites [ciprofloxacin, desethylene‐enrofloxacin (DES‐EF) and desethylene‐ciprofloxacin (DES‐CF)]. Enrofloxacin was excreted predominantly in the form of the parent compound between days 1 and 13. Ciprofloxacin was detected in the excreta between days 1 and 6, whereas minor amounts of DES‐EF and DES‐CF were excreted only between days 1–7 and 1–6, respectively. In conclusion, the analysis of the excreta showed that approximately 74% of orally applied enrofloxacin was excreted as the parent compound, approximately 25% as the main metabolite ciprofloxacin, and approximately 1% as the minor metabolites desethylene‐enrofloxacin and desethylene‐ciprofloxacin.  相似文献   

3.
The fates of sulfadimethoxine (SDM) for different routes of administration were investigated in muscle tissue of giant freshwater prawns, Macrobrachium rosenbergii, following either intramuscular (i.m.) or gavage administration at a dosage of 50 mg/kg body weight (b.w.). The depletion patterns of SDM were also examined after medicated feed treatment at the feeding concentration of 10 g/kg of feed twice a day at a rate of 1% of total b.w. for five consecutive days. The concentration of SDM in prawn muscle tissue was measured using a high‐performance liquid chromatography (HPLC) equipped with ultraviolet detector. Noncompartmental analyses were used to estimate basic pharmacokinetic parameters for the i.m. and gavage data, while a population model was developed to analyze the entire data set including the feed group. Using the Monte Carlo simulations, the withdrawal times (WT) for the orally administered SDM in feed supplement were determined. Maximum concentration of SDM was significantly higher in the i.m. than in the gavage group, and the area under the curve (AUC) value for relative bioavailability following gavage administration was 25.6%. Using Monte Carlo simulation, for a maximum residue limit (MRL) of 0.1 μg/g, the WT for muscle after oral administration of SDM in feed was estimated to be 67 h, while for a MRL of 0.2 μg/g, the WT was estimated to be of 54 h.  相似文献   

4.
建立了高效液相色谱—串联质谱法(HPLC-MS/MS)检测鸡蛋中恩诺沙星、环丙沙星残留的方法。鸡蛋样品经1%乙酸乙腈提取、正己烷除脂, 用HPLC-MS/MS进行检测。恩诺沙星、环丙沙星在0.5~500 ng/mL浓度时线性关系良好(r≥0.999);恩诺沙星回收率为87.7%~99.1%、环丙沙星的回收率为89.1%~101.4%, 检测限为0.5 μg/kg, 定量限为1.0 μg/kg。应用该方法初步研究了恩诺沙星及其代谢物环丙沙星在鸡蛋中的残留消除规律。结果表明, 给药后鸡蛋中恩诺沙星及其代谢物蓄积迅速, 停药8 d后痕量恩诺沙星代谢缓慢, 25 d后恩诺沙星代谢完全。  相似文献   

5.
The objective of this study was to evaluate the pharmacokinetic profile of enrofloxacin and its active metabolite, ciprofloxacin, in Korean catfish after intravenous and oral administrations. Enrofloxacin was administered to Korean catfish by a single intravenous and oral administrations at the dose of 10 mg/kg body weight. The plasma concentrations from intravenous and oral administrations of enrofloxacin were determined by LC/MS. Pharmacokinetic parameters from both routes were described to have a two-compartmental model. After intravenous and oral administrations of enrofloxacin, the elimination half-lives (t(1/2,beta)), area under the drug concentration-time curves (AUC), oral bioavailability (F) were 17.44 +/- 4.66 h and 34.13 +/- 11.50 h, 48.1 +/- 15.7 microgxh/mL and 27.3 +/- 12.4 microgxh/mL, and 64.59 +/- 4.58% respectively. The 3.44 +/- 0.81 h maximum concentration (C(max)) of 1.2 +/- 0.2 microg/mL. Ciprofloxacin, an active metabolite of enrofloxacin, was detected at all the determined time-points from 0.25 to 72 h, with the C(max) of 0.17 +/- 0.08 microg/mL for intravenous dose. After oral administration, ciprofloxacin was detected at all the time-points except 0.25 h, with the C(max) of 0.03 +/- 0.01 microg/mL at 6.67 +/- 2.31 h. Ciprofloxacin was eliminated with terminal half-life t(1/2,beta) of 52.08 +/- 17.34 h for intravenous administration and 52.43 +/- 22.37 h for oral administration.  相似文献   

6.
OBJECTIVES: To determine pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after a single i.v. and i.m. administration of enrofloxacin and tissue residues after serial daily i.m. administration of enrofloxacin in pigs. ANIMALS: 20 healthy male pigs. PROCEDURE: 8 pigs were used in a crossover design to investigate pharmacokinetics of enrofloxacin after a single i.v. and i.m. administration (2.5 mg/kg of body weight). Twelve pigs were used to study tissue residues; they were given daily doses of enrofloxacin (2.5 mg/kg, i.m. for 3 days). Plasma and tissue concentrations of enrofloxacin and ciprofloxacin were determined. Residues of enrofloxacin and ciprofloxacin were measured in fat, kidney, liver, and muscle. RESULTS: Mean (+/-SD) elimination half-life and mean residence time of enrofloxacin in plasma were 9.64+/-1.49 and 12.77+/-2.15 hours, respectively, after i.v. administration and 12.06+/-0.68 and 17.15+/-1.04 hours, respectively, after i.m. administration. Half-life at alpha phase of enrofloxacin was 0.23+/-0.05 and 1.94+/-0.70 hours for i.v. and i.m. administration, respectively. Maximal plasma concentration was 1.17 +/-0.23 microg/ml, and interval from injection until maximum concentration was 1.81+/-0.23 hours. Renal and hepatic concentrations of enrofloxacin (0.012 to 0.017 microg/g) persisted for 10 days; however, at that time, ciprofloxacin residues were not detected in other tissues. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered i.m. at a dosage of 2.5 mg/kg for 3 successive days, with a withdrawal time of 10 days, resulted in a sum of concentrations of enrofloxacin and ciprofloxacin that were less than the European Union maximal residue limit of 30 ng/g in edible tissues.  相似文献   

7.
恩诺沙星混悬液在猪体内残留消除规律研究   总被引:3,自引:0,他引:3  
采用高效液相色谱法研究恩诺沙星(口服)混悬液在猪体内各组织中的残留消除规律.恩诺沙星(口服)混悬液,按每头猪10 mg/kg体重的剂量灌服给药,连续使用3 d之后,宰杀猪,取组织.组织样品经磷酸盐缓冲液提取,C18固相萃取柱净化,过膜,用流动相0.05 mol/L磷酸溶液/三乙胺一乙腈(82+18)溶解,微孔过滤,进行...  相似文献   

8.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) administration of 10 mg/kg body weight (b.w.) in 300 healthy allogynogenetic silver crucian carp at 24-26°C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.v. administration, the plasma concentration-time data were described by an open two-compartment model. The elimination half-life (T(1/2β)), area under the concentration-time curve (AUC) and total body clearance of EF were 63.5 h, 239.6 μg·h/mL and 0.04 L/h/kg, respectively. Following p.o. administration, the plasma concentration-time data showed a double peak-shaped curve, indicating the possibility of enterohepatic recirculation of EF in allogynogenetic silver crucian carp. The maximum plasma concentration (C(max)), T(1/2β) and AUC of EF were 4.5 μg/mL, 62.7 h and 205.9 μg·h/mL, respectively. Absorption of EF was very good with a bioavailability (F) of 86%, which could be correlated with the unique structure of the alimentary canal in allogynogenetic silver crucian. CF, an active metabolite of EF, was not detected in this study.  相似文献   

9.
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (Cmax) reached at first time point in hemolymph. The volume of distribution Vd(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration–time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half‐life (T1/2β) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The Cmax was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006–0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp.  相似文献   

10.
The giant river shrimp (Macrobrachium rosenbergii), a native species of Thailand, is either exported for commercial purposes or supplied to meet the local requirements in Thailand. Limited pharmacokinetic information of the major antibiotic, oxytetracycline (OTC), is available for this freshwater shrimp. The purpose of the present study was to investigate the muscle tissue kinetics of OTC in M. rosenbergii following either intramuscular (i.m.) or oral (p.o.) administration at two dosages of 11 and 22 mg/kg body weight (b.w.). The concentration of OTC in shrimp tissues was measured using high‐performance liquid chromatography (HPLC) equipped with a fluorescence detector. Muscle tissue concentrations were below the detection limit (LOD, 0.1 μg/g) after 96 and 120 h, following i.m. and p.o. administration, respectively. Peak muscle concentrations (Cmax) were 3.47 and 1.73 μg/g after i.m. and p.o. administration at a single dose of 11 mg/kg b.w. whereas they were 6.03 and 2.51 μg/g at a single dose of 22 mg/kg b.w., respectively. A noncompartment model was developed to describe the pharmacokinetics of OTC in the giant freshwater shrimp. The terminal half‐lives of OTC were 28.68 and 28.09 h after i.m. and p.o. administration at a single dose of 11 mg/kg b.w., but 29.95 and 27.03 h at a single dose of 22 mg/kg b.w., respectively. The relative bioavailability was 82.32 and 64.67% following i.m. and p.o. administration, respectively. Based on the pharmacokinetic data, i.m. and p.o. administration with OTC at a dose of 11 mg/kg b.w. would be appropriate for use in giant freshwater shrimp farming. To avoid the OTC residue in shrimp muscle, it should take at least seven half‐lives (8 days) to wash out the drug from the muscle of M. rosenbergii.  相似文献   

11.
The pharmacokinetics of enrofloxacin and the metabolite ciprofloxacin were studied in horseshoe crabs after a single injection of 5 mg/kg. Twelve Atlantic horseshoe crabs (Limulus polyphemus) of undetermined age were injected with enrofloxacin into the dorsal cardiac sinus. Hemolymph samples were collected by syringe and needle at regular intervals for 120 hr. Samples were analyzed by high‐pressure liquid chromatography and compartmental analysis performed on the results. Following injection, the elimination half‐life (T½), peak concentration, area under the curve (AUC), and volume of distribution (VD) for enrofloxacin were 27.9 (29.13) hr, 8.98 (18.09) μg/ml, 367.38 (35.41) hr μg/ml, and 0.575 (20.48) L/kg, respectively (mean value, CV%). For ciprofloxacin, the elimination T½, peak concentration, and AUC were 61.36 (34.55) hr, 2.34 (24.11) μg/ml, and 304.46 (24.69) μg hr/ml. In these animals, the ciprofloxacin concentrations comprised an average of 45.8% of the total fluoroquinolone concentrations, which is substantial compared to other marine invertebrates. The total AUC produced (sum of enrofloxacin and ciprofloxacin) was 682.69 ± 180.61 μg hr/ml. Concentrations that were achieved after a single dose of 5 mg/kg horseshoe crabs were sufficient to treat bacteria susceptible to enrofloxacin and ciprofloxacin.  相似文献   

12.
The study was carried out to evaluate the pharmacokinetic disposition of enrofloxacin (ENF) with a single dose of 20 mg/kg after oral administration in largemouth bass (Micropterus salmoides) at 28°C. The concentrations of ENF and of its metabolite ciprofloxacin (CIP) in plasma, liver, and muscle plus skin in natural proportions were determined using HPLC. The concentration–time data for ENF in plasma were best described by a two-compartment open model. After oral administration, the maximum ENF concentration (Cmax) of 10.99 μg/ml was obtained at 0.60 hr. The absorption half-life (T1/2Ka) of ENF was calculated to be 0.07 hr whereas the elimination half-life (T1/2β) of the drug was 90.79 hr. The estimates of area under the plasma concentration–time curve (AUC) and apparent volume of distribution (Vd/F) were 1,185.73 μg hr/ml and 2.21 L/kg, respectively. ENF residues were slowly depleted from the liver and muscle plus skin of largemouth bass with the T1/2β of 124.73 and 115.14 hr, respectively. Very low levels of ciprofloxacin were detected in the plasma and tissues. A withdrawal time of 24 days was necessary to ensure that the residues of ENF + CIP in muscle plus skin were less than the maximal residue limit (MRL) of 100 μg/kg established by the European Union.  相似文献   

13.
Detection of enrofloxacin and its metabolite ciprofloxacin in equine hair   总被引:4,自引:0,他引:4  
Hair analysis to detect drug administration has not been studied extensively in horses. This study aimed to (a) develop an analytical method for enrofloxacin and its metabolite ciprofloxacin in mane and tail hair, (b) relate measured values to doses, routes of administration, hair colour, and (c) demonstrate long-term detectability. Samples were extracted in trifluoroacetic acid at 70 degrees C. Extracts were cleaned-up by solid-phase extraction and analysed by high-performance liquid chromatography with UV-diode array detection. Analyte recoveries were > 87%. Horses were sampled after therapeutic enrofloxacin administration either orally at 7.5 mg/kg daily for 3-13 days or twice daily for 10-14 days (Group 1, n=7) or intravenously at 5.0 mg/kg daily for 12 and 15 days (Group 2, n=2). Enrofloxacin and ciprofloxacin were detected at concentrations up to 452 and 19 ng/mg, respectively, up to 10 months post-treatment. In vitro, enrofloxacin and ciprofloxacin were extensively bound to melanin (> 96%) and in vivo, their uptake was 40-fold greater in black than white hair. Enrofloxacin and ciprofloxacin concentrations correlated to enrofloxacin dose (r2=0.777 and r2=0.769). Enrofloxacin:ciprofloxacin ratios were 21:1 and 13:1 following intravenous and oral administration, respectively. Longitudinal analyte distributions correlated to treatment-sampling interval.  相似文献   

14.
The intramuscular (IM) and oral (PO) disposition of enrofloxacin, a new fluoroquinolone antimicrobial drug, were evaluated in African grey parrots. Peak enrofloxacin concentration, mean (+/- SEM), at 1 h following a 15-mg/kg IM dose was 3.87 (+/- 0.27) micrograms/ml and declined with a mean residence time of 3.05 h. Peak enrofloxacin plasma concentrations at 2 to 4 h following oral doses of 3, 15, and 30 mg/kg were 0.31 (+/- 0.11), 1.12 (+/- 0.11), and 1.69 (+/- 0.23) micrograms/ml, respectively, and declined with a mean residence time of 3.44-5.28 h. The relative bioavailability of the 15-mg/kg oral dose was 48%. An equipotent metabolite, ciprofloxacin, was detected in plasma at concentrations ranging from 3 to 78% of those of enrofloxacin. Enrofloxacin concentrations and area under the curve were significantly lower, the mean residence time significantly shorter and the ciprofloxacin/enrofloxacin ratios higher, following 10 days of oral treatment at 30 mg/kg every 12 h. Following 10 days of treatment, no significant biochemical changes were noted; however, polydipsia and polyuria occurred in treated birds, but resolved quickly upon discontinuation of enrofloxacin administration. These studies indicate that a rational starting dose for enrofloxacin in psittacines (7.5-30 mg/kg BID) should be higher than those in other domestic animals.  相似文献   

15.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) dose of 10 mg/kg body weight (b.w.) in snakehead fish at 24–26 °C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. The plasma concentration–time data were described by an open two‐compartment model for both routes. After intravenous administration, the elimination half‐life (T1/2β), area under the concentration–time curve (AUC) and total body clearance of EF were 19.82 h, 75.79 μg h/mL and 0.13 L/h/kg, respectively. Following p.o. administration, the maximum plasma concentration (Cmax), T1/2β and AUC of EF were 1.86 μg/mL, 35.8 h and 49.98 μg h/mL, respectively. Absorption of EF was good with a bioavailability (F) of 65.82%, which was higher than that calculated in most seawater fish. CF, an active metabolite of EF, was detected occasionally in this study, which indicates a low extent of deethylation of EF in snakehead fish.  相似文献   

16.
17.
The comparative pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were investigated in lactating cows and beef steers. The plasma elimination half-life of either enrofloxacin or ciprofloxacin was shorter in cows than in steers. The overall production of ciprofloxacin was slightly higher in steers than in cows (metabolite ratio: 64% and 59%, respectively). There was no significant difference in plasma protein binding of enrofloxacin between cows (percent bound: 59.4%) and steers (percent bound: 60.8%). Ciprofloxacin was more extensively bound to plasma proteins in steers (percent bound: 49.6%) than in cows (percent bound: 33.8%). The steady state volume of distribution of enrofloxacin is comparable in cows (1.55 L/kg) and steers (1.59 L/kg). Within either bovine class, plasma elimination half-life of enrofloxacin and ciprofloxacin are comparable, while plasma protein binding was higher for enrofloxacin than for ciprofloxacin. Ciprofloxacin was more concentrated in milk than enrofloxacin.  相似文献   

18.
The pharmacokinetics of a single dose of enrofloxacin administered orally, both pilled and in fish, and i.v. to African penguins (Spheniscus demersus) at 15 mg/kg were determined. Plasma concentrations of enrofloxacin and its metabolite ciprofloxacin were measured via high-pressure liquid chromatography with mass spectrometry. An i.v. administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 7.86 microg/ml at time zero. Plasma volume of distribution for i.v. administration was 3.00 L/kg, with a mean elimination half-life of 13.67 hr and a mean total body clearance rate of 3.03 ml/min/kg. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of4.38 microg/ml at 4.8 hr after administration when pilled, whereas mean maximum plasma concentration was 4.77 microg/ml at 1.59 hr after administration when given in fish. Mean terminal elimination half-life was 13.79 hr pilled and 11.93 hr when given in fish. Low concentrations of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration. Enrofloxacin administered to African penguins at 15 mg/kg p.o.q. 24 hr, whether in fish or pilled, is expected to achieve the surrogate markers of efficacy for bacteria with a minimum inhibitory concentration of 0.5 microg/ml or less; however, clinical studies are needed to determine efficacy.  相似文献   

19.
The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in goats given enrofloxacin alone or in combination with probenecid. Enrofloxacin was administered i.m. at a dosage of 5 mg x kg(-1) alone or in conjunction with probenecid (40 mg x kg(-1), i.v.). Blood samples were drawn from the jugular vein at predetermined time intervals after drug injection. Plasma was separated and analysed simultaneously for enrofloxacin and ciprofloxacin by reverse-phase high performance liquid chromatography. The plasma concentration-time data for both enrofloxacin and ciprofloxacin were best described by a one-compartment open pharmacokinetic model. The elimination half-life (t(1/2beta)), area under the plasma concentration-time curve (AUC), volume of distribution (V(d(area))), mean residence time (MRT) and total systemic clearance (Cl(B)) were 1.39 h, 7.82 microg x h x mL, 1.52 L x kg(-1), 2.37 h and 802.9 mL x h(-1) x kg(-1), respectively. Enrofloxacin was metabolized to ciprofloxacin in goats and the ratio between the AUCs of ciprofloxacin and enrofloxacin was 0.34. The t(1/2beta), AUC and MRT of ciprofloxacin were 1.82 h, 2.55 microg x h x mL and 3.59 h, respectively. Following combined administration of probenecid and enrofloxacin in goats, the sum of concentrations of enrofloxacin and ciprofloxacin levels > or = 0.1 microg x mL(-1) persisted in plasma up to 12 h.Co-administration of probenecid did not affect the t(1/2beta), AUC, V(d (area)) and Cl(B) of enrofloxacin, whereas the values of t(1/2beta) (3.85 h), AUC (6.29 microg x h x mL), MRT (7.34 h) and metabolite ratio (0.86) of ciprofloxacin were significantly increased. The sum of both enrofloxacin and ciprofloxacin levels was > or = 0.1 microg x mL(-1) and was maintained in plasma up to 8 h in goats after i.m. administration of enrofloxacin alone. These data indicate that a 12 h dosing regime may be appropriate for use in goats.  相似文献   

20.
A feeding trial with growing pigs was carried out in which fish meal was replaced by different levels of Tra catfish (Pangasius hypophthalmus) by-product processing waste water (WW). A control diet included fish meal (FM) as the sole protein supplement (WW0), and there were four experimental diets in which 100% (WW100), 75% (WW75), 50% (WW50), and 25% (WW25), respectively, of the crude protein from FM in WW0 was replaced by WW. Thirty crossbred castrated (Yorkshire × Landrace) male pigs with an initial average body weight of 23.6 ± 1.6 kg were allocated into 30 individual pens in a randomized complete block design with six replications. Average daily feed intake and essential amino acid intakes were higher (P < 0.01) in WW0 and WW25 compared with the other three diets, and ether extract intake was highest in WW100 (P < 0.01). The highest average daily gain was in WW0 (582 g/day) and lowest in WW100 (501 g/day; P < 0.01). Dry matter feed conversion ratio was lowest in WW100 (2.16 kg feed/kg gain) and highest in WW0 (2.42 kg feed/kg gain) (P < 0.01).The cost/gain in pigs fed WW100 was lowest (12,476 VND/kg gain), and was highest in WW0 (18,312 VND/kg gain). In conclusion, although performance is reduced, it is possible to replace up to 100% of the fish meal by catfish by-product processing waste water in diets for growing pigs, resulting in much lower feed costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号