首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted at Indian Agricultural Research Institute, New Delhi, during 2001–2002 and 2002–2003, to study the effect of inorganic, organic and Azotobacter combined sources of N on cotton (Gossypium hirsutum L.) and their residual effect on succeeding wheat (Triticum aestivum L.) crop. The results indicated considerable increase in yield attributes and mean seed cotton yield (2.33 Mg ha?1) with the combined application of 30 kg N and farmyard manure (FYM) at 12 Mg ha?1 along with Azotobacter (M4). The treatment in cotton that included FYM, especially when fertilizer N was also applied could either improve or maintain the soil fertility status in terms of available N, P and K. Distinct increase in yield attributes and grain yield of wheat was observed with the residual effect of integrated application of 30 kg N ha?1 + FYM at 12 Mg ha?1 + Azotobacter. Direct application of 120 kg N ha?1 resulted 67.4 and 17.7 % increase in mean grain yield of wheat over no N and 60 kg N ha?1, respectively. Integrated application of organic and inorganic fertilizer is therefore, recommended for higher productivity and sustainability of the cotton–wheat system.  相似文献   

2.
Increasing production of wheat from a limited water supply can result from efficient irrigation and nutrient management. A 3‐year field experiment was conducted at the Indian Institute of Soil Science, Bhopal, to study the growth, yield, seasonal evapotranspiration (ET) and water use efficiency (WUE), and the water–yield relationship of wheat in a soybean–wheat cropping system on vertisols. Three levels of irrigation, viz. I0, no post‐sowing irrigation; I1, two irrigations [crown root initiation (CRI) and flowering stage]; and I2, three irrigations (CRI, maximum tillering and flowering stage) and three nutrient management treatments, viz. F0, control (without fertilizer/manure); F1, 100 % NPK (100–21.5–24.9 kg ha?1); and F2, 100 % NPK + farmyard manure (FYM‐10 t ha?1) were tested in a split‐plot design with three replication. It has been established (through anova ) that the year effect was rather negligible and the interaction effects of irrigation and nutrient management on the growth parameters, ET, yield components, yield and WUE were significant. Plant height, progressive leaf area index, dry matter accumulation and crop growth rate were higher in I2F2, and I2F1 and I1F2 were statistically at par. The seasonal ET increased significantly with the increase in water supply in every nutrient treatment and it was highest in I2F2 and lowest in I0F0. The highest grain yield was obtained in I2F2; and a similar yield was recorded in I3F1 and I2F2. This shows a strong interaction effect between irrigation and nutrients. Yield components, viz. number of ears m?2, number of grains ear?1 and 1000‐grain weight were significant. The higher number of ears m?2 containing greater number of grains with relatively heavier weights appeared to have contributed to the higher yield in I1F2, I2F1 and I2F2. The highest WUE obtained in I0F2 did not correspond to the highest yield and maximum ET, but a WUE of 10.43 kg ha?1 mm?1 in the I2F2 combination corresponded with the highest yield and the seasonal ET requirement was 391.8, which was 137 % greater than the water use at maximum WUE. The ET–grain yield relationship was linear, with a lowest regression slope (i.e. marginal WUE) and elasticity of water production (Ewp) in F0 and a considerably higher slope and Ewp in F1 and F2. As the Ewp is positive and close to one in 100 % NPK treatment, the scope of improving WUE and yield with only inorganic fertilizer is very little, and relatively greater scope exists in the integrated management of organic manure and inorganic fertilizer. The results suggest that integrated nutrient management (100 % NPK + FYM) in conjunction with three irrigations maximized yield of wheat with concomitant improvement in ET and WUE under limited water availability.  相似文献   

3.
An experiment was conducted to investigate the influence of different levels of water deficit on yield and crop water requirement of soya beans in a sub‐humid environment (Southern Marmara region, Bursa, Turkey) in 2005 and 2006. One full‐irrigated treatment (T1), one non‐irrigated treatment (T5) and three different deficit irrigation (T2 = 25 % water deficit, T3 = 50 % water deficit, T4 = 75 % water deficit) treatments were applied to ‘Nova’ soya bean planted on a clay soil. Non‐irrigated and all deficit irrigation treatments significantly reduced biomass and seed yield and yield components. The full‐irrigated (T1) treatment had the highest yield (3760 kg ha?1), while the non‐irrigated (T5) treatment had the lowest yield (2069 kg ha?1), a 45.0 % seed yield reduction. T2, T3 and T4 deficit irrigation treatments produced 11.7–27.4 % less seed yield than the T1 treatment. Harvest index showed less and irregular variation among irrigation treatments. Both leaf area per plant and leaf area index were significantly reduced at all growth stages as amount of irrigation water was decreased. Evapotranspiration increased with increased amounts of irrigation water supplied. Our results indicate that higher amounts of irrigation resulted in higher seed yield, whereas water use efficiency and irrigation water use efficiency values decreased when irrigation amount increased.  相似文献   

4.
The field experiments conducted on the grey‐brown podzolic soil in the four growing seasons (1998–2001) at Krzeslice Farm, central‐western Poland comprised seven fertilization variants: 80NF + 80CAN; 80CAN + 80CAN; 80AN + 80AN; 80NF + 50CAN + 30CN; 80CAN + 50CAN +30CN; 80AN + 50AN + 30CN (where NF – nitrofos NPK; CAN – calcium‐ammonium nitrate; AN – ammonium nitrate; CN – calcium nitrate) and control (without N) applied in split rates at the beginning of spring regrowth (80 kg N ha?1), stem elongation (80 or 50) and flower buds visible stages (30). The yielding effect of tested fertilization variants was significant in comparison with the control (2.24 t ha?1). The highest mean seed yield (3.64 t ha?1) was collected from 80AN + 80AN and 80CAN + 80CAN variants. Mean values of 4 years indicate that the second N rate division (80 + 50 + 30) decreased yield, although not significantly in comparison with these two N treatments. Plants grown on these treatments have developed different patterns of growth to yield the seeds. These patterns were characterized by very high crop growth rate during flowering (above 21 g m?2 day?1) and negative at maturation (down to ?2.5 g m?2 day?1). Plants fertilized with ammonium nitrate (80AN + 80AN) reached maximum growth rate earlier (65 days), which lasted longer (20 days) than plants fertilized with calcium‐ammonium nitrate (71 days lasting 17.5 days). Plants grown on the control treatment reached the highest crop growth rate within 79 days (14.8 g m?2 day?1), which lasted 15 days.  相似文献   

5.
A field study was conducted to investigate the influence of variable rates of application of N and P fertilizers in splits at various times on the growth and the seed and oil yields of canola (Brassica napus L.) during 1995–97. Rates of fertilizer application were 0 and 0 (F0), 60 and 0 (F1), 0 and 30 (F2), 60 and 30 (F3), 90 and 60 (F4) and 120 and 90 (F5) kg N ha?1 and kg P2O5 ha?1. All the P was applied at sowing while N was applied in splits, i.e. all at sowing, half at sowing and half with first irrigation, or half at sowing and half at flowering. The responses of growth, seed yield and components of yield were consistent in both years. Increasing the rate of fertilizer application from F4 (90/60 kg N/P2O5 ha?1) to F5 (120/90 kg N/P2O5 ha?1) increased the leaf area index (LAI) relative to the control and to lower rates of fertilizer application. For both crops, application of 90/60 kg N/P2O5 ha?1 significantly enhanced total dry matter (TDM) and seed yield. Seed yield increased mainly due to a greater number of pods per plant and seeds per seed‐pod. The time of fertilizer application did not significantly affect seed yield or components of yield in either season. Oil yield generally followed seed yield, increasing with increasing rate of fertilizer application up to 90/60 kg N/P2O5 ha?1. The maximum oil contents were obtained from the control. The results show that seed and oil yields of canola were maximized at the F4 (90/60 kg N/P2O5 ha?1) rate of application under the agro‐ecological conditions of Faisalabad, Pakistan.  相似文献   

6.
In a 2‐year experiment on Typic Ustochrept soils of the North Plain Zone of India, the effect of different row ratios (3 : 1, 6 : 2, 4 : 1 and 8 : 2) and staggered sowing of mustard (simultaneous and 15 days later) was studied in intercropping of chickpea (Cicer arietinum) and mustard (Brassica juncea L.). Nodule number, dry weight, grain yield, protein content and yield were higher in monocrop chickpea compared with intercropping. Among row ratios, except for protein content in grain, all the above parameters were significantly higher in the 4 : 1 intercropping of chickpea + mustard. Similarly, delayed sowing of mustard by 15 days also gave higher plant dry weight (1.80–2.36 g plant?1), nodule number (0.41–1.56 and 0.5–3.0 at 55‐ and 70‐day stages, respectively), protein yield (63 kg ha?1), grain yield (290 kg ha?1) and biological yield (1104 kg ha?1) than sowing with chickpea. Widening the row ratio and pairing of the rows of mustard were also found to be beneficial in increasing chickpea growth and yield. Like chickpea, sowing of mustard as a monocrop gave higher growth and yield. Delayed sowing by 15 days reduced the growth and yield of mustard drastically. Productivity, measured in terms of land equivalent ratio, was higher for intercropping of chickpea and mustard in the 4 : 1 row ratio than for sowing of chickpea and mustard in sole stands. Interestingly, the land equivalent ratio was also higher in the simultaneously sown crop than for staggered sowing.  相似文献   

7.
Studies were conducted at Adana, in the Çukurova region of southern Turkey, to evaluate the effects of the rate and timing of application of soil‐applied potassium (K) on cotton (Gossypium hirsutum L.) in 1999 and 2000. Potassium rates of 0, 80, 160 and 240 kg K2O ha?1 were soil‐applied in single treatments (all at early boll development) or in split treatments (1/2 at first square and 1/2 at first white flower; 1/4 at first square, 1/4 at first white flower and 1/2 at early boll development). Data collected in the two years indicated that application of 160 kg K2O ha?1 produced significant differences in seed‐cotton yield, lint yield and boll weight compared with the untreated control. The best combination producing the greatest yield was application of 160 kg K2O ha?1 with all of the K soil‐applied at early boll development. Cotton yields did not respond to K fertilization above the rate of 160 kg K2O ha?1 under the production practices typically found in the region. For application of K at a rate of 240 kg K2O ha?1 there was a marked difference in fibre strength between years in this study, but micronaire and uniformity ratio were not different amongst K rates within each year. When the total amount of K was applied at early boll development, higher yields, boll weights and lint turnouts were obtained compared with split applications, but the single application did not have a large impact on fibre properties.  相似文献   

8.
The effects of seeding rate (30, 60 and 90 seeds m?2), seeding date (14 January, 28 January and 12 February), seed weight (0.18 and 0.25 g seed?1), seeding depth (3 and 6 cm), and phosphorus fertilization rate (17.5, 35.0 and 52.5 kg P ha?1) and placement method (banded or broadcasted) on field pea (Pisum sativum L.) development and seed yields were investigated in irrigated field experiments conducted in northern Jordan in 2000 and 2001. Results and treatment responses were consistent in both years. Seeding rate, seeding date, seed weight and rate and method of phosphorus fertilization had significant effects on most traits measured; planting depth however did not affect any of the traits. Generally a positive correlation was observed between each factor and seed yield and yield components, with the exception of a negative correlation between seeding rate and yield components, and seeding date and yield and yield components. Increase in seeding rate from 30 to 90 seeds m?2, and increase in P fertilization from 17.5 to 52.5 kg ha?1 alone increased seed yields by 50 and 41 %, respectively. Each delay of 2 weeks for seeding from mid‐January resulted in reductions of 12 % in seed yields. Overall, the results revealed that a combination of early seeding (14 January), of large seeds at an high seeding rate (90 seeds m?2), with P fertilizer banding (52.5 kg P ha?1) maximize field pea yields in irrigated fields in semi‐arid Mediterranean environments. With such management pea seed yields can be as high as 2800 kg ha?1.  相似文献   

9.
A relay cropping system of cereals, whereby winter wheat (Triticum aestivum L.) was undersown in two‐row spring barley (Hordeum distichum L.), was established in a field trial in central Sweden in 1999 and continued until 2000. The purpose of the study was to examine crop and weed responses to different plant densities of the undersown winter crop. Winter wheat was sown at four seed rates (187, 94, 47 and 0 kg ha?1) immediately after the sowing of barley. Barley was harvested in the first autumn after sowing and winter wheat in the second autumn. The grain yield of barley was not affected by the seed rate of wheat, and averaged 4580 kg ha?1. Winter wheat did not vernalize during the first growing season but remained at the vegetative stage. The grain yield of wheat was 1990 kg ha?1 for the lowest and 5610 kg ha?1 for the highest seed rate of wheat. Whilst the undersowing process itself stimulated weed emergence in this experiment, increasing the undersowing seed rate reduced the population of perennial weeds by 40–70 %. In the second growing season, the total biomass of weeds was 66 % higher at the highest seed rate compared with the lowest seed rate.  相似文献   

10.
A new fertilization method with deep placement of slow‐release N fertilizers, such as coated urea and lime nitrogen (LN) (calcium cyanamide) at 20 cm depth was found to promote soy bean seed yield. In the present study, the effect of deep placement of LN was investigated on different parameters such as growth, N accumulation, N2 fixation activity and yield of soy bean by applying LN at different rates in the rotated paddy field of Niigata, Japan. In addition to the basal fertilizer, ammonium sulphate (16 kg N ha?1), deep placement of LN was conducted by applying various amounts such as 50 kg N ha?1 (A50), 100 kg N ha?1 (A100) and 200 kg N ha?1 (A200) at 20 cm depth in separate plots. A 15N‐labelled LN fertilizer was also employed for each of the above treatments to calculate N utilization from LN in separate plots. Soya bean plant growth and N2 fixation activity were periodically analysed. Both plant growth and N accumulation were found to increase with LN treatment compared with control plants. An increase in N2 fixation activity was found in the A100 plots. The total seed yield was the highest in the deep placement of LN with A100 (73 g per plant) compared with other treatments. The visual quality of harvested seeds also showed that A100 enhanced the quality of seeds compared with other treatments. Thus, it is suggested that N fertilization management with particular reference to optimum amount of fertilizers is important for maximum growth, N2 fixation and enhancement of seed yield of soy bean.  相似文献   

11.
The effects of row spacing (17.5 or 35.0 cm), support plant species (barley or triticale) and the proportion of crops in mixtures (no support plant or support plant 20, 40 or 60 %, respectively) on the seed yield and yield characteristics of Hungarian vetch (Vicia pannonica Crantz) were investigated. Increasing the row spacing increased the seed yield of V. pannonica from 881.0 to 1248.0 kg ha?1. On average, in a pure stand the seed yield of V. pannonica was 1141.0 kg ha?1. In mixtures with barley and triticale, the seed yield of V. pannonica averaged 986.0 and 1143.0 kg ha?1, respectively. In single mixed stands the seed yield of V. pannonica varied between 551.0 kg ha?1 (60 % support plant barley) and 1603.0 kg ha?1 (20 % support plant triticale). The yield advantage of V. pannonica in this triticale mixture was 40 % compared to the V. pannonica pure stand. With respect to the total yield in the mixture with 20 % triticale (1902.0 kg ha?1) the yield advantage over the V. pannonica pure stand was as high as 65.1 %. In the mixed stands the number of seeds per pod and the thousand‐seed weight of V. pannonica were higher than in V. pannonica pure stands.  相似文献   

12.
A field experiment was conducted in a randomized block design with three replications over 2 years to evaluate the effect of wheat cultivar and dual inoculation of Azotobacter chroococcum (Azc) and arbuscular mycorrhiza fungi (AMF, Glomus fasciculatum) on root characters and AMF infection in three crosses of wheat. The experimental material comprised four wheat parents, WH‐147, WH‐157, WH‐542 and PBW‐175, and three F1 crosses, WH‐147 ×WH‐157, WH‐147 × WH‐542 and WH‐147 × PBW‐175. Comparison of treatment averages, i.e. control (mineral nutrients 60 kg N + 30 kg P2O5 + 12.5 kg ZnSO4 ha?1, as in other two treatments), AMF and AMF + Azc, revealed that inoculation of Azc led to an increase in AMF infection in roots. Maximum root biomass was obtained in F1 hybrids WH‐147 × WH‐157 in the AMF treatment and in WH‐147 × PBW‐175 receiving AMF + Azc. Total root length and AMF infection of roots was maximum in WH‐147 × PBW‐175 for all the treatments during both years. A positive association between AMF infection in roots and Azotobacter survival in the rhizosphere was apparent. Similarly, maximum A. chroococcum counts were observed 80 and 120 days after sowing in the AMF + Azc treatment in cross WH147 × PBW175.  相似文献   

13.
Legumes' sensitivity to salt is exacerbated under growth conditions requiring nitrogen fixation by the plant. Phosphorus (P) deficiency is widespread in legumes, especially common bean (Phaseolus vulgaris L). To examine the performance of P. vulgaris under salt stress conditions, a field experiment was conducted using two recombinants inbred lines (RILs) 115 (P‐deficiency tolerant) and 147 (P‐deficiency susceptible), grown under different salinity levels (L) (1.56, 4.78, and 8.83 dS m?1 as LI, L2, and L3, respectively) and supplied with four P rates (0, 30, 60, and 90 kg ha?1 P as P0, P30, P60, and P90, respectively) in order to assess the impact of P on salt tolerance. Results indicate that growing both RILs at P60 or P90 under all salinity levels (especially L1) significantly increased total chlorophyll, carotenoids, total soluble sugars, total free amino acids, and proline. Increasing P supply up to P60 under all salinity levels significantly induced higher accumulation of P, K+, Ca2+ and Mg2+ leaves in both RILs. Based on quadratic response over all locations, the maximum seed yield of 1.465 t ha?1 could be obtained at application of P 81.0 kg ha‐1 in RIL115, while seed yield of 1.275 t ha?1 could be obtained with P rate of 78.3 kg ha?1 in RIL147. RIL115 exhibited more salt‐tolerance with positive consequence on plant biomass and grain yield stability. Improved salt tolerance through adequate P fertilization is likely a promising strategy to improve P. vulgaris salinity tolerance and thus productivity, a response that seems to be P‐rate dependent.  相似文献   

14.
Field experiments were carried out on grey‐brown podzolic soil in the four consecutive growing seasons (1998–2001) at Krzeslice Farm, central‐western Poland. The effect of seven N fertilization treatments (in kg N ha?1): 80NF + 80CAN; 80NF + 50CAN + 30CN; 80CAN + 80CAN; 80CAN + 80CAN + 30CN; 80AN + 80AN; 80AN + 50AN + 30CN, where, NF – nitrofos NPK, CAN – calcium‐ammonium nitrate, AN – ammonium nitrate, CN – calcium nitrate and control (without N) on N uptake dynamics and N efficiency was studied. Mineral fertilizers were applied at the start of spring regrowth, beginning of stem elongation and at the flower‐bud‐visibility stage. The study revealed two distinct strategies of oilseed rape plants’ adaptation to timing and N fertilizer application sequences. Both strategies based on nitrogen uptake rate (NUR), were analysed at different plant growth stages. Ammonium nitrate (AN) applied in the two‐split system gave the highest NUR (387 mg m?2 day?1) during stem elongation (for comparison, a value of 166 mg m?2 day?1 was obtained in the control). In the case of calcium‐ammonium nitrate (CAN), a moderate level of NUR was obtained (304 mg m?2 day?1) but N uptake lasted 12 days longer compared with the AN treatment. Hence, N accumulation in leaves at the end of flowering explained about 81 % of yield variability. The second adaptation strategy was attributed to the three‐split N treatment. Plants fertilized with AN and CAN fertilizers showed an inconsistent pattern of NUR with time. Nitrogen accumulation in stems at the beginning of maturity, explained 69 % of yield variability. Nitrogen‐use efficiency did not show any response to N treatments.  相似文献   

15.
A field study was conducted to determine the effect of a combination of the plastic‐covered ridge and furrow rainwater harvesting (PRFRH) with different mulching materials, namely, 0.08‐mm‐thick plastic film (T1), 10‐cm‐thick corn straw (T2), 8 % biodegradable film (T3), liquid film (T4), bare furrow (T5) and conventional flat (CF), on corn production, soil water storage and water use efficiency (WUE) in the subhumid areas prone to drought of China (SAPDC). The T1–T5 plots at 0–100 cm depth had higher (P < 0.05) soil water storage than CF, while at 100–200 cm soil layer there was no difference (P > 0.05) among treatments. The T1–T4 plots produced 209–1 107 kg ha?1 more grain yields than the T5 plots. Meanwhile, almost all treatments had WUE over 2 kg m?3. The order of WUE increase among different mulch treatments was as follows: T3 > T1 > T2 > T4. In the case of environmental and economic feasibility, a combination of the PRFRH system with biodegradable film and straw mulches would be an option with high potential to increase crop sustainability in dry land farming systems and can be adopted in many areas without irrigation capability.  相似文献   

16.
An assessment of the energy requirements of different intensive forage production systems was carried out at the Indian Grassland Fodder, and Agroforestry Research Institute, Jhansi. This included assessment of energy use and output for five intensive crop production systems: (1) sorghum (single‐cut)–berseem, (2) cowpea–sorghum (single‐cut)–berseem + mustard–maize + cowpea, (3) sorghum (multi‐cut)–berseem + oats, (4) guar–oats–maize and (5) sorghum (single‐cut)–wheat–fallow. In all the systems, the Napier bajra hybrid (IGFRI‐3) was transplanted in regular plots of 50 m × 13 m. Results revealed that the total annual energy use was highest for sorghum (multi‐cut)–berseem + oats (36 606 MJ ha?1), followed by sorghum (single‐cut)–berseem + mustard, sorghum (single‐cut)–berseem–cowpea, guar–oats–maize and sorghum (single‐cut)–wheat–fallow (for which values were 31 086, 30 449, 29 867 and 25 956 MJ energy ha?1, respectively). The high value found for sorghum (multi‐cut)–berseem + oats might be attributable to the multi‐cuts in this system. Energy use by fertilizers represented the major part of the total energy use, amounting to 28–38 % in all treatments, followed by energy used in electricity, machinery, seeds, human labour and farmyard manure (FYM), in case of all with slight increase in input. In sorghum–wheat, energy use by seeds occupied the second position, followed by energy used in electricity, human labour, FYM and machinery/diesel. Pesticides contributed the least energy utilization in all the treatments. Herbicides were used for the control of weeds. Among the five forage production systems, sorghum (single‐cut)–berseem + mustard–maize + cowpea was found to be the most energy efficient, followed by sorghum (multi‐cut)–berseem + oats–sorghum (multi‐cut), sorghum (single‐cut)–berseem–cowpea, guar–oats–maize and sorghum (single‐cut)–wheat–fallow. Sorghum (single‐cut)–berseem + mustard–maize + cowpea increased the fertility of the soil, resulting in a higher percentage of organic carbon, higher availability of nitrogen and optimal balancing of the C:N ratio in the upper layers of the soil. These intensive crop production systems also maintain the optimum microbial population in the crop root zone. The benefit–cost ratio (B:C ratio) for the most energy‐efficient forage production system was 1.37 : 1. However, the highest B:C ratio was found in the sorghum–wheat rotation (1: 1.57).  相似文献   

17.
Increased recovery and recycling of manure phosphorus (P) by crops on dairy farms is needed to minimize environmental problems. The main objective of this study was to compare P utilization by orchardgrass (Dactylis glomerata L.) and tall fescue (Festuca arundinaceae Schreb.) from dairy manure or inorganic fertilizer. The study was conducted from 1994 to 2000 at the Cornell University Baker Farm, Willsboro, NY, on a somewhat poorly drained Kingsbury clay (very–fine, illitic, mesic Aeric Epiaqualfs). The design was a split‐plot in a randomized complete block with two manure rates (16 800 and 33 600 kg ha?1) and one nitrogen (N) fertilizer rate (84 kg N ha?1 at spring greenup and 56 kg N ha?1 prior to each regrowth harvest) as the main plots and grass species as subplots replicated six times. Fertilizer P [Ca(H2PO4)2] was applied to the fertilizer treatment in 1995 and 1996 at 11 kg P ha?1 year?1. Orchardgrass P removal averaged 21 % higher than tall fescue P removal for the spring harvest, but orchardgrass averaged 24 % lower P removal than tall fescue removal for all regrowth harvests from 1995–99. Phosphorus herbage concentration in the fertilizer treatment was in the range of 1.9–2.7 g P kg?1 compared with 2.2–5.3 g P kg?1 in the manure treatments. Seasonal P removal ranged from as low as 9.2 kg P ha?1 to as high as 48.5 kg P ha?1. Morgan extractable soil P in the top 0–0.20 m remained high through 1999, with 29.1 kg P ha?1 at the highest manure rate in tall fescue compared with 8.4 kg P ha?1 measured in 1993 prior to the experiment. In 2000, soil P at the highest manure rate in tall fescue dropped to 10.1 kg P ha?1, following cessation of manure application in 1998. Intensively managed harvested orchardgrass and tall fescue have the potential to remove large quantities of manure P.  相似文献   

18.
大田试验条件下采用苏丹草(Sorghum sudanense)与黑麦草(Lolium L.)轮作,分别设CK(不施肥)、NP(施氮磷肥)、NK(施氮钾肥)、PK(施磷钾肥)、NPK(施氮磷钾肥) 5个处理研究施肥对饲草产量、养分吸收及土壤养分的影响。结果表明,氮磷钾肥配施显著提高苏丹草与黑麦草鲜草产量,2005—2006年与2006—2007年两季饲草分别为162.7 t hm-2、114.9 t hm-2,分别比同期PK、NK、NP处理增产312.9%、26.9%、17.9%和338.5%、20.3%、17.2%。施肥影响饲草的氮、磷、钾含量,且氮磷钾配施可以改善饲草养分吸收,2005—2006年NPK处理的饲草N、P、K吸收量分别为500 kg hm-2、91 kg hm-2和997 kg hm-2,2006—2007年NPK处理的饲草N、P、K吸收量分别为312 kg hm-2、56 kg hm-2和402 kg hm-2。轮作系统中,氮磷钾肥配施条件下氮、磷盈余最少,而钾亏缺。在苏丹草-黑麦草轮作制中,随着种植次数的增多,各施肥处理土壤有机质、全氮均有不同程度上升,施磷(NPK、NP、PK)处理的速效磷、施钾(NPK、NK、PK)处理的速效钾均有上升,而NK处理的速效磷、NP处理的速效钾略有下降。  相似文献   

19.
Genotypic variations in leaf gas exchange and grain yield were analysed in 10 highland‐adapted quinoa cultivars grown in the field under drought conditions. Trials took place in an arid mountain region of the Northwest of Argentina (Encalilla, Amaicha del Valle, 22°31′S, 65°59′W). Significant changes in leaf gas exchange and grain yield among cultivars were observed. Our data demonstrate that leaf stomatal conductance to water vapour (gs) is a major determinant of net CO2 assimilation (An) because quinoa cultivars with inherently higher gs were capable of keeping higher photosynthesis rate. Aboveground dry mass and grain yield significantly varied among cultivars. Significant variations also occurred in chlorophyll, N and P content, photosynthetic nitrogen‐use efficiency (PNUE), specific leaf area (SLA), intrinsic water‐use efficiency (iWUE) and carboxylation capacity (An/Ci). Many cultivars gave promissory grain yields with values higher than 2000 kg ha?1, reaching for Sayaña cultivar 3855 kg ha?1. Overall, these data indicate that cultivars, which showed higher photosynthesis and conductances, were also generally more productive. Carbon isotope discrimination (Δ) was positively correlated with the grain yield and negatively with iWUE, but δ15N did not show significant correlations. This study provides a reliable measure of specific responses of quinoa cultivars to drought and it may be valuable in breeding programmes.  相似文献   

20.
Increasing temperatures pose a significant threat to crop production in the tropics. A field experiment was conducted with mung bean at three locations in Sri Lanka representing an increasing temperature gradient (24.4–30.1 °C) during two consecutive seasons to (i) determine the response of mung bean to increasing temperature and (ii) test a selected set of crop management practices aimed at decreasing essential inputs such as water, synthetic pesticides and inorganic nitrogen fertilizer. The control treatment (T1) consisted of standard crop management including irrigation, chemical crop protection and inorganic fertilizer application. Adaptation system 1 (T2) included mulching with rice straw at 8 t ha?1 with 30 % less irrigation and crop protection and nutrient management as in T1. Adaptation system 2 (T3) included crop protection using a pretested integrated pest management package with water and nutrient management as in T2. In adaptation system 3 (T4), 25 % of the crop's nitrogen requirement was given as organic manure (compost) at 0.8 t ha?1 while 75 % was given as inorganic fertilizer with water management and crop protection as in T3. Durations of both pre‐ and post‐flowering phases were reduced with increasing temperature. In the warmer (25.4–30.1 °C) yala season, seed yield (Y) of T1 decreased with increasing temperature at 366 kg ha?1 °C?1. However, in maha season, Y did not show a significant relationship across the narrower temperature gradient from 24.4 to 25.8 °C. Pooling the data from both seasons showed a second‐order polynomial response with an optimum temperature of 26.5 °C. In addition to shortened durations, reduced crop growth rates and reduced pod numbers per plant were responsible for yield reductions at higher temperatures. In yala, yields of all adaptation systems at all locations were on par with yields of the respective controls. Furthermore, yala yields of T2 and T3 were less sensitive than T1 to increasing temperatures (265 and 288 kg ha?1 °C?1). In maha, T3 and T4 had greater yields than the control at the relatively cooler site while having lower yields than the control at the warmer site. Maha yields of T2 were on par with the control at both temperature regimes. While demonstrating the significant temperature sensitivity of mung bean yields, results of the present work showed that components of the tested adaptation systems could be promoted among smallholder farmers in Asia, especially in view of their long‐term environmental benefits and contributions to sustainable agriculture in a warmer and drier future climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号