首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of ketamine (K) in pain management is controversial. It is reported to provide visceral analgesia in cats. This study aimed to assess its somatic actions using a thermal threshold (TT) model. Six cats (four spayed females, two castrated males, 4.3–7.2 kg) participated in the study. The day before each study, the thorax of each of the cats was shaved and a cephalic catheter was placed. TT was measured using a device specifically developed for cats. A heater element and temperature sensor housed in a small probe were held against the thorax of the cats with an elastic band and pressure bladder to assure consistent contact. The skin temperature was recorded before each test, then the heater was activated. When the cat responded by flinching, turning, or jumping, the stimulus was terminated and the threshold temperature was recorded. Treatments were 2 mg kg?1 of K (10 mg mL?1), or 0.2 mL kg?1 of saline (S) IV, given in a randomized cross‐over design with at least 1 week between treatments. The investigator was blinded to the treatment. TT was measured thrice before treatment (baseline threshold) at 15 minutes, then every 30 minutes for 8 hours and once at 24 hours after injection. Data were analyzed using a four‐factor anova . Cats were sedated for 45 minutes following K treatment. There was no difference in baseline TT between treatments (K = 41.9 ± 1.7 °C, S = 41.0 ± 1.45 °C), and no change in TT at any time in the S group. TT increased significantly at 15 and 30 minutes after K, then decreased below baseline values between 210 and 390 minutes, with a nadir of 38.8 ± ± 1.05 °C at 390 minutes. During this time period, cats exhibited normal activity, but responses to thermal stimuli were exaggerated. This study suggested that K caused a delayed onset hyperalgesia in cats.  相似文献   

2.
Hydromorphone (HY) has not been objectively assessed as an analgesic in cats. It has been suggested that butorphanol (B) can have a synergistic action with pure μ‐agonists. The aim of this study was to assess the antinociceptive activity of a single dose of HY, and to examine the effect of concurrent B administration on the thermal threshold (TT). Thermal thresholds were measured following IM administration of HY, B, a combination of B and HY (HY‐B), or saline (S). Six cats (four spayed females, two castrated males, 4.75–6.8 kg) were used. Each cat received HY (0.1 mg kg?1), B (0.4 mg kg?1), HY (0.1 mg kg?1), and B (0.4 mg kg?1) (HY‐B), or S (0.05 mL kg?1) in a randomized, blinded, cross‐over study design. Each cat received each treatment, with at least 12 days interval between the treatments. All injections were IM randomized to left or right quadriceps using a 24 SWG needle. Twenty‐four hours prior to each study, the thorax of each of the cats was shaved. On the day of the study, TT was measured using a thorax‐mounted thermal threshold‐testing device specifically developed for cats. Skin temperature was recorded before each test and then the heater was activated. When the cat responded by flinching, turning, or jumping, the stimulus was terminated and the threshold temperature was recorded. Three baseline thresholds were recorded over 1 hour before IM injection of test drug. Thermal threshold cut‐off was 55.5 °C. TT was measured at 5 and 15 minutes, every 15 to 360 minutes, every 30 minutes to 8 hours, every hour to 12 hours, and at 24 hours post‐injection. Threshold data were analyzed using an anova with a repeat factor of time. Behavioral adverse effects (dysphoria) were associated with B administration, but not with HY or HY‐B administration (these produced calm euphoria). The control group was stable over time (p = 0.22) (mean threshold 40.15 °C). Overall, there was no period effect, no significant effect of administering B, but a significant effect (raised TT) of administering HY or HY‐B. If the mean value of one of the experimental groups differed from the control group (40.075 °C) by more than 2.355 °C (>42.425 °C), that mean was significantly different from control at p < 0.05 (Bonferroni's t‐tests). This occurred between 15 and 165 minutes for B, from 15 to 345 minutes for HY, and between 15 and 540 minutes for HY‐B. In this model, HY provided up to 5.75 hours of antinociception at 0.1 mg kg?1, and concurrent administration of butorphanol (0.4 mg kg?1) decreased the intensity of antinociception over the first 2 hours, but extended the duration of significant antinociception to about 9 hours.  相似文献   

3.
Many cats do not receive analgesics for treatment of perioperative pain, but when they do, the opioid agonist–antagonist butorphanol (B) is widely used. B is reported to provide long‐lasting visceral analgesia, but its somatic actions are not well documented. This study aimed to assess B by using a thermal threshold (TT) model. Six cats (four spayed females, two castrated males, 4.4–6.9 kg) participated in the study. The day before each study, the lateral thorax of each of the cats was shaved and a cephalic catheter was placed. TT was measured using a thermal threshold testing device specifically developed for cats. A heater element and temperature sensor housed in a small probe was held against the cat's thorax with an elastic band and pressure bladder to assure consistent contact. Skin temperature was recorded before each test, then the heater was activated. When the cat responded by flinching, turning, or jumping, the stimulus was terminated and the threshold temperature recorded. A cut‐out temperature was set at 55.5 °C. Three baseline measurements were recorded before IV injections of 0.1, 0.2, 0.4, or 0.8 mg kg?1 of B. Each cat received all doses in a randomized order at least 1 week apart, and the investigator was blinded to the treatments. TT was measured at every 15 minutes for 6 hours. Data were analyzed using a three‐factor anova , and the critical mean difference was calculated. Pre‐treatment threshold was 40.8 ± 2.25 °C in all cats. There was a significant increase in threshold in all groups from 15 to 90 minutes, but no dose‐related differences were observed. Peak threshold achieved was 48.35 °C, 60 minutes after 0.4 mg kg?1 of B was injected. Mydriasis was present in all cats after treatment, and many exhibited dysphoric behavior. In this model, B had a short duration of action and no dose–response relationship. Compared to other opioids tested under similar conditions, the intensity of the effect of B was small and of shorter duration.  相似文献   

4.
ObjectiveTo determine the thermal and mechanical antinociceptive effects of two different subanesthetic constant rate infusions of racemic ketamine in cats.Study designProspective, randomized, blinded, experimental study.AnimalsEight healthy adult domestic shorthair cats (two intact females and six neutered males).MethodsThe thorax and the lower thoracic limbs of each cat were shaved for thermal (TT) and mechanical threshold (MT) testing and a cephalic catheter was placed. Three intravenous treatments of equivalent volume were given as loading dose (LD) followed by an infusion for 2 hours: (K5) 0.5 mg kg?1 ketamine followed by 5 μg kg?1 minute?1 ketamine infusion, (K23) 0.5 mg kg?1 ketamine followed by 23 μg kg?1 minute?1 ketamine infusion or (S) 0.9% saline solution. Effects on behavior, sedation scores, MT and TT were obtained prior to drug treatment and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.25, 2.5 2.75, 3 hours then every 0.5 hours for 7 hours and 10, 12, 14 and 26 hours after loading dose administration.ResultsKetamine induced mild sedation for the period of the infusion, no adverse behavioral effects were observed. Thermal threshold was significantly higher than baseline (K5: 44.5 ± 0.7 °C; K23: 44.5 ± 0.5 °C) at 15 minutes in the K5 group (46.8 ± 3.5 °C) and at 45 minutes in the K23 group (47.1 ± 4.1 °C). In the K23 group TT was significantly increased compared to S and K5 at 45 minutes. In K5 at 15 minutes MT (9.6 ± 4.0 N) was different to baseline (6.1 ± 0.8 N) and to the S group (5.9 ± 2.3 N).Conclusion and clinical relevanceLow dose rate ketamine infusions minimally affect thermal and mechanical antinociception in cats. Further studies with different nociceptive testing methods are necessary to assess whether ketamine could be a useful analgesic in cats.  相似文献   

5.
ObjectiveTo describe simultaneous pharmacokinetics (PK) and thermal antinociception after intravenous (IV), intramuscular (IM) and subcutaneous (SC) buprenorphine in cats.Study designRandomized, prospective, blinded, three period crossover experiment.AnimalsSix healthy adult cats weighing 4.1 ± 0.5 kg.MethodsBuprenorphine (0.02 mg kg?1) was administered IV, IM or SC. Thermal threshold (TT) testing and blood collection were conducted simultaneously at baseline and at predetermined time points up to 24 hours after administration. Buprenorphine plasma concentrations were determined by liquid chromatography tandem mass spectrometry. TT was analyzed using anova (p < 0.05). A pharmacokinetic-pharmacodynamic (PK-PD) model of the IV data was described using a model combining biophase equilibration and receptor association-dissociation kinetics.ResultsTT increased above baseline from 15 to 480 minutes and at 30 and 60 minutes after IV and IM administration, respectively (p < 0.05). Maximum increase in TT (mean ± SD) was 9.3 ± 4.9 °C at 60 minutes (IV), 4.6 ± 2.8 °C at 45 minutes (IM) and 1.9 ± 1.9 °C at 60 minutes (SC). TT was significantly higher at 15, 60, 120 and 180 minutes, and at 15, 30, 45, 60 and 120 minutes after IV administration compared to IM and SC, respectively. IV and IM buprenorphine concentration-time data decreased curvilinearly. SC PK could not be modeled due to erratic absorption and disposition. IV buprenorphine disposition was similar to published data. The PK-PD model showed an onset delay mainly attributable to slow biophase equilibration (t1/2ke0 = 47.4 minutes) and receptor binding (kon = 0.011 mL ng?1 minute?1). Persistence of thermal antinociception was due to slow receptor dissociation (t1/2koff = 18.2 minutes).Conclusions and clinical relevanceIV and IM data followed classical disposition and elimination in most cats. Plasma concentrations after IV administration were associated with antinociceptive effect in a PK-PD model including negative hysteresis. At the doses administered, the IV route should be preferred over the IM and SC routes when buprenorphine is administered to cats.  相似文献   

6.

Objective

To evaluate the onset, magnitude and duration of thermal antinociception after oral administration of two doses of tapentadol in cats.

Study design

Prospective, randomized, blinded, experimental study.

Animals

Six healthy adult cats weighing 4.4 ± 0.4 kg.

Methods

Skin temperature (ST) and thermal threshold (TT) were evaluated using a wireless TT device up to 12 hours after treatment. Treatments included placebo (PBO, 50 mg dextrose anhydrase orally), buprenorphine (BUP, 0.02 mg kg?1) administered intramuscularly, low-dose tapentadol (LowTAP, 25 mg orally; mean 5.7 mg kg?1) and high-dose tapentadol (HighTAP, 50 mg orally; mean 11.4 mg kg?1) in a blinded crossover design with 7 day intervals. Statistical analysis was performed using anova with appropriate post hoc test (p ≤ 0.05).

Results

Salivation was observed immediately following 11 out of 12 treatments with tapentadol. The ST was significantly increased at various time points in the opioid treatments. Hyperthermia (≥ 39.5 °C) was not observed. Baseline TT was 45.4 ± 1.4 °C for all treatments. Maximum TT values were 48.8 ± 4.8 °C at 1 hour in LowTAP, 48.5 ± 3.0 °C at 2 hours in HighTAP and 50.2 ± 5.3 °C at 1 hour in BUP. TT significantly increased after LowTAP at 1 hour, after HighTAP at 1–2 hours, and after BUP at 1–2 hours compared with baseline values. TTs were significantly increased in BUP at 1–2 hours compared with PBO.

Conclusion and clinical relevance

Oral administration of tapentadol increased ST and TT in cats. The durations of thermal antinociception were similar between HighTAP and BUP, both of which were twice as long as that in LowTAP. Studies of different formulations may be necessary before tapentadol can be accepted into feline practice.  相似文献   

7.
Hydromorphone (H) may be an effective analgesic agent in cats, but fear of negative behavioral side‐effects associated with opioids is cited as a reason for avoiding this class of analgesics in cats. This study was designed to assess onset and duration of antinociception using an established feline thermal threshold model in cats, given an accepted clinical dose of 0.1 mg kg?1 of H. In addition, cats were observed for changes in behavior and other side‐effects. Six adult cats from an established colony (four spayed females and two castrated males, 4.7–7.0 kg) received 0.1 mg kg?1 H IV following establishment of baseline thermal threshold (TT) values. TT was tested at 15 minutes post‐injection, then at every 30–60 minutes for 12 hours. Side‐effects and behavior changes were recorded for 12 hours. Changes in TT over time were analyzed using a one‐way anova ; a p‐value <0.05 was considered significant. TT increased from a pre‐treatment value of (mean ± SD) 40.9 ± 1.65 °C to instrument cutout (55.5 °C) within 30 minutes for 5/6 cats. Mean TT was significantly elevated above baseline from 15 to 450 minutes after treatment. There was a significant increase in skin temperature from 15 to 300 minutes with peak increase of 1.55 °C at 135 minutes. Side‐effects included mydriasis (6/6) and nausea (4/6), characterized by licking, foaming, and gagging. Mydriasis occurred within 10–30 seconds of injection and persisted for 5–7 hours. Nausea was noted within 2 minutes of injection and persisted for 30–90 minutes; no vomiting occurred. Commonly observed behavioral changes included ventral tail curl (6/6 cats, onset 5–45 minutes, duration 4–5 hours) and euphoria (5/6 cats, onset <6 minutes for 4/6, duration 1–6 hours). 2/6 cats were profoundly sedate. Three cats showed signs of dysphoria with or without increased motor activity with variable onset and duration. Dysphoric behavior included staring, pacing, vocalizing, and sudden movements. 3/6 cats exhibited both euphoria and dysphoria at different times during the study. At no time were cats difficult to restrain or work with. Return to baseline behavior occurred 7–8.5 hours post‐injection. Mydriasis did not correlate closely with antinociception. Signs of sedation and euphoria corresponded with onset of antinociception, but not duration. Tail curl signs correlated with antinociception. In this model, H proved to be a rapid acting, potent, analgesic with a long (7.5 hours) duration of action. The most common behavioral changes noted were ventral tail curl, euphoria, and sedation. Mydriasis and nausea were noted as side‐effects.  相似文献   

8.
ObjectiveTo determine which class of opioid alone or in conjunction with other anesthetic drugs causes post-anesthetic hyperthermia in cats.Study designProspective, randomized, crossover study.AnimalsEight adult, healthy, cats (four spayed females and four castrated males weighing 3.8 ± 0.6 kg).MethodsEach cat was instrumented with a wireless thermistor in the abdominal cavity. Temperature in all phases was recorded every 5 minutes for 5 hours. Population body temperature (PBT) was recorded for ~8 days. Baseline body temperature is the final 24 hours of the PBT. All injectable drugs were given intramuscularly. The cats were administered drugs in four phases: 1) hydromorphone (H) 0.05, 0.1, or 0.2 mg kg?1; 2) morphine (M) (0.5 mg kg?1), buprenorphine (BUP) (0.02 mg kg?1), or butorphanol (BUT) (0.2 mg kg?1); 3) ketamine (K) (5 mg kg?1) or ketamine (5 mg kg?1) plus hydromorphone (0.1 mg kg?1) (KH); 4) isoflurane in oxygen for 1 hour. Fifteen minutes prior to inhalant anesthetic, cats received either no premed (I), hydromorphone (0.1 mg kg?1) (IH), or hydromorphone (0.1 mg kg?1) plus ketamine (5 mg kg?1) (IHK).ResultsMean PBT for all unmedicated cats was 38.9 ± 0.6 °C (102.0 ± 1 °F). The temperature of cats administered all doses of hydromorphone increased from baseline (p < 0.03) All four opioids (H, M, BUP and BUT) studied increased body temperature compared with baseline (p < 0.005). A significant difference was observed between baseline temperature values and those in treatment KH (p < 0.03). Following recovery from anesthesia, temperature in treatments IH and IHK was different from baseline (p < 0.002).Conclusions and clinical relevanceAll of the opioids tested, alone or in combination with ketamine or isoflurane, caused an increase in body temperature. The increase seen was mild to moderate (<40.1 °C (104.2 °F) and self limiting.  相似文献   

9.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration.  相似文献   

10.
11.
Objective To evaluate disposition of a single dose of butorphanol in goats after intravenous (IV) and intramuscular (IM) administration and to relate behavioral changes after butorphanol administration with plasma concentrations. Design Randomized experimental study. Animals Six healthy 3‐year‐old neutered goats (one male and five female) weighing 46.5 ± 10.5 kg (mean ± D). Methods Goats were given IV and IM butorphanol (0.1 mg kg?1) using a randomized cross‐over design with a 1‐week interval between treatments. Heparinized blood samples were collected at fixed intervals for subsequent determination of plasma butorphanol concentrations using an enzyme linked immunosorbent assay (ELISA). Pharmacokinetic values (volume of distribution at steady state [VdSS], systemic clearance [ClTB], extrapolated peak plasma concentration [C0] or estimated peak plasma concentration [CMAX], time to estimated peak plasma concentration [TMAX], distribution and elimination half‐lives [t1/2], and bioavailability) were calculated. Behavior was subjectively scored. A two‐tailed paired t‐test was used to compare the elimination half‐lives after IV and IM administration. Behavioral scores are reported as median (range). A Friedman Rank Sums test adjusted for ties was used to analyze the behavioral scores. A logit model was used to determine the effect of time and concentration on behavior. A value of p < 0.05 was considered significant. Results Volume of distribution at steady state after IV administration of butorphanol was 1.27 ± 0.73 L kg?1, and ClTB was 0.0096 ± 0.0024 L kg?1 minute?1. Extrapolated C0 of butorphanol after IV administration was 146.5 ± 49.8 ng mL?1. Estimated CMAX after IM administration of butorphanol was 54.98 ± 14.60 ng mL?1, and TMAX was 16.2 ± 5.2 minutes; bioavailability was 82 ± 41%. Elimination half‐life of butorphanol was 1.87 ± 1.49 and 2.75 ± 1.93 hours for IV and IM administration, respectively. Goats became hyperactive after butorphanol administration within the first 5 minutes after administration. Behavioral scores for goats were significantly different from baseline at 15 minutes after IV administration and at 15 and 30 minutes after IM administration. Both time and plasma butorphanol concentration were predictors of behavior. Behavioral scores of all goats had returned to baseline by 120 minutes after IV administration and by 240 minutes after IM administration. Conclusions and Clinical Relevance The dose of butorphanol (0.1 mg kg?1, IV or IM) being used clinically to treat postoperative pain in goats has an elimination half‐life of 1.87 and 2.75 hours, respectively. Nonpainful goats become transiently excited after IV and IM administration of butorphanol. Clinical trials to validate the efficacy of butorphanol as an analgesic in goats are needed.  相似文献   

12.
Nonsteroidal anti‐inflammatory drugs (NSAIDs) are widely used to provide analgesia in clinical veterinary medicine, but there are few objective data evaluating this effect under controlled conditions in cats. Analgesia is more difficult to detect with acute analgesiometry after NSAIDs than after opioids. This investigation aimed to adapt the feline thermal analgesiometry method previously employed with opioids ( Dixon et al. 2002 ) for use with NSAIDs. Ketoprofen, a COX1 inhibitor licensed for cats was chosen. Six cats (2 neutered, four entire females, weighing 2.2–5.4 kg) were studied in two blinded randomized crossover trials each at least 2 weeks apart. Thermal thresholds (TT) were measured using the thermal threshold‐testing device previously developed for cats. A heater element and temperature sensor in a small probe were held at constant pressure against the cats' shaved thorax with an elasticized band. Skin temperature was recorded before each test, then the heater activated. When the cat responded by flinching, turning or jumping the heater was turned off and the temperature recorded. In the first study TT were measured following subcutaneous (SC) injection of ketoprofen (2 mg kg?1) or a similar volume of saline. In the second study, prior to TT, and under isoflurane restraint, a mild inflammatory focus was produced at the probe site by five SC injections of 5 mg kaolin in 0.1 mL saline at each corner and in the center of a 1.5‐cm square. Saline or ketoprofen as in the first study were injected at the same time. Three baseline temperatures were recorded before any injections were given. Thermal thresholds were measured at 1 and 2 hours and then two‐hourly for 24 hours. Data were analysed using anova . Baseline skin temperature increased (37.3 ± 0.5–38.1 ± 0.8 °C) 24 hours after saline injection in study 2 (p < 0.05) but did not change after any other treatment. Thermal thresholds decreased (40.0 ± 1.3 to 39.1 ± 0.4 °C) 16 hours after ketoprofen in study 1 (p < 0.05) and increased (41.6 ± 1.5–44.8 ± 6.1 °C) 16–24 hours after ketoprofen in study 2 (p < 0.05), with no significant changes after saline. No obvious increase in sensitivity to thermal stimulation after kaolin injection was detected although obvious inflammation was present for up to 36 hours and the cats responded to digital pressure at the treated site. The method detected some effects of a COX1 selective NSAID and may be suitable for future NSAID studies in cats. However, a pressure stimulus ( Dixon et al. 2000) may prove better than thermal, and it requires investigation.  相似文献   

13.
Post‐operative pain management by a single subcutaneous (SC) injection of carprofen has been found to be effective in cats and dogs. This clinical study compared the analgesic properties of injectable carprofen and butorphanol in 71 healthy cats (0.5–5 years, mean weight 3.24 ± 0.61 kg) undergoing ovariohysterectomy. Cats were randomly assigned to three groups: Group C received carprofen 4 mg kg?1 SC at intubation and sterile saline 0.08 mL kg?1 SC at extubation; Group B received sterile saline 0.08 mL kg?1 SC at intubation and butorphanol 0.4 mg kg?1 SC at extubation; Group S received sterile saline 0.08 mL kg?1 SC at intubation and extubation. All cats were pre‐medicated with atropine (0.04 mg kg?1 SC), acepromazine (0.02 mg kg?1 SC), ketamine (5 mg kg?1 SC), and induced IV with ketamine (5 mg kg?1) and diazepam (0.25 mg kg?1). Serum biochemistry values were taken at 24 and 48 hours post‐surgically and compared to a pre‐surgical baseline. Behavioral data were collected by a blinded investigator prior to surgery (baseline) and 1, 2, 3, 4, 8, 12, 16, 20, and 24 hours post‐surgery; the data were compiled into composite pain scores on a scale from 0 to 21 and complemented by visual analogue scores (VAS). Scoring was based on changes in behavior, posture, vocalization, and response to interactive stimulation. Cats with pain scores >12 were considered to be moderately painful, received meperidine (4 mg kg?1 IM), and were excluded from further statistical analyses. Sixty of 71 cats completed the study. Anesthetic time was 88.5 ± 21.8 minutes (mean ± SD). Meperidine was given to one cat in C, three in B, and five in S. There were no significant differences in biochemistry values. There were no significant differences in pain scores between C and B at any time period; B and C pain scores were significantly lower than S at 1, 2, 12, 16, and 20 hours post‐operatively, and C lower than S at 3 and 8 hours post‐surgery. Pain scores decreased over the 24‐hour study in all groups; the greatest decrease in each group was between 4 and 8 hours post‐operatively. In this study, carprofen provided post‐surgical analgesia comparable to butorphanol.  相似文献   

14.
Same‐day mass sterilization of feral cats requires rapid onset, short‐duration anesthesia. The purpose of this study was to compare our current anesthetic protocol, Telazol–ketamine–xylazine (TKX) with medetomidine–ketamine–buprenorphine (MKB). Feral female cats received either IM TKX (n = 68; 0.25 mL cat?1; tiletamine 12.5 mg, zolazepam 12.5 mg, K 20 mg, and X 5 mg per 0.25 mL) or MKB (n = 17; M 40 µg kg?1, K 15 mg kg?1, and B 10 µg kg?1). Intervals measured included time from injection to recumbency, time to surgery, duration of surgery, and time from reversal of anesthesia (TKX: yohimbine 0.50 mg cat?1 IV; MKB: atipamezole 0.50 mg cat?1 IM) to sternal recumbency. Following instrumentation (Vet/Ox 4403 and Vet/BP Plus 6500), physiological measurements were recorded at 5‐minute intervals, and included rectal temperature, heart rate (HR), respiratory rate (RR), SpO2 (lingual or rectal probes), and indirect mean arterial blood pressure (MAP) (oscillometric method). Nonparametric means were compared using Mann–Whitney U‐tests. Parametric means were compared using a two‐factorial anova with Bonferroni's t‐tests. The alpha‐priori significance level was p < 0.05. Values were mean ± SD. Body weight (TKX: 2.9 ± 0.5 kg, MKB: 2.7 ± 0.7 kg), time to recumbency (TKX: 4 ± 1 minutes, MKB: 3 ± 1 minutes), time to surgery (TKX: 28 ± 7 minutes, MKB: 28 ± 5 minutes), and duration of surgery (TKX: 11 ± 7 minutes, MKB: 8 ± 5 minutes) did not differ between groups. In contrast, MKB cats required less time from reversal to sternal recumbency (TKX: 68 ± 41 minutes, MKB: 7 ± 2 minutes) and were recumbent for shorter duration (TKX: 114 ± 39 minutes, MKB: 53 ± 6 minutes). Temperature decreased during the study in both groups, but overall temperature was higher in MKB cats (38.0 ± 0.95 °C) than in TKX cats (37.5 ± 0.95 °C). RR, HR, and SpO2 did not change during the study in either group. However, overall HR and RR were higher in TKX cats (RR: 18 ± 8 breaths minute?1, HR: 153 ± 30 beats minute?1) compared to MKB cats (RR: 15 ± 7 breaths minute?1, HR: 128 ± 19 beats minute?1). In contrast, overall SpO2 was lower in the TKX group (90 ± 6%) compared to the MKB group (94 ± 4%). MAP was also lower in the TKX group (112 ± 29 mm Hg) compared to that in the MKB group (122 ± 20 mm Hg). However, MAP increased in the TKX group during surgery compared to pre‐surgical values, but did not change in the MKB group. The results of this study suggested that MKB might be more suitable as an anesthetic for the purpose of mass sterilization of feral female cats.  相似文献   

15.
ObjectiveTo evaluate the thermal antinociceptive effects of a high-concentration formulation of buprenorphine alone or followed by hydromorphone in conscious cats.Study designRandomized, blinded, placebo-controlled crossover study design.AnimalsA total of six purpose-bred, adult female ovariohysterectomized Domestic Short Hair cats.MethodsCats were allocated into three treatments each consisting of two injections, subcutaneous then intravenous (IV) administration, 2 hours apart: treatment SS, two injections of 0.9% saline; treatment BS, buprenorphine (0.24 mg kg–1, 1.8 mg mL–1) and saline; and treatment BH, buprenorphine (0.24 mg kg–1) and hydromorphone (0.1 mg kg–1). Skin temperature (ST) and thermal threshold (TT) were recorded before (baseline) and for 24 hours following first injection. TT data were analyzed using mixed linear models and a Benjamini–Hochberg sequential adjustment procedure (p < 0.05).ResultsThere were no significant differences among treatments for baseline ST and TT values, treatment SS over time and between treatments BS and BH. Compared with baseline, TT was significantly increased at all time points in treatments BH and BS except at 2 hours in treatment BS. TT was significantly higher than SS at 3–18 hours and 4–12 hours for treatments BS and BH, respectively. Maximal increases in TT were 47.5 °C at 2 hours, 53.9 °C at 3 hours and 52.4 °C at 6 hours in treatments SS, BS and BH, respectively.Conclusions and clinical relevanceAdministration of IV hydromorphone following high-concentration buprenorphine provided no additional antinociception and decreased the duration of effect when compared with high-concentration buprenorphine alone. Alternative analgesics should be considered if additional analgesia is required after administration of high-concentration buprenorphine.  相似文献   

16.
ObjectiveTo determine the dose of naltrexone necessary to fully antagonize a high dose of remifentanil in cats.Study designProspective experimental study.AnimalsSix healthy adult cats weighing 4.9 ± 0.7 kg.MethodsIn a first phase, remifentanil (200 μg kg?1 followed by 60 μg kg?1 minute?1) was administered intravenously to two cats, causing an increase in locomotor activity. Naltrexone (100 μg kg?1) was then administered intravenously every minute until the increase in locomotor activity had been reversed. In a second phase, six cats were used. Baseline thermal threshold was determined, naltrexone (600 μg kg?1) was administered intravenously and 30 minutes later thermal threshold determination repeated. Remifentanil (200 μg kg?1 followed by 60 μg kg?1 minute?1) was administered intravenously and thermal threshold determination repeated at 60, 120, 180, and/or 240 minutes after naltrexone administration. Thermal threshold determinations were started shortly after the start of the continuous rate infusion (CRI) of remifentanil and this CRI was discontinued immediately after thermal threshold determination. If an increase in thermal threshold was found, naltrexone administration was repeated at decreasing intervals in the next experiment (all cats were not used for all dosing intervals). Experiments were repeated until a naltrexone dosing interval was found that prevented increases in thermal threshold for 4 hours in all six cats.ResultsIn the first phase, both cats became severely dysphoric following remifentanil administration. A cumulative naltrexone dose of 300 μg kg?1 was necessary to restore normal behavior in both cats. In the second phase, hourly administration of naltrexone (600 μg kg?1) prevented increases in thermal threshold associated with hourly administration of remifentanil for 4 hours. Less frequent administration did not prevent increases in thermal threshold consistently.ConclusionsHourly administration of naltrexone (600 μg kg?1) antagonizes the behavioral and antinociceptive effects of a high dose of remifentanil in cats.Clinical relevanceNaltrexone may be useful for the treatment of opioid overdose in cats.  相似文献   

17.
A central eyeball position is often required during sedation or anaesthesia to facilitate examination of the eye. However, use of neuromuscular blockade to produce a central eye position may result in depressed ventilation. This study evaluated the eyeball position, muscle relaxation and changes in ventilation during general anaesthesia after the IV administration of 0.1 mg kg?1 rocuronium. With client consent, 12 dogs of different breeds, body mass 27.2 ± 11.8 kg, aged 5.6 ± 2.8 years (mean ± SD) were anaesthetized for ocular examination. Pre‐anaesthetic medication was 0.01 mg kg?1 medetomidine and 0.2 mg kg?1 butorphanol IV. Anaesthesia was induced with propofol to effect and maintained with 10 mg kg?1 hour?1 propofol by infusion. The dogs were placed in left lateral recumbency, their trachea intubated and connected to a circle breathing system (Fi O2 = 1.0). All dogs breathed spontaneously. The superficial peroneal nerve of the right hind leg was stimulated every 15 seconds with a train‐of‐four (TOF) stimulation pattern and neuromuscular function was assessed with an acceleromyograph (TOF‐Guard). Adequacy of ventilation was measured with the Ventrak 1550. After 10 minutes of anaesthesia to allow stabilisation of baseline values, 0.1 mg kg?1 rocuronium was administered IV. Minute volume (Vm ), tidal volume (Vt ), respiratory rate (RR), Pe ′CO2 and maximal depression of T1 and TOF ratio were measured. Data were analysed using a paired t‐test. The changes in the eyeball position were recorded. A total of 100 ± 33 seconds after the injection of rocuronium, T1 was maximally depressed to 62 ± 21% and the TOF ratio to 42 ± 18% of baseline values. Both variables returned to baseline after 366 ± 132 seconds (T1) and 478 ± 111 seconds (TOF). There was no significant reduction in Vm (2.32 ± 1.1 L minute?1), Vt (124.1 ± 69.3 mL) and RR (10 ± 3.8 breaths minute?1) and no increase in Pe ′CO2 (6.5 ± 2.1 kPa (48.8 ± 16.1 mm Hg)) throughout the procedure. The eyeball rotated to a central position 35 ± 7 seconds after rocuronium IV and remained there for a minimum of 20 ± 7 minutes in all dogs. We conclude that rocuronium at a dose of 0.1 mg kg?1 can be administered to dogs IV with minimal changes in ventilatory variables. The eyeball is fixed in a central position for at least 20 minutes, which greatly facilitates clinical examination.  相似文献   

18.
The use of analgesics in post‐operative adhesion (POA) research is problematic due to POA‐inhibiting effects of anti‐inflammatory agents and bowel motility‐inhibiting effects of opioids, which may increase adhesion formation. This study was conducted to assess a buprenorphine (BUP) protocol for analgesic efficacy and its effects on POA formation in a rat cecal abrasion model. The protocol was approved by the University of Florida's Institutional Animal Care and Use Committee (IACUC). Forty‐one female Sprague‐Dawley rats were randomized into two groups (n = 20 or 21 group). Body weight, food and water intake were recorded daily from 2 days before until 7 days after surgery. Treatment rats received 0.05 mg kg–1 BUP SQ at anesthesia induction and 0.3 mg kg–1 BUP orally in flavored gelatin 6 hours after surgery. Control rats received saline placebo injection and plain gelatin. All rats underwent laparotomy and controlled cecal abrasion. At 3, 6 and 24 hours post‐operatively rats were individually observed in 10‐minutes periods for pain related behavior incidence: ‘twitch’ (contraction of muscles along dorsum and/or head), ‘back arch’ (cat‐like position with front legs extended and pushing backward), ‘writhe’ (flank contraction), and ‘stagger/fall’ (momentary loss of balance while grooming or ambulating), using the method of Roughan and Flecknell (Pain 2001,90, 65–74). On post‐op day seven rats were euthanized by CO2 inhalation and POA evaluated (0 to 4 scale; ³Grade 2 = clinically significant.) BUP treated rats had lower mean pain scores than control rats at 3 hours (1.6 ± 1.7 versus 20.3 ± 13.5 (mean ± SD); p < 0.001) and 6 hours (2.1 ± 2.7 versus 23.7 ± 12.9; p < 0.001) but not 24 hours (1.5 ± 1.3 versus 4.9 ± 6.6; p = 0.35) post‐operatively. Predominant pain behavior was ‘writhe’ (flank contraction) in contrast to ‘twitch,’‘back arch,’ and ‘stagger/fall’ reported as most common pain indicators in other rat strains. BUP rats had greater mean adhesion incidence (2.4 ± 1.7 versus 1.4 ± 1.8; p < 0.03) and severity (90%³Gr.2 versus 65% of controls; p < 0.05). The BUP protocol appeared to provide effective analgesia for at least 24 hours post‐operatively. Strain of rat may affect pain related behavior. BUP should be used with caution after abdominal surgical procedures having high risk of POA formation.  相似文献   

19.
ObjectiveTo determine the effect of intravenous (IV) buprenorphine on the isoflurane (ISO) minimum alveolar concentration (ISOMAC) in dogs.Study designRandomized, crossover, design.AnimalsSix healthy, adult (2–3 years old), intact dogs (two males and four females) weighing 7.4–11.0 kg.MethodsEach dog was studied on three occasions, 1 week apart, and baseline ISOMAC (MACB) was determined on each occasion. ISOMAC was defined as the mean of the end-tidal ISO concentrations that prevented and allowed purposeful movement in response to a noxious stimulus. After MACB determination, dogs were randomly given buprenorphine (BUP) at either 0.01, 0.05 or 0.1 mg kg?1 IV, and ISOMAC was determined at two time periods after BUP administration. The first post-treatment determination (MACT1) was initiated 45 minutes after BUP administration and the second determination (MACT2) was initiated 4 hours after BUP administration. MAC values were determined in duplicate and the mean values were used for statistical analysis.ResultsIsoflurane minimum alveolar concentration was decreased at 141 minutes (the time of MACT1 determination) by 25%, 35%, and 27% after administration of BUP at 0.01, 0.05, and 0.1 mg kg?1, respectively (p ≤ 0.05). The MAC reductions were not statistically different among doses. The reductions in ISOMAC at 342 minutes (the time of MACT2 determination) ranged from 13 to 16%, and were not statistically different among doses.Conclusions and clinical significanceBuprenorphine at 0.01, 0.05, and 0.1 mg kg?1 significantly decreased ISOMAC in dogs at 141 minutes but not at 342 minutes. When using BUP for MAC reduction re-dosing may be required for procedures of long duration, and there may be no advantage to using the 0.1 mg kg?1 dose.  相似文献   

20.

Objective

To determine the pharmacokinetics and effects on thermal thresholds (TT) of two fentanyl constant rate infusions in awake cats.

Study design

A blinded, randomized crossover study.

Animals

A group of six healthy female cats, aged 3 ± 1 years, weighing 4.1 ± 0.7 kg.

Methods

Skin temperature (TSKIN) and TT were evaluated using a wireless TT device. TSKIN, TT, sedation score (SS) and blood samples were collected before an intravenous loading dose (LD; over 5 seconds) and at specific time points during (360 minutes) and after infusion. Each cat was administered two treatments: fentanyl (LD 3 μg kg?1, infusion 3 μg kg?1 hour?1; treatment F3) or fentanyl (LD 5 μg kg?1, infusion 5 μg kg?1 hour?1; treatment F5). SS between treatments was analyzed using a Kruskal–Wallis test. Statistical analysis of TT and TSKIN was performed using analysis of variance with appropriate post hoc test (p < 0.05).

Results

TSKIN did not vary over time for each treatment. SS did not differ between treatments. TTs were significantly higher than baseline at 15 minutes after LD for F3 and F5. TT was significantly increased at 30, 90, 120, 180 and 300 minutes in treatment F5 but not in F3. Plasma fentanyl concentrations decreased rapidly in both treatments over the first 30 minutes after infusion. The terminal half-life was 3.31 (2.93–4.41) hours for F3 and 3.67 (3.39–4.32) hours for F5 (median, range). Systemic clearance for treatments F3 and F5 was 1.95 (1.46–2.44) and 2.25 (1.98–2.47) L hour?1 kg?1 (median, range), respectively. Plasma concentrations <1.84 ng mL?1 were not associated with a significant increase in TT.

Conclusions

and clinical relevance A fentanyl infusion rate of 5 μg kg?1 hour?1 increased TT during the infusion period. Effects on TT were lost rapidly with cessation of the infusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号