首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetic data of nalidixic acid were investigated in normal and E. coli infected chickens. The highest serum concentration were reached after 2 hours with t0.5 (ab) of (1.706 +/- 0.1 min in normal and 2.030 +/- 0.11 min in diseased) and (1.72 +/- 0.11 min in normal and 1.416 +/- 0.044 in diseased chickens) following oral and intramuscular administration, respectively. The elimination half-life t0.5 (beta) were (2.514 in normal and 2.35 hr in diseased) and (2.567 hr in normal and 2.672 hr in diseased) respectively. Following intravenous injection the kinetic of nalidixic acid followed two compartments open model with t0.5 of (6.27 and 9.15 hr), Vd (0.45 and 0.79 L/kg), Cltot (8.86 and 13.32 ml/kg/min) in normal and E. coli infected chickens, respectively. Administration of nalidixic acid twice daily for 5 successive days in a dose level of 25 mg/kg b. wt. by oral and intramuscular routes showed a cumulative behaviour.  相似文献   

2.
1. Disposition kinetics were compared in healthy chickens and in chickens naturally infected with E. coli following the intravenous, intramuscular and oral administration of chloramphenicol in a single dose of 20 mg/kg body weight. 2. Lower serum chloramphenicol concentration in diseased chickens were reported after intravenous injection, but they were higher than normal 30 min after intramuscular and oral administration. Following intravenous injection the volume of distribution was increased in diseased chickens. 3. The biological half-life in normal chickens was 8.32 +/- 0.5 h and was prolonged in diseased birds (26.21 +/- 0.2 h). The body clearance of chloramphenicol was reduced in diseased chickens. 4. The rate of absorption of chloramphenicol was delayed after administration via the oral route but the extent of absorption was increased. The maximum concentration was higher and it was reached after a longer time in diseased than in normal chickens after administration by both intramuscular and oral routes.  相似文献   

3.
1. The pharmacokinetic properties of doxycycline were determined in healthy chickens and chickens naturally infected with Mycoplasma gallisepticum after a single intravenous (i.v.) and oral administration of the drug at 20 mg/kg body weight. Tissue residues of the tested drug after an oral dose of 20 mg/kg given twice daily for 5 consecutive days were also estimated in diseased chickens. 2. The plasma concentrations of doxycycline following single i.v. and oral administration were higher in healthy chickens than in diseased ones. Following i.v. injection, the elimination half-life (t1/2beta), distribution half-life and mean residence time (MRT) were longer in healthy chickens than in diseased birds. The values of total body clearance (ClB) and volume of distribution (Vdss) were larger in healthy chickens than in diseased birds. 3. After single oral administration, the absorption half-life (tl/2ab) and the elimination half-life were longer in normal birds than in diseased ones. The maximum plasma concentration of the drug was higher in normal chickens than in diseased ones. 4. Following repeated oral administration, the concentration of doxycycline in all tissues except muscle was higher than the corresponding concentrations in plasma. Concentrations of doxycycline in different tissues were in the following order: kidney > liver > lung > muscle. The drug was detected in liver and kidney in substantial concentrations on d 5 post administration of the last dose whereas, on d 7, its concentration in all tissues was below the lower limit of the sensitivity of the assay method used. Because of the low sensitivity of the microbiological assay method used in this study, a safe withdrawal time for doxycycline in diseased birds could not be estimated for the meanwhile.  相似文献   

4.
1. Disposition kinetics of doxycycline (doxy) was studied in healthy chickens and chickens experimentally intoxicated with aflatoxin B1 by intravenous, oral or intramuscular (i.m.) injection, in a single dose of 15 mg/kg body weight. In addition, the tissue distribution and residual pattern of the drug were determined in healthy and intoxicated chickens. 2. The maximum serum concentrations of doxy were reached 1.97 and 2.37 h after oral, and 1.57 and 2.92 h after i.m. dosage in healthy and aflatoxic birds, respectively. 3. The volumes of distribution and total body clearances were higher in aflatoxic birds (1.75 l/kg and 14.61 ml/kg/min) than in healthy chickens (0.93 l/kg and 4.6 ml/kg/min). Data relating to intravenous injection were analysed using a two-compartment open model curve fit. 4. Lower values of systemic bioavailability were observed in intoxicated birds (30.9 and 33.9%) than healthy ones (43.7 and 57.3%) after oral and i.m. administration, respectively. 5. The highest concentration of doxy residues were present in liver, kidney and serum followed by heart and muscles. Doxy residue concentrations in edible tissues was below the EEC limit 6 d after cessation of oral or i.m. medication with 15 mg/kg body weight twice daily for 5 successive days.  相似文献   

5.
OBJECTIVES: To determine pharmacokinetic characteristics of marbofloxacin after a single IV and oral administration and tissue residues after serial daily oral administration in chickens. ANIMALS: 40 healthy broiler chickens. PROCEDURE: Two groups of chickens (groups A and B; 8 chickens/group) were administered a single IV and oral administration of marbofloxacin (2 mg/kg). Chickens of group C (n = 24) were given serial daily doses of marbofloxacin (2 mg/kg, PO, q 24 h for 3 days). Plasma (groups A and B) and tissue concentrations (group C) of marbofloxacin and its major metabolite N-desmethyl-marbofloxacin were determined by use of high-performance liquid chromatography. Residues of marbofloxacin and N-desmethylmarbofloxacin were measured in target tissues. RESULTS: Elimination half-life and mean residence time of marbofloxacin in plasma were 5.26 and 4.36 hours after IV administration and 8.69 and 8.55 hours after oral administration, respectively. Maximal plasma concentration was 1.05 microg/ml, and interval from oral administration until maximum concentration was 1.48 hours. Oral bioavailability of marbofloxacin was 56.82%. High concentrations of marbofloxacin and N-desmethyl-marbofloxacin were found in the kidneys, liver, muscles, and skin plus fat 24 hours after the final dose of marbofloxacin; however, marbofloxacin and N-desmethyl-marbofloxacin were detected in only hepatic (27.6 and 98.7 microg/kg, respectively) and renal (39.7 and 69.1 microg/kg, respectively) tissues 72 hours after termination of marbofloxacin treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of pharmacokinetic data obtained in this study reveals that a minimal therapeutic dose of 2 mg/kg, PO, every 24 hours should be appropriate for control of most infections in chickens.  相似文献   

6.
Following a single oral dose of trimethoprim (10 mg/kg b. wt.) in normal fowls, the highest serum concentration achieved 4 hours post-administration with value of 0.64 microgram/ml. The absorption half-life time was 0.64 hours. The elimination half life was 4.73 hours. During repeated oral administration of 10 mg/kg b. wt., once daily for five consecutive days, trimethoprim peaked in serum, 4 h after each dose. Trimethoprim persisted in all fowl's tissues for 96 hours after stopping of drug administration. After oral administration of josamycin (18 mg/kg b. wt.) and trimethoprim (10 mg/kg b. wt.) in normal fowls, a maximum serum concentration of trimethoprim was recorded at 2 hours with half-life of absorption (t0.5(ab)) valued 0.74 hour. The elimination half-life (t0.5 beta) was 4.37 hours. During repeated oral administration of josamycin (18 mg/kg b. wt.) and trimethoprim (10 mg/kg b. wt.) once daily for five consecutive days in normal fowls, the highest plasma concentrations of trimethoprim occurred 2 hours post each dose. The daily maximum plasma concentrations during the repeated oral administration of both tested drugs were nearly constant.  相似文献   

7.
Concentrations of enrofloxacin equivalent activity were determined by microbiological assay in the plasma of healthy and E. coli-infected broilers following single intravenous and oral administrations at 10 mg/kg. Tissue distribution and residue-depletion following multiple oral doses (10 mg/kg for 3 successive days) were investigated. Pharmacokinetic variables were determined using compartmental and non-compartmental analytical methods. Plasma enrofloxacin concentrations after intravenous dosing to healthy and infected birds were best described by a two-compartments model. Enrofloxacin concentrations in plasma of infected birds were lower than those of healthy ones. The disposition kinetics of intravenously administered drug in healthy and infected birds were somewhat different. The elimination half-life (t1/2 beta) was 4.75 vs. 3.63 h; mean residence time (MRT) was 6.72 vs 4.90 h; apparent volume of the central compartment (Vc) was 1.11 vs 1.57 l/kg; rate constant for transfer from peripheral to central compartment (k21) was 1.15 vs 1.41 h-1 and total body clearance (ClB) was 0.35 vs 0.53 l/h/kg in healthy and infected birds, respectively. After oral administration, the absorption half-life (t1/2abs) in the infected birds was significantly longer than in healthy birds, while elimination half-life (t1/2el) and MRT were significantly shorter. Bioavailability was higher in infected birds (72.50%) as compared to healthy ones (69.78%). Enrofloxacin was detected in the tissues of healthy and infected birds after daily oral dosing of 10 mg/kg for 3 days. It was more concentrated in liver, kidney, and breast muscle. The minimal inhibitory concentration (MIC) of enrofloxacin against E. coli was 0.064 microgram/ml. On the basis of maintaining enrofloxacin plasma concentrations over the MIC, a dose of 10 mg/kg given intravenously every 20.14 hrs or orally every 20.86 hrs should provide tissue concentrations effective against E. coli infection in chickens.  相似文献   

8.
Biological availability and pharmacokinetic properties of tylosin were determined in broiler chickens after oral (p.o.) and intravenous (i.v.) administration at a dose of 10 mg/kg. The calculated bioavailability--F%, by comparing AUC values--p.o. and AUC--i.v., ranged from 30%-34%. After intravenous injection tylosin was rapidly distributed in the organism, showing elimination half-life (t1/2 beta) values of 0.52 h and distribution volume (Vd) of 0.69 L/kg, at a clearance rate (Cl) of 5.30 +/- 0.59 ml/min/kg. After oral administration, tylosin has a similar distribution volume (Vd = 0.85 L/kg), while the elimination half-life t1/2 beta of 2.07 h was four times bigger than after i.v. administration at Cl = 4.40 +/- 0.27 ml/min/kg. The obtained value tmax = 1.5 h for tylosin after oral administration indicates that using this antibiotic with drinking water in broiler chickens is the method of choice. However, a relatively low value Cmax = 1.2 micrograms/ml after oral administration of tylosin shows that dosing of this antibiotic in broiler chickens should be higher than in other food producing animals.  相似文献   

9.
1. Disposition kinetics of florfenicol were studied in Pasteurella-free (control) and Pasturella-infected Muscovy ducks following intravenous and/or intramuscular injection in a single dose of 30 mg/kg body weight. In addition, the tissue distribution and residual pattern of the drug were determined in diseased ducks. 2. The maximum serum concentration of florfenicol in control healthy and infected ducks was reached 1 hour after intramuscular injection but the peak concentration in control ducks was higher than in infected birds. 3. The volume of distribution, total body clearance and systemic bioavailability were higher in infected ducks than in control birds 5.15 l/kg, 10.24 ml/kg/min and 73.03% respectively. Data relating to intravenous injection were analysed using a 2 compartment open model curve fit. 4. Florfenicol was not detected in the serum of infected ducks on the 7th day following intramuscular administration of 30 mg/kg body weight twice daily for 5 successive days but was detected in kidney, bile and liver.  相似文献   

10.
The metabolic behaviour and tissue distribution of nalidixic acid in normal and E. coli infected chickens were carried out using spectrofluorimetric and microbiological techniques following a single and multiple oral administration of 25 mg/kg b. wt. The obtained results revealed that free nalidixic acid (free NA) is the major fraction of the total drug concentration in serum, liver and kidneys. The free active nalidixic acid was in a higher concentration than hydroxynalidixic acid (free HNA) and both conjugates of NA and HNA following single and multiple oral administration. The obtained results showed that nalidixic acid was highly distributed in all tissues in normal and E. coli infected chickens, with the highest concentrations in kidneys, liver and heart and lowest concentrations in brain, muscles and intestine following oral administration of 25 mg/kg b. wt. twice daily for 5 successive days. Spectrofluorimetic technique was more sensitive for nalidixic acid determination than microbiological method. Nalidixic acid revealed longer withdrawal time in diseased chickens than in normal chickens.  相似文献   

11.
Josamycin is a macrolide antibiotic which is produced by fermentation of cultures of Streptomyces narbonensis. It was once administrated (18 mg/kg b. wt.) in fowls via intravenous, oral and intramuscular routes for determination of blood concentration, kinetic behaviour and bioavailability. Following a single intravenous injection, the blood concentration-time-curve indicated a two compartments open model with an elimination half life value (t1/2 beta) of 1.83 +/- 0.06 hours. Both oral and intramuscular routes showed higher values, i.e. 2.33 +/- 0.13 and 2.85 +/- 0.17 hours. The lower apparent volume of distribution of Josamycin in fowls than one liter/kg elucidate higher distribution in blood than in tissues. Systemic bioavailability after both oral and intramuscular administration, i.e. 33.88 +/- 2.4 and 27.28 +/- 1.46% respectively, showed lower absorption from site of i.m. application. Josamycin was administered (18 mg/kg b. wt.) intramuscularly and orally once daily for 5 consecutive days. The drug peaked in serum 1 hour (intramuscular) and 2 hours (orally) after each dose. The recorded results revealed that serum level of Josamycin was higher after oral application (29.98 +/- 1.92 micrograms/ml) than after i.m. application. The drug persisted in the lung tissues and fat for 72 hours after administration and disappeared from all body tissues 96 hours after the last dose of repeated administration.  相似文献   

12.
Disposition kinetics of danofloxacin and ciprofloxacin in broiler chickens.   总被引:3,自引:0,他引:3  
Disposition kinetics of danofloxacin and ciprofloxacin were studied in broiler chickens following intravenous, intramuscular and oral administration in a single dose of 5 and 10 mg/kg-1 body weight respectively. In addition, tissue distribution and residual pattern of both drugs were determined. The maximum serum concentration (Cmax) after intramuscular and oral administration were 1.03 and 0.55 mu/ml for danofloxacin and 2.92 and 1.24 mu/ml for ciprofloxacin attained at 0.8 and 2.43 and 0.55 and 1.27 hours for danofloxacin and ciprofloxacin respectively. The volume of distribution and systemic bioavailability were higher for danofloxacin (Vdss 2.21 L/kg and F% 96.56 and 81.4%) as compared with ciprofloxacin (Vdss 1.41 L/kg and F% 75.5 and 29.4%). Data relating to intravenous injection for both drugs were analyzed using a two compartment open model curve fit. Danofloxacin and ciprofloxacin were not detected in the serum of broilers at the 5th and 3rd day respectively following the drugs withdrawal while were detected in liver, kidneys, spleen and lungs. Danofloxacin completely disappeared from all tissues at the 13th day after stopping of the drug medication but ciprofloxacin disappeared after 5 days only.  相似文献   

13.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The bioavailability of amprolium (APL) was measured after intravenous (i.v.) and oral (p.o.) administration to chickens. Twelve healthy chickens weighing 1.28–1.41 kg received a dose of 13 mg APL/kg intravenously, and 13 or 26 mg APL/kg orally in both a fasted and a nonfasted condition in a Latin square design. Plasma samples were taken from the subwing vein for determination of APL concentration by HPLC method. The data following intravenous and oral administration were best fitted by 2-compartment and 1-compartment models, respectively, using weighted nonlinear least squares regression. The half-life beta t ½β, volume of distribution ( V d) and total body clearance ( Cl ) after intravenous administration were 0.21 h, 0.12 L/kg and 1.32 L/h.kg, respectively. The elimination half-life ( t ½ Kel) after oral administration was 0.292–0.654 h which is 1.5–3.2 times longer than after intravenous administration, suggesting the presence of a 'flip-flop' phenomenon in chickens. The maximum plasma concentration ( C max) of 13 mg/kg APL administered orally to chickens during fasting was significantly (about four times) higher than that during nonfasting ( P < 0.05). Bioavailability during nonfasting was from 2.3 to 2.6%, and 6.4% during fasting.  相似文献   

15.
Six pigs were used in a two-period crossover study to investigate the pharmacokinetics of amoxycillin after single intravenous and oral doses of 20 mg/kg bodyweight. Twelve pigs were used to study the residues of the drug in muscle, kidney, liver and fat after they had received daily oral doses of 20 mg/kg amoxycillin for five days. The mean (sd) elimination half life (t1/2beta) and mean residence time of amoxycillin in plasma were 3.38 (0.30) and 3.54 (0.43) hours, respectively, after intravenous administration and 4.13 (0.50) and 4.47 (0.30) hours, respectively, after oral administration. After oral administration, the maximum plasma concentration (Cmax) was 7.37 (0.42) microg/ml and it was reached after 0.97 (0.29) hours. Six days after the last oral dose, the mean concentration of amoxycillin in the pigs' kidneys was 21.38 ng/g and in the liver it was 12.32 ng/g, but no amoxycillin could be detected in fat or muscle; the concentrations of amoxycillin in edible tissues were less than the European Union maximal residue limit of 50 microg/kg.  相似文献   

16.
The pharmacokinetics of amoxicillin (Amx) were determined in pigs following intravenous (IV) administration of a single dose of 15 mg/kg and a single dose of 15 mg/kg of a new oral formulation (Amx-FP containing 10% amoxicillin). Residue studies were performed to determine residues in edible tissues of healthy pigs after chronic oral administration of Amx-FP at a daily dose of 15 mg/kg for five consecutive days. After IV administration, the plasma concentration was characteristic of a two-compartment open model. The main pharmacokinetic variables were: t(1/2lambda(n)), MRT=90.1 min, V(darea)=0.81 L/kg and Cl(b)=3.9 mL/kg/min. After single oral administration the main pharmacokinetic variables were: C(max)=758 mug/L, t(max)=347 min and Cl(b/f)=3.7 mL/kg/min for Amx-FP. The oral bioavailability (F) was calculated at 11% for Amx-FP. Based on maximum residue levels (MRL) for AMX in pigs established at 50 microg/kg for all tissues, the withdrawal times of AMX in muscle and skin plus fat were estimated (95% tolerance limit and 95% confidence) to fall below the MRL after a withdrawal period of seven days. Levels of AMX in the liver and kidneys were estimated to fall below the MRL after a withdrawal period of four days.  相似文献   

17.
The non-steroidal anti-inflammatory drug (NSAID) carprofen was administered to dogs as a mixed-micelle solution at a dose rate of 0–7 mg/kg intravenously, as a palatable paste at a dose rate of 0–7 mg/kg orally, and as an oral tablet formulation at a dose rate of 0–7 mg/kg and 4-0 mg/kg orally for pharmacokinetic studies. It was also administered as an oral tablet formulation at a dose rate of 9-0 mg/kg orally daily for 14 days in a tolerance study. The pharmacokinetics following intravenous administration at a dose rate of 0–7 mg/kg indicate that carprofen has a small volume of distribution (Vd area = 0–09-0-25 litres), a slow systemic clearance (Cls = 1–34-5-57 ml/min) and an elimination half-life of 3–20-11-77 hours. Both oral paste and tablet preparations were highly bioavailable and absorption was proportional to dose rate at 0–7 mg/kg and 4-0 mg/kg bodyweight. Given once daily at dose rates likely to be used clinically it is unlikely to accumulate in the plasma. Carprofen administered as a palatable paste at a dose rate of 0–7 mg/kg did not inhibit serum thromboxane generation and this drug may therefore have a mode of action different from most NSAIDs. Carprofen was well tolerated when administered as an oral tablet formulation at a dose rate of 9.0 mg/kg daily for 14 days in healthy beagle dogs.  相似文献   

18.
Twenty four isolates of Pasteurella multocida were taken from 74 diseased rabbits which suffered from respiratory manifestations with an incidence 35.1%. All isolated strains were identified biochemically and serologically as Pasteurella multocida type 3. The in vitro sensitivity test proved that Ciprofloxacin was the most effective antibiotic which was used for treatment of diseased rabbits. There was no isolation of Pasteurella multocida organism from all treated rabbits with Ciprofloxacin which can eliminate the causative organism, and control the infection within the examined rabbit colony. The kinetics of Ciprofloxacin, a fluoroquinolone, was studied after multiple oral and I/V dose of 20 mg/kg b. wt. In healthy rabbits and in those diseased with Pasteurella multocida Ciprofloxacin was given at a dose (20 mg kg-1/day) orally for successive 5 days. Serum levels reached their peak Tmax, at 2.321 and 2.524 hrs. in healthy and infected rabbits after oral administration, with absorption half-life (t0.5 (ab)) of 1.22 and 2.41 hrs. and elimination half-life (t0.5 (B)) of 2.24 and 1.28 hour respectively. Following I/V injection the kinetics of Ciprofloxacin follow two compartment model with (t0.5 (B)) 1.201 and 0.82 hour for normal and infected rabbits, (Vd (area)) of 0.653 and 0.563 L/kg and total body clearance CL(B) of 0.385 and 0.358 L/kg/hr respectively. High tissue concentrations of the drug were recorded in the kidneys, lung, spleen, liver, and muscle of diseased rabbits, while in healthy animal group the highest concentrations were achieved in kidney, liver, lung, spleen, and muscle. The high Ciprofloxacin tissue concentrations indicate that the Ciprofloxacin may be an excellent drug for treating urinary and respiratory tract infections.  相似文献   

19.
The pharmacokinetics of flumequine was studied in 1-, 5- and 18-week-old veal calves. A two-compartment model was used to fit the plasma concentration-time curve of flumequine after the intravenous injection of 10 mg/kg of a 10% solution. The elimination half-life (t1/2 beta) of the drug ranged from 6 to 7 h. The Vd beta and ClB of 1-week-old calves (1.07 l/kg, 1.78 ml/min/kg) were significantly lower than those of 5-week-old (1.89 l/kg, 3.23 ml/min/kg) and 18-week-old calves (1.57 l/kg, 3.10 ml/min/kg). After the oral administration of 10 mg/kg of a 2% flumequine formulation mixed with milk replacer, the Cmax was highest in 1-week-old (9.27 micrograms/ml) and lowest in 18-week-old calves (4.47 micrograms/ml). The absorption was rapid (Tmax of approximately 3 h) and complete. When flumequine itself and a formulation containing 2% flumequine and 20 X 10(6) iu of colistin sulphate were mixed with milk replacer and administered at the same dose rate, absorption was incomplete and Cmax was lower. The main urinary metabolite of flumequine was the glucuronide conjugate (approximately 40% recovery within 48 h of intravenous injection) and the second most important metabolite was 7-hydroxy-flumequine (approximately 3% recovery within 12 h of intravenous injection). Only 3.2-6.5% was excreted in the urine unchanged. After oral administration a 'first-pass' effect was observed, with a significant increase in the excretion of conjugated drug. For 1-week-old calves it is recommended that the 2% formulation should be administered at a dose rate of 8 mg/kg every 24 h or 4 mg/kg every 12 h; for calves over 6 weeks old, the dose should be increased to 15 mg/kg every 24 h or 7.5 mg/kg every 12 h. The formulation containing colistin sulphate should be administered to 1-week-old calves at a flumequine dose of 12 mg/kg every 24 h or 6 mg/kg every 12 h.  相似文献   

20.
The effect of route of administration and dose of enrofloxacin (Baytril) on the development of fluoroquinolone resistance in Salmonella and Escherichia coli in the intestinal tract of pigs was investigated. Healthy pigs at the age of 8-10 weeks were infected with a mixture of susceptible wild-type (MICciprofloxacin = 0.03 microg/ml) and a mutant Salmonella typhimurium with reduced susceptibility to fluoroquinolones (MICciprofloxacin = 0.5 microg/ml) (in the ratio 99:1) and treated with 2.5 mg/kg bwt enrofloxacin by either intramuscular (i.m.) or oral (p.o.) administration at time points either 4 or 24 h after the infection. The treatment via the intramuscular route of administration (24 h after the infection) was carried out with elevated doses of 7.5 and 15 mg/kg bwt as well. Emergence of resistance during a 3-day treatment period and persistence up to 13 days after treatment, was monitored by counting the resistant and total number of coliforms and Salmonella in faeces of the pigs. High frequencies of fluoroquinolone resistance developed rapidly among the coliform flora independent of route of administration, dose or time of initiation of the treatment. Selection for resistance among the artificially introduced Salmonella was reduced by using the intramuscular route and by escalating the dose 3 or 6 times the recommended dose of 2.5 mg/kg bwt, which also resulted in shortening of the period, in which the pigs were shedding Salmonella. The resistance among the coliform flora persisted for at least 2 weeks. The Salmonella infection was cleared in all cases during the 2 weeks independent of frequency of resistance. The study showed that resistance is very easily selected by treatment with enrofloxacin at the recommended dose 2.5 mg/kg bwt, but also that the intensity of selection can be reduced by using intramuscular dosing (instead of oral dosing) and by escalating that i.m. dose. The results obtained with Salmonella also showed that even very small changes in the active drug concentrations might completely change the intensity of selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号