首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addressing the spatial and temporal variability of crops for agricultural management requires intensive and periodical information gathering from the crop fields. Unmanned Aerial Vehicle (UAV) photogrammetry is a quick and affordable method for information collecting; it provides spectral and spatial information when required with the added value of Digital Surface Models (DSMs) that reconstruct the crop structure in 3D using “structure from motion” techniques. In the full process from UAV flights to image analysis, DSM generation is one bottle-neck due to its high processing time. Despite its importance, the optimization of the required forward overlap for saving time in DSM generation has not yet been studied. UAV images were acquired at 50 and 100 m flight altitudes over two olive orchards with the aim of generating DSMs representing the tree crowns. Several DSMs created with different forward laps (in intervals of 5–6% from 58 to 97%) were evaluated in order to determine the optimal generation time according to the accuracy of tree crown measurements computed from each DSM. Based on our results, flying at 100 m altitude and with a 95% forward lap reported the best configuration. From the analysis derived from this configuration, tree volume was estimated with 95% accuracy. In addition, computing time was 85% lower in comparison to the maximum overlap studied (97%). It allowed computing the 3D features of 600 trees in a 3-ha parcel in a highly accurate and quick (a few hours after the UAV flights) manner by using a standard computer.  相似文献   

2.
The aim of this paper is to assess co-registration errors in remote imagery through the AUGEO system, which consists of geo-referenced coloured tarps acting as terrestrial targets (TT), captured in the imagery and semi-automatically recognised by AUGEO2.0® software. This works as an add-on of ENVI® for image co-registration. To validate AUGEO, TT were placed in the ground, and remote images from satellite Quick Bird (QB), airplanes and unmanned aerial vehicles (UAV) were taken at several locations in Andalusia (southern Spain) in 2008 and 2009. Any geo-referencing system tested showed some error in comparison with the Differential Global Positioning System (DGPS)-geo-referenced verification targets. Generally, the AUGEO system provided higher geo-referencing accuracy than the other systems tried. The root mean square errors (RMSE) from the panchromatic and multi-spectral QB images were around 8 and 9 m, respectively and, once co-registered by AUGEO, they were about 1.5 and 2.5 m, for the same images. Overlapping the QB-AUGEO-geo-referenced image and the National Geographic Information System (NGIS) produced a RMSE of 6.5 m, which is hardly acceptable for precision agriculture. The AUGEO system efficiently geo-referenced farm airborne images with a mean accuracy of about 0.5–1.5 m, and the UAV images showed a mean accuracy of 1.0–4.0 m. The geo-referencing accuracy of an image refers to its consistency despite changes in its spatial resolution. A higher number of TT used in the geo-referencing process leads to a lower obtained RMSE. For example, for an image of 80 ha, about 10 and 17 TT were needed to get a RMSE less than about 2 and 1 m. Similarly, with the same number of TT, accuracy was higher for smaller plots as compared to larger plots. Precision agriculture requires high spatial resolution images (i.e., <1.5 m pixel?1), accurately geo-referenced (errors <1–2 m). With the current DGPS technology, satellite and airplane images hardly meet this geo-referencing requirement; consequently, additional co-registration effort is needed. This can be achieved using geo-referenced TT and AUGEO, mainly in areas where no notable hard points are available.  相似文献   

3.
Site-specific weed management is defined as the application of customised control treatments only where weeds are located within the crop-field by using adequate herbicide according to weed emergence. The aim of the study was to generate georeferenced weed seedling infestation maps in two sunflower fields by analysing overlapping aerial images of the visible and near-infrared spectrum (using visible or multi-spectral cameras) collected by an unmanned aerial vehicle (UAV) flying at 30 and 60 m altitudes. The main tasks focused on the configuration and evaluation of the UAV and its sensors for image acquisition and ortho-mosaicking, as well as the development of an automatic and robust image analysis procedure for weed seedling mapping used to design a site-specific weed management program. The control strategy was based on seven weed thresholds with 2.5 steps of increasing ratio from 0 % (herbicide must be applied just when there is presence or absence of weed) to 15 % (herbicide applied when weed coverage >15 %). As a first step of the imagery analysis, sunflower rows were correctly matched to the ortho-mosaicked imagery, which allowed accurate image analysis using object-based image analysis [object-based-image-analysis (OBIA) methods]. The OBIA algorithm developed for weed seedling mapping with ortho-mosaicked imagery successfully classified the sunflower-rows with 100 % accuracy in both fields for all flight altitudes and camera types, indicating the computational and analytical robustness of OBIA. Regarding weed discrimination, high accuracies were observed using the multi-spectral camera at any flight altitude, with the highest (approximately 100 %) being those recorded for the 15 % weed threshold, although satisfactory results from 2.5 to 5 % thresholds were also observed, with accuracies higher than 85 % for both field 1 and field 2. The lowest accuracies (ranging from 50 to 60 %) were achieved with the visible camera at all flight altitudes and 0 % weed threshold. Herbicide savings were relevant in both fields, although they were higher in field 2 due to less weed infestation. These herbicide savings varied according to the different scenarios studied. For example, in field 2 and at 30 m flight altitude and using the multi-spectral camera, a range of 23–3 % of the field (i.e., 77 and 97 % of area) could be treated for 0–15 % weed thresholds. The OBIA procedure computed multiple data which permitted calculation of herbicide requirements for timely and site-specific post-emergence weed seedling management.  相似文献   

4.
Precision Agriculture - The global spatial accuracy of ortho-mosaics based on images from consumer-grade unmanned aerial vehicles (UAVs) is relatively low. The use of ground control points (GCPs)...  相似文献   

5.
高空间分辨率森林公园遥感影像图,能反映森林公园景观布局特点和景观要素间空间特征关系。以植被覆盖率90%,面积120 hm2的上海滨江森林公园为研究对象,使用小型UAV采集影像,借助瑞士Pix4UAV软件尝试进行1∶1 000森林公园正射影像制作。同时,分析影像同名点连接度分布与不同森林植被覆盖类型间关系,探讨像控点数量对制图精度的影响。试验表明,小型固定翼UAV配合地面像控点采集可以快速准确完成森林公园高分辨率影像制图,正射影像空间分辨率为0.052 m,平面位置X方向误差为0.048~0.190 m;Y方向误差为0.013~0.112 m,平面偏移量为0.048~0.194 m;综合考虑制图精度与外业数据采集效率,建议的像控点数量为16~26个。针叶林景观区的影像对同名点连接数在200以下,公园内及周边建筑密度较大区域影像对同名点连接数在1 500~2 000之间,杉科植物景观区、专类植物景观区、入口景观区、原生林景观区以及草坪游憩区匹配点连接数介于两者之间,可能存在不同区域制图精度不同的现象。  相似文献   

6.
7.
Site-specific weed management can allow more efficient weed control from both an environmental and an economic perspective. Spectral differences between plant species may lead to the ability to separate wheat from weeds. The study used ground-level image spectroscopy data, with high spectral and spatial resolutions, for detecting annual grasses and broadleaf weeds in wheat fields. The image pixels were used to cross-validate partial least squares discriminant analysis classification models. The best model was chosen by comparing the cross-validation confusion matrices in terms of their variances and Cohen’s Kappa values. This best model used four classes: broadleaf, grass weeds, soil and wheat and resulted in Kappa of 0.79 and total accuracy of 85 %. Each of the classes contains both sunlit and shaded data. The variable importance in projection method was applied in order to locate the most important spectral regions for each of the classes. It was found that the red-edge is the most important region for the vegetation classes. Ground truth pixels were randomly selected and their confusion matrix resulted in a Kappa of 0.63 and total accuracy of 72 %. The results obtained were reasonable although the model used wheat and weeds from different growth stages, acquisition dates and fields. It was concluded that high spectral and spatial resolutions can provide separation between wheat and weeds based on their spectral data. The results show feasibility for up-scaling the spectral methods to air or spaceborne sensors as well as developing ground-level application.  相似文献   

8.
基于机载高光谱端元提取分析棉花生长期光谱变化   总被引:1,自引:0,他引:1  
【目的】棉花在不同生长期的波谱曲线变化具有规律性,研究其时间序列上的反射光谱变化趋势与规律并监测长势,为基于无人机多光谱、高光谱遥感的作物长势监测提供借鉴和参考。【方法】使用多旋翼无人机搭载Rikola高光谱成像仪,获取棉花从花期到后期之间的高光谱影像。使用纯净像元指数算法和最大单形体体积算法进行端元提取,并以SR-3500光谱仪采集的地面光谱曲线为标准,光谱角度为评价指标,依次从端元提取算法效果、不同航高数据对比、光谱相关性、多期光谱曲线变化趋势等分析。【结果】最大单形体体积算法在60、80、100 m航高下波谱角度结果分别为0.065 8、0.065 9、0.067 7,相较于纯净像元指数算法结果更接近地面光谱仪数据,具有较优的相关性(R2均在0.99以上),且能更好地提取小样本端元。航高对端元提取的影响较小,同种算法在不同航高下提取结果差异均在2%以下。不同生长期棉花波谱曲线变化呈规律性,吸收谷与红边值在7月中旬到达峰值。标准植被指数与比值植被指数在7月上中旬达到最大值(0.841 7、11.630 5),增强型植被指数、差值植被指数、优化土壤调节植被指数在7月中下旬达到最大值(0.818 9、0.501 3、0.501 2)。【结论】最大单形体体积算法可较好的从棉花高光谱影像中提取出棉花波谱曲线,且100 m为较优的无人机数据采集航高。棉花在7月光合作用最大,对红光的强吸收、近红外波段强反射现象最为明显。  相似文献   

9.
There is growing evidence that potassium deficiency in crop plants increases their susceptibility to herbivorous arthropods. The ability to remotely detect potassium deficiency in plants would be advantageous in targeting arthropod sampling and spatially optimizing potassium fertilizer to reduce yield loss due to the arthropod infestations. Four potassium fertilizer regimes were established in field plots of canola, with soil and plant nutrient concentrations tested on three occasions: 69 (seedling), 96 (stem elongation), and 113 (early flowering) days after sowing (DAS). On these dates, unmanned aerial vehicle (UAV) multi-spectral images of each plot were acquired at 15 and 120 m above ground achieving spatial (pixel) resolutions of 8.1 and 65 mm, respectively. At 69 and 96 DAS, field plants were transported to a laboratory with controlled lighting and imaged with a 240-band (390–890 nm) hyperspectral camera. At 113 DAS, all plots had become naturally infested with green peach aphids (Hemiptera: Aphididae), and intensive aphid counts were conducted. Potassium deficiency caused significant: (1) increase in concentrations of nitrogen in youngest mature leaves, (2) increase in green peach aphid density, (3) decrease in vegetation cover, (4) decrease in normalized difference vegetation indices (NDVI) and decrease in canola seed yield. UAV imagery with 65 mm spatial resolution showed higher classification accuracy (72–100 %) than airborne imagery with 8 mm resolution (69–94 %), and bench top hyperspectral imagery acquired from field plants in laboratory conditions (78–88 %). When non-leaf pixels were removed from the UAV data, classification accuracies increased for 8 mm and 65 mm resolution images acquired 96 and 113 DAS. The study supports findings that UAV-acquired imagery has potential to identify regions containing nutrient deficiency and likely increased arthropod performance.  相似文献   

10.
基于无人机平台和图像分析的田间作物检测   总被引:2,自引:0,他引:2  
为高效、精准、及时地获取农作物的空间分布及其面积,建立了基于无人机平台和图像分析的大田作物检测方法:采用小型四旋翼无人机搭载高性能数码相机获取作物图像后,通过图元分割和目视解译获得目标样本,提取其21维颜色特征和3维纹理特征,采用BP神经网络分类器和像素累加法进行作物种类识别和面积测量。试验结果表明,系统对小麦、油菜、蚕豆和大蒜的平均识别率达86%,面积测量的平均相对误差约为9.62%。  相似文献   

11.
Efficient crop protection management requires timely detection of diseases. The rapid development of remote sensing technology provides a possibility of spatial continuous monitoring of crop diseases over a large area. In this study, to monitor powdery mildew in winter wheat in an area where a severe disease infection occurred, the capability of high resolution (6 m) multi-spectral satellite imagery, SPOT-6, in disease mapping was assessed and validated using field survey data. Based on a rigorous feature selection process, five disease sensitive spectral features: green band, red band, normalized difference vegetation index, triangular vegetation index, and atmospherically-resistant vegetation index were selected from a group of candidate spectral features/variables. A spectral correction was processed on the selected features to eliminate possible baseline effect across different regions. Then, the disease mapping method was developed based on a spectral angle mapping technique. By validating against a set of field survey data, an overall mapping accuracy of 78 % and kappa coefficient of 0.55 were achieved. Such a moderate but practically acceptable accuracy suggests that the high resolution multi-spectral satellite image data would be of great potential in crop disease monitoring.  相似文献   

12.
《农业科学学报》2019,18(11):2628-2643
Timely crop acreage and distribution information are the basic data which drive many agriculture related applications. For identifying crop types based on remote sensing, methods using only a single image type have significant limitations. Current research that integrates fine and coarser spatial resolution images, using techniques such as unmixing methods, regression models, and others, usually results in coarse resolution abundance without sufficient detail within pixels, and limited attention has been paid to the spatial relationship between the pixels from these two kinds of images. Here we propose a new solution to identify winter wheat by integrating spectral and temporal information derived from multi-resolution remote sensing data and determine the spatial distribution of sub-pixels within the coarse resolution pixels. Firstly, the membership of pixels which belong to winter wheat is calculated using a 25-m resolution resampled Landsat Thematic Mapper (TM) image based on the Bayesian equation. Then, the winter wheat abundance (acreage fraction in a pixel) is assessed by using a multiple regression model based on the unique temporal change features from moderate resolution imaging spectroradiometer (MODIS) time series data. Finally, winter wheat is identified by the proposed Abundance-Membership (AM) model based on the spatial relationship between the two types of pixels. Specifically, winter wheat is identified by comparing the spatially corresponding 10×10 membership pixels of each abundance pixel. In other words, this method takes advantage of the relative size of membership in a local space, rather than the absolute size in the entire study area. This method is tested in the major agricultural area of Yiluo Basin, China, and the results show that acreage accuracy (Aa) is 93.01% and sampling accuracy (As) is 91.40%. Confusion matrix shows that overall accuracy (OA) is 91.4% and the kappa coefficient (Kappa) is 0.755. These values are significantly improved compared to the traditional Maximum Likelihood classification (MLC) and Random Forest classification (RFC) which rely on spectral features. The results demonstrate that the identification accuracy can be improved by integrating spectral and temporal information. Since the identification of winter wheat is performed in the space corresponding to each MODIS pixel, the influence of differences of environmental conditions is greatly reduced. This advantage allows the proposed method to be effectively applied in other places.  相似文献   

13.
Mapping wheat nitrogen (N) uptake at 5 m spatial resolution could provide growers with new insights regarding nitrogen-use efficiency at the field scale. This study explored the use of spectral information from high resolution (5 × 5 m) RapidEye satellite data at peak leaf area index (LAI) to estimate end-of-season cumulative N uptake of wheat (Triticum spp.) in a heterogeneous, rainfed system. The primary objectives were to evaluate the usefulness of simple, widely used vegetation indices (VIs) from RapidEye as a tool to map crop N uptake over three growing seasons, farms and growing conditions, and to examine the usefulness of remotely sensed N uptake maps for precision agriculture applications. Data on harvested wheat N was collected at twelve plots over three seasons at four farms in the Palouse region of Northern Idaho and Eastern Washington. Seventeen commonly used spectral VIs were computed for images collected during ‘peak greenness’ (maximum LAI) to determine which VIs would be most appropriate for estimating wheat N uptake at harvest. The normalized difference red-edge index was the top performing VI, explaining 81 % of the variance in wheat N uptake with a regression slope of 1.06 and RMSE of 15.94 kg/ha. Model performance was strong across all farms over all three seasons regardless of crop variety, allowing the creation of high accuracy wheat N uptake maps. In conclusion, for this particular agro-ecosystem, mid-season VIs that incorporate the use of the NIR and red-edge bands are generally better predictors of end-of-season crop N uptake than VIs that do not include these bands, thereby further enabling their use in precision agriculture applications.  相似文献   

14.
15.
[目的]探究不同高度下地物的光谱特征变化以及不同时期、不同高度下地物的有效快速识别方法。[方法]以2016年8月7日200 m高空高光谱影像和2016年9月25日100、200、300 m高空高光谱影像共4景影像为研究对象,研究不同高度下地物的高光谱特征变化以及不同时期、不同高度下地物的分类精度。[结果]不同高度下,植被的光谱反射率差异显著,随着高度的升高,植被特有的特征如"绿峰"降低、"红谷"升高、"红边位置"出现"红移",在近红外范围内,光谱反射率降低;综合考虑人工参与程度、处理时间和分类精度等方面,基于ISODATA法可实现不同时期、不同高度下地物的快速识别研究。[结论]该研究结果为利用无人机高光谱遥感在其他领域的应用奠定了基础。  相似文献   

16.
植株计数是农民、育种专家等在整个作物生长季评估作物生长状况和管理实践的最常用方法之一,可用来进行合理的田间规划以及管理。针对高密度种植试验区高通量获取玉米自动株数方法匮乏的问题,本研究利用无人机遥感平台,获取田间314个不同基因型的玉米高密度育种小区的数码影像和激光雷达(light detection and ranging,LiDAR)点云数据,发展了一种结合玉米三维空间信息的固定窗口局部最大值算法,实现了高密度玉米育种小区成株数的自动检测,并对比了基于此两种不同数据源的检测精度。该方法以冠层高度模型(canopy height model,CHM)中包含的株高信息为基础,以玉米种植株距为固定窗口进行单株玉米种子点检测,并将检测到的种子点与目视解译的玉米位置进行空间匹配来进行精度的评估。结果表明,基于无人机数码影像构建3种空间分辨率CHM的综合检测精度分别为81.30%、83.11%和78.93%;基于无人机LiDAR的综合精度分别为82.33%、88.66%和81.46%;基于两种数据源构建的CHM,均在空间分辨率为0.05 m时,获得最佳的检测精度。此外,当空间分辨率相同时,LiDAR数据检测精度略优于无人机数码影像,无人机数码传感器由于其成本低、易于操作等优势,在大面积、高密度育种小区的玉米高通量单株检测中表现出更大的潜力。本研究实现了对密植玉米育种试验区玉米株数的自动计数,为表型筛选、田间管理和精准估产等提供依据。  相似文献   

17.
Nitrogen (N) fertilizer application can lead to increased crop yields but its use efficiency remains generally low which can cause environmental problems related to nitrate leaching as well as nitrous oxide emissions to the atmosphere. The objectives of this study were to: (i) to demonstrate that properly identified variable rates of N fertilizer lead to higher use efficiency and (ii) to evaluate the capability of high spectral resolution satellite to detect within-field crop N response using vegetation indices. This study evaluated three N fertilizer rates (30, 70, and 90 kg N ha?1) and their response on durum wheat yield across the field. Fertilizer rates were identified through the adoption of the SALUS crop model, in addition to a spatial and temporal analysis of observed wheat grain yield maps. Hand-held and high spectral resolution satellite remote sensing data were collected before and after a spring side dress fertilizer application with FieldSpec, HandHeld Pro® and RapidEye?, respectively. Twenty-four vegetation indices were compared to evaluate yield performance. Stable zones within the field were defined by analyzing the spatial stability of crop yield of the previous 5 years (Basso et al. in Eur J Agron 51: 5, 2013). The canopy chlorophyll content index (CCCI) discriminated crop N response with an overall accuracy of 71 %, which allowed assessment of the efficiency of the second N application in a spatial context across each management zone. The CCCI derived from remotely sensed images acquired before and after N fertilization proved useful in understanding the spatial response of crops to N fertilization. Spectral data collected with a handheld radiometer on 100 grid points were used to validate spectral data from remote sensing images in the same locations and to verify the efficacy of the correction algorithms of the raw data. This procedure was presented to demonstrate the accuracy of the satellite data when compared to the handheld data. Variable rate N increased nitrogen use efficiency with differences that can have significant implication to the N2O emissions, nitrate leaching, and farmer’s profit.  相似文献   

18.
曲靖烟区不同前作对烤烟品质的影响   总被引:1,自引:0,他引:1  
研究了云南曲靖两个海拔生态区不同前作下烤烟的化学成分、致香物质、评吸质量和重金属含量。结果表明,不同前作明显影响烟叶的品质,且因海拔不同而有差异。烤烟的化学成分在中低海拔烟区(1300~1800 m)以玉米或豌豆为前作的处理为佳,高海拔烟区(1800~2300 m)以蚕豆和玉米为前作的处理为佳;中低海拔烟区以玉米、绿肥或豌豆为前作,高海拔烟区以玉米或绿肥为前作可以适当增加烤烟的致香物质含量;烟叶评吸感官质量在中低海拔烟区以玉米、绿肥、豌豆或油菜为前作、高海拔烟区以绿肥或玉米为前作时得分较高,清香型风格在中低海拔区以绿肥或油菜为前作、高海拔烟区以洋芋或玉米为前作最明显;曲靖地区烤烟中铅含量偏高,在中低海拔烟区前作空闲、高海拔烟区以洋芋为前作的烤烟铅含量最低。综合而言,中低海拔烟区以玉米或豌豆为前作、高海拔烟区以绿肥或玉米为前作对改善烟叶品质最为有利。  相似文献   

19.
农作物长势监测的目的是为早期估产提供依据,同时为田间管理提供及时的信息。笔者总结了中国农作物长势监测的研究进展、研究方法,指出用于长势监测的遥感数据空间分辨率较低,常用的监测指标具有局限性,监测精度有待提高。“3S”技术的集成发展,进一步实现一体化应用于该领域仍是今后的发展方向。随着农作物长势运行化监测系统的进一步完善,对田间管理的诊断需求会日益加剧,因此作物长势的诊断将成为今后的研究重点。  相似文献   

20.
In Gebhardt et al. (2006) an object-oriented image classification algorithm was introduced for detecting Rumex obtusifolius (RUMOB) and other weeds in mixed grassland swards, based on shape, colour and texture features. This paper describes a new algorithm that improves classification accuracy. The leaves of the typical grassland weeds (RUMOB, Taraxacum officinale, Plantago major) and other homogeneous regions were segmented automatically in digital colour images using local homogeneity and morphological operations. Additional texture and colour features were identified that contribute to the differentiation between grassland weeds using a stepwise discriminant analysis. Maximum-likelihood classification was performed on the variables retained after discriminant analysis. Classification accuracy was improved by up to 83% and Rumex detection rates of 93% were achieved. The effect of image resolution on classification results was investigated. The eight million pixel images were upscaled in six stages to create images with decreasing pixel resolution. Rumex detection rates of over 90% were obtained at almost all resolutions, and there was only moderate misclassification of other objects to RUMOB. Image processing time ranged from 45 s for the full resolution images to 2.5 s for the lowest resolution ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号