首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was recently reported that canine parvoviruses (CPV) had entered cat populations and induced disease in infected cats, while they had affected only dogs in the past. It is important to determine whether conventional feline panleukopenia virus (FPLV) vaccines protect against recent CPV infections. In this study, the cross-reactivity of virus-neutralising (VN) and haemagglutinin-inhibition (HI) antibodies in cats induced by FPLV and CPV s were examined. Lower cross-reactivities of VN and HI antibodies against each CPV strain were observed in cats experimentally inoculated with FPLV or vaccinated with an inactivated FPLV vaccine. In addition, we revealed the existence of a novel type of FPLV, which reacted weakly with antibodies induced by the conventional FPLV vaccine.  相似文献   

2.
Four monoclonal antibodies (mAb) against a feline panleukopenia virus (FPLV) TU 1 strain, one of the host range variants of feline parvovirus (FPV), were produced and applied for antigenic analysis of FPLV, canine parvovirus (CPV) and mink enteritis virus (MEV). All mAbs were considered to be directed at epitopes on the virus capsid surface because they neutralized the infectivity and inhibited the hemagglutination (HA) of the homologous virus as well as other FPV strains. They were of the mouse IgG1 type. High antigenic homogeneity among FPLV strains was confirmed by HA-inhibition (HI) test with the mAbs and polyclonal immune sera against FPLV or CPV. But the TU 11 strain of FPLV was antigenically distinguished from the remaining 14 FPLV strains by both the HI test and the micro-neutralization test with one of the mAbs produced. MEV Abashiri strain was found to be antigenically indistinguishable from FPLV. Most of the CPV strains isolated after 1981 were considered to be antigenically different from earlier CPV isolates when some mAbs were applied in the serological tests, confirming the replacement of CPV by an antigenic variant in Japan. However, antigenically different CPVs were detected at the end of 1984 from unrelated epizootics occurred a month apart in the same area.  相似文献   

3.
Fourteen feline parvovirus (FPV) strains isolated from cats, mink and dogs were comparatively examined on their antigenic and genetic diversities by using monoclonal antibodies against feline panleukopenia virus (FPLV) and restriction enzyme analysis of viral DNA. Mink enteritis virus (MEV) strains recently isolated in the northeastern area of the People's Republic of China were found to possess more similar antigenic and genetic properties to the antigenic variant virus of canine parvovirus (CPV) ("new" antigenic type CPV), than to FPLV strains and MEV Abashiri strain of Japan. A feline isolate detected in normal cat feces was considered to be rather CPV because of its antigenic and genetic characteristics. An early isolate of "new" antigenic type CPV strains showed a similar cleavage pattern to those of "old" antigenic type CPV strains when digested with HinfI. The results including some features above-mentioned suggest the presence of antigenic heterogeneities and genomic polymorphisms among FPV subspecies viruses.  相似文献   

4.
Canine parvovirus type 2a (CPV-2a) and type 2b (CPV-2b) have recently been isolated from cats throughout the world, and CPV-2b strain FP84 has been reported to be virulent in domestic cats. Although live feline panleucopenia virus (FPLV) vaccines protect domestic cats from CPV infection, the efficacy of inactivated FPLV vaccines has not been established. In this study, two domestic cats were vaccinated with a commercial inactivated FPLV vaccine and challenged with CPV-2b strain FP84 isolated from a domestic cat. The cats were protected against CPV-2b strain FP84 infection and their clinical signs were suppressed, although the two unvaccinated cats showed the typical clinical signs of parvovirus infection.  相似文献   

5.
Inactivated canine parvovirus (CPV) and inactivated feline panleukopenia virus (FPV) vaccines were evaluated in dogs. Maximal serologic response occurred within 1-2 weeks after vaccination. Antibody titers then declined rapidly to low levels that persisted at least 20 weeks. Immunity to CPV, defined as complete resistance to infection, was correlated with serum antibody titer and did not persist longer than 6 weeks after vaccination with inactivated virus. However, protection against generalized infection was demonstrated 20 weeks after vaccination. In unvaccinated dogs, viremia and generalized infection occurred after oronasal challenge with virulent CPV. In contrast, viral replication was restricted to the intestinal tract and gut-associated lymphoid tissue of vaccinated dogs. Canine parvovirus was inactivated by formalin, beta-propiolactone (BPL), and binary ethylenimine (BEI) in serum-free media; inactivation kinetics were determined. Formalin resulted in a greater loss of viral HA than either BEI of BPL, and antigenicity was correspondingly reduced.  相似文献   

6.
Cats vaccinated against FPLV were protected against infection with a feline isolate of CPV2b. Nonvaccinated cats developed a lymphopenia and excreted virus which infected susceptible in-contact cats.  相似文献   

7.
ABSTRACT: Parvoviruses of carnivores include three closely related autonomous parvoviruses: canine parvovirus (CPV), feline panleukopenia virus (FPV) and mink enteritis virus (MEV). These viruses cause a variety of serious diseases, especially in young patients, since they have a remarkable predilection for replication in rapidly dividing cells. FPV is not the only parvovirus species which infects cats; in addition to MEV, the new variants of canine parvovirus, CPV-2a, 2b and 2c have also penetrated the feline host-range, and they are able to infect and replicate in cats, causing diseases indistinguishable from feline panleukopenia. Furthermore, as cats are susceptible to both CPV-2 and FPV viruses, superinfection and co-infection with multiple parvovirus strains may occur, potentially facilitating recombination and high genetic heterogeneity. In the light of the importance of cats as a potential source of genetic diversity for parvoviruses and, since feline panleukopenia virus has re-emerged as a major cause of mortality in felines, the present study has explored the molecular characteristics of parvovirus strains circulating in cat populations. The most significant findings reported in this study were (a) the detection of mixed infection FPV/CPV with the presence of one parvovirus variant which is a true intermediate between FPV/CPV and (b) the quasispecies cloud size of one CPV sample variant 2c. In conclusion, this study provides new important results about the evolutionary dynamics of CPV infections in cats, showing that CPV has presumably started a new process of readaptation in feline hosts.  相似文献   

8.
为研制貉细小病毒性肠炎疫苗,筛选出针对貉细小病毒性肠炎免疫原性好、安全高效的疫苗备选株,应用CRFK细胞从辽宁省发病貉的粪便中分离病毒,并通过形态学、血清学、分子生物学、动物回归及免疫接种等方法对分离株进行鉴定。鉴定结果表明成功分离出1株貉细小病毒,命名为LN10-1株。其VP2基因核苷酸序列与猕猴源猫泛白细胞综合征病毒株(BJ-22/2008/CHN株)相似性高达99.7%。VP2蛋白上决定宿主范围的2个氨基酸位点发生了突变。VP2基因种系发生分析显示,LN10-1株位于猫泛白细胞综合征病毒(Feline panleukopenia virus,FPLV)、蓝狐细小病毒(Blue fox parvovirus,BFPV)、水貂肠炎病毒(Mink enteritis virus,MEV)组成的食肉类动物细小病毒聚类分支与由犬细小病毒(Canine parvovirus,CPV)组成的聚类分支。由LN10-1株制备的灭活疫苗免疫结果显示,接种28d细小病毒中和抗体滴度可达到1∶256以上。推测LN10-1株可能正处于FPLV与CPV进化的中间状态,或是CPV适应新宿主(貉)而形成的一种新病毒,可以作为针对貉细小病毒性肠炎灭活疫苗的候选株。  相似文献   

9.
Modified live feline panleukopenia virus (FPLV) vaccine protected dogs against canine parvovirus (CPV) infection. However, unlike the long-lived (greater than or equal to 20-month) immunity engendered by CPV infection, the response of dogs to living FPLV was variable. Doses of FPLV (snow leopard strain) in excess of 10(5.7) TCID50 were necessary for uniform immunization; smaller inocula resulted in decreased success rates. The duration of immunity, as measured by the persistence of hemagglutination-inhibiting antibody, was related to the magnitude of the initial response to vaccination; dogs with vigorous initial responses resisted oronasal CPV challenge exposure 6 months after vaccination, and hemagglutination-inhibiting antibodies persisted in such dogs for greater than 1 year. Limited replication of FPLV in dogs was demonstrated, but unlike CPV, the feline virus did not spread to contact dogs or cats. Adverse reactions were not associated with living FPLV vaccination, and FPLV did not interfere with simultaneous response to attenuated canine distemper virus.  相似文献   

10.
The antibody response of cattle to bovine respiratory syncytial virus (BRSV) immunization was investigated using 4 different commercially available mixed vaccines. Forty, 5-6 month old, beef calves, randomly assigned to groups of 10, were vaccinated on day 0 and 21 with 1 of 3 inactivated vaccines, (3 groups), or a modified live virus (MLV) vaccine. BRSV-specific antibody responses were measured prior to vaccination and on day 35 by using an enzyme linked immunosorbent assay (ELISA), virus neutralization assay (VN), a fusion inhibition assay (FI); and responses were also measured for their ability to facilitate antibody dependent, complement mediated cytotoxicity (ADCMC) of BRSV infected cells. Sera from day 35 were, in addition, analyzed by use of an IgG1, IgG2 isotype specific ELISA. All vaccines induced significant increases in BRSV specific IgG antibody as measured by ELISA, but only one inactivated and the MLV vaccine induced significant increases in VN titers. Fusion inhibiting antibody titers were low or undetected in calves vaccinated with the inactivated vaccines. Vaccination with modified live virus induced significantly higher titers of fusion inhibiting antibodies, which are considered to be most highly correlated with protection. The VN to ELISA and FI to ELISA ratio of the calves that received MLV vaccine were significantly greater than the calves receiving the 3 inactivated vaccines. Vaccination with MLV induced the highest IgG2/IgG1 ratio. This difference was small, and only significant relative to 2 of the inactivated vaccine groups, which were not significantly different from each other. The higher proportion of IgG2 isotype in the MLV sera was not associated with lower ADCMC, a function not attributed to this isotype. The VN and FI titers, but not the ELISA value of the sera, were most predictive of ADCMC. The inactivation processes apparently alter epitopes and affect the induction of functional antibodies.  相似文献   

11.
The Oklahoma Department of Wildlife Conservation acquired 20 American river otters (Lutra canadensis) between 1984 and 1985 for reintroduction into Oklahoma waterways. In 1985, 10 otters were evaluated for serum antibody titers after vaccination with canine distemper virus, canine adenovirus type 2, canine parvovirus (CPV), feline panleukopenia virus (FPV), feline rhinotracheitis virus (FRV), and feline calicivirus. Prevaccination serum-virus neutralization (SVN) antibody to feline rhinotracheitis virus was found in 2 otters and to feline calicivirus in 1 otter. Using an indirect fluorescent antibody (IFA) assay, prevaccination antibody to CPV and FPV was found in 2 otters. A significant increase in SVN antibody titers was found after vaccination of otters with canine adenovirus type 2 (6 of 8 animals) and feline calicivirus (1 of 8 animals). One of 8 otters developed significant antibody titers to CPV and FPV, as measured by IFA assay. Otters did not develop SVN antibody titers to canine distemper virus after vaccination. Antigens of feline leukemia virus, using ELISA, or antibodies to feline infectious peritonitis, using IFA assay, were not found in the 20 otters.  相似文献   

12.
Canine parvovirus (CPV) and feline panleukopaenia virus (FPLV) are two closely related viruses, which are known to cause severe disease in younger unvaccinated animals. As well as causing disease in their respective hosts, CPV has recently acquired the feline host range, allowing it to infect both cats and dogs. As well as causing disease in dogs, there is evidence that under some circumstances CPV may also cause disease in cats. This study has investigated the prevalence of parvoviruses in the faeces of clinically healthy cats and dogs in two rescue shelters. Canine parvovirus was demonstrated in 32.5% (13/50) of faecal samples in a cross sectional study of 50 cats from a feline only shelter, and 33.9% (61/180) of faecal samples in a longitudinal study of 74 cats at a mixed canine and feline shelter. Virus was isolated in cell cultures of both canine and feline origin from all PCR-positive samples suggesting they contained viable, infectious virus. In contrast to the high CPV prevalence in cats, no FPLV was found, and none of 122 faecal samples from dogs, or 160 samples collected from the kennel environment, tested positive for parvovirus by PCR. Sequence analysis of major capsid VP2 gene from all positive samples, as well as the non-structural gene from 18 randomly selected positive samples, showed that all positive cats were shedding CPV2a or 2b, rather than FPLV. Longitudinally sampling in one shelter showed that all cats appeared to shed the same virus sequence type at each date they were positive (up to six weeks), despite a lack of clinical signs. Fifty percent of the sequences obtained here were shown to be similar to those recently obtained in a study of sick dogs in the UK (Clegg et al., 2011). These results suggest that in some circumstances, clinically normal cats may be able to shed CPV for prolonged periods of time, and raises the possibility that such cats may be important reservoirs for the maintenance of infection in both the cat and the dog population.  相似文献   

13.
This article presents the results of a study of captive tigers (Panthera tigris) and lions (Panthera leo) vaccinated with a recombinant vaccine against feline leukemia virus; an inactivated adjuvanted vaccine against rabies virus; and a multivalent modified live vaccine against feline herpesvirus, calicivirus, and panleukopenia virus. The aim of the study was to assess the immune response and safety of the vaccines and to compare the effects of the administration of single (1 ml) and double (2 ml) doses. The animals were separated into two groups and received either single or double doses of vaccines, followed by blood collection for serologic response for 400 days. No serious adverse event was observed, with the exception of abortion in one lioness, potentially caused by the incorrect use of the feline panleukopenia virus modified live vaccine. There was no significant difference between single and double doses for all vaccines. The recombinant vaccine against feline leukemia virus did not induce any serologic response. The vaccines against rabies and feline herpesvirus induced a significant immune response in the tigers and lions. The vaccine against calicivirus did not induce a significant increase in antibody titers in either tigers or lions. The vaccine against feline panleukopenia virus induced a significant immune response in tigers but not in lions. This report demonstrates the value of antibody titer determination after vaccination of nondomestic felids.  相似文献   

14.
分别用犬细小病毒(CPV)核酸疫苗(pVCPV-VP2)、CPV重组活载体疫苗(CAV2/CPV)与CPV弱毒疫苗对犬进行了免疫试验,以检测不同CPV疫苗的免疫原性。采用CPVELISA、CPVHI与CPV微量中和试验检测免疫犬的体液免疫水平,采用淋巴细胞转化试验检测犬的细胞免疫水平。结果,pVCPV—VP2和CAV2/CPV均能诱导机体产生抗CPVELISA抗体与抗CPV中和抗体,但是pVCPV-VP2不能诱导机体产生可检测的抗CPVHI抗体,而CAV2/CPV能够诱导机体产生抗CPVHI抗体。淋巴细胞转化试验结果,pVCPV-VP2和CAV2/CPV免疫犬的外周血淋巴细胞对ConA与CPV的刺激均出现明显的增殖反应。结果表明,pVCPV—VP2和CAV2/CPV免疫犬均能诱导机体产生抗CPV的特异性体液免疫反应和细胞免疫反应,两者所表达的VP2蛋白均具有较好的免疫原性。CAV2/CPV以及pVCPV—VP2和CAV2/CPV联合免疫犬的抗CPV体液免疫水平和细胞免疫水平均比用pVCPV—VP2单独免疫犬的体液免疫水平和细胞免疫水平高。但CAV2/CPV诱导机体产生的抗CPV特异性免疫反应仍然比CPV弱毒疫苗诱导机体产生的抗CPV特异性免疫反应弱。另外,CAV2/CPV还能诱导机体产生抗CAV-2的特异性免疫反应。  相似文献   

15.
OBJECTIVE: To evaluate humoral immune responses of emus vaccinated with commercially available equine polyvalent or experimental monovalent eastern equine encephalomyelitis (EEE) virus and western equine encephalomyelitis (WEE) virus vaccines and to determine whether vaccinated emus were protected against challenge with EEE virus. DESIGN: Cohort study. ANIMALS: 25 emus. PROCEDURE: Birds were randomly assigned to groups (n = 5/group) and vaccinated with 1 of 2 commercially available polyvalent equine vaccines, a monovalent EEE virus vaccine, or a monovalent WEE virus vaccine or were not vaccinated. Neutralizing antibody responses against EEE and WEE viruses were examined at regular intervals for up to 9 months. All emus vaccinated with the equine vaccines and 2 unvaccinated control birds were challenged with EEE virus. An additional unvaccinated bird was housed with the control birds to assess the possibility of contact transmission. RESULTS: All 4 vaccines induced detectable neutralizing antibody titers, and all birds vaccinated with the equine vaccines were fully protected against an otherwise lethal dose of EEE virus. Unvaccinated challenged birds developed viremia (> 10(9) plaque-forming units/ml of blood) and shed virus in feces, oral secretions, and regurgitated material. The unvaccinated pen-mate became infected in the absence of mosquito vectors, presumably as a result of direct virus transmission between birds. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that emus infected with EEE virus develop a high-titer viremia and suggest that they may serve as important virus reservoirs. Infected emus shed EEE virus in secretions and excretions, making them a direct hazard to pen-mates and attending humans. Commercially available polyvalent equine vaccines protect emus against EEE virus infection.  相似文献   

16.
Feline parvoviruses were isolated from frozen samples of intestines taken from a snow leopard (Uncia uncia) and a serval (Leptailurus serval) that died successively at Sapporo Maruyama Zoo in Hokkaido, Japan. Isolates possessed an antigenic epitope for both the feline panleukopenia virus (FPLV) and mink enteritis virus, identified with a hemagglutination inhibition test. Sequencing analyses of the VP2 region of the isolates revealed that the two isolates were identical and of the FPLV-type. These results suggested that FPLV was introduced from a feral cat which entered the zoo and transmitted the virus inside the zoo.  相似文献   

17.
Immunogenicity of different vaccines against the main viral diseases was compared: feline infectious rhinotracheitis, feline panleucopenia virus and calicivirus. These inactivated vaccines developed higher protective activity when adjuvants such as BCG or aluminium hydroxide were used. Animals vaccinated and boostered with an identical dose of these vaccines resisted the viral challenges. Neutralizing antibodies titers obtained with BCG adjuvated vaccines were twofold higher than those containing aluminium hydroxide.  相似文献   

18.
Parvoviruses from mink (mink enteritis virus [MEV]), cats (feline panleukopenia virus [FPV]), raccoons (raccoon parvovirus [RPV]), and dogs (canine parvovirus [CPV]) were compared. Restriction enzyme analysis of the viral replicative-form DNA revealed no consistent differences between FPV and RPV isolates, but CPV and MEV isolates could be distinguished readily from other virus types. Feline panleukopenia virus, RPV, and MEV, but not CPV, replicated to high titers in mink. However, on the first passage, disease and microscopic lesions were observed only in mink inoculated with MEV. Feline panleukopenia virus and RPV isolates replicated in ferrets, but disease or microscopic lesions were not observed. Feline panleukopenia virus and RPV isolates could be passaged repeatedly in mink and ferrets. Virulence of FPV and RPV isolates was low compared with that of MEV, and only a single mink inoculated with FPV or with RPV developed clinical disease on the sixth passage of virus.  相似文献   

19.
Sequential changes in the humoral immune response of pigs to pseudorabies virus (PRV) after each of several exposures to the virus were evaluated by determining virus neutralization (VN) and radioimmunoprecipitation (RIP) activities of sera collected at selected intervals. Pigs were vaccinated intramuscularly with live attenuated virus (6 pigs), inactivated attenuated virus (6 pigs), or inactivated virulent virus (6 pigs). All pigs were challenged oronasally with virulent virus 3 weeks later and 12 (4 pigs of each vaccine group) were subsequently treated with dexamethasone in an attempt to reactivate latent virus. The relatively low serum titers of VN antibody that were raised by vaccination (titers ranged from 2 to 32) increased markedly (at least 16-fold) for all pigs after exposure to virulent virus. After dexamethasone treatment, the VN titers of 2 pigs increased 16-fold, whereas those of the other 10 dexamethasone-treated pigs and the 6 nontreated pigs either remained the same or increased only minimally (i.e., no more than 2-fold). The results of RIP using 35S-methionine-labeled viral proteins were initially similar to those of VN in that the low levels of serum RIP activity detected after vaccination increased markedly after subsequent exposure to virulent virus. In contrast to VN, however, most pigs (11 of 12) treated with dexamethasone had a clear increase in serum RIP activity. The increase was particularly striking for viral proteins of relatively low (less than 46K) molecular weight. Precipitating activity for 14C-glucosamine-labeled viral glycoproteins was not detected until after pigs were exposed to virulent virus. The increase in RIP activity detected after dexamethasone treatment was likely due to an additional antigenic stimulus associated with virus reactivation. However, virus was isolated from nasal swabs of only 4 of the 12 treated pigs. None of the results appeared to be affected appreciably by the type of vaccine used for initial immunization.  相似文献   

20.
Recent identification of unusual canine parvovirus (CPV) mutants in cats and dogs suggests that CPV type 2 (CPV-2), which emerged suddenly in the late 1970s, is undergoing continual genetic and antigenic variations. A peculiarity of parvoviruses is that single-nucleotide substitutions may determine drastic phenotypic changes. The effects of either natural or artificial mutations on CPV phenotypic properties have been largely investigated, and this sets up CPV as an interesting model to study virus evolution. By monitoring the evolution of CPV-2 in Italy, we observed the onset and quick spread of a Glu-426 mutant, antigenically different from the pre-existing variants that were partially displaced within a few years of the initial identification of the new mutant. The identification of CPV-2 variants raises several questions concerning their impact on the efficacy of the current CPV-2 vaccines, based on the original CPV-2 strain that no longer exists in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号