首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
不同钠吸附比的咸水结冰融水入渗后滨海盐土的水盐分布   总被引:2,自引:2,他引:0  
在室内利用相同矿化度(10 g·L-1)、不同钠吸附比(5、10 和30)的咸水进行咸水结冰融水模拟试验、结冰融水入渗和咸水直接入渗的土柱试验, 以淡水处理为对照, 分析不同钠吸附比咸水结冰融水入渗下滨海盐土水盐分布特征。结果表明: 咸水冰融化过程中, 融出水的矿化度和钠吸附比均呈由高到低的变化趋势。咸水结冰融水入渗速度和入渗深度均快于和深于淡水。咸水钠吸附比越小, 结冰融水入渗速率越快、深度越深。水盐分布也表现为低钠吸附比咸水结冰处理的表层土壤含水量较低, 水分向深层迁移, 这种水分分布也使盐分向深层运移, 表现为表层土壤含盐量低, 深层土壤含盐量大。土层含水量低钠吸附比咸水处理高于高钠吸附比处理, 10~45 cm 土层则表现出相反的趋势; 表层土含盐量低钠吸附比处理高于高钠吸附比处理, 且咸水处理下土壤脱盐的深度大于淡水处理。钠吸附比5 的咸水结冰处理, 0~10 cm 土壤平均含水量和含盐量分别为30.3%和1.1 g·kg-1, 显著低于其他处理。为比较咸水结冰灌溉和咸水直接灌溉的效果, 室内利用含盐量为10 g·L-1、钠吸附比10 的咸水进行直接入渗的土柱(土壤含盐量为21.3 g·kg-1)模拟试验, 结果表明: 与咸水直接入渗处理相比, 咸水结冰融水处理盐分淋洗效果更好, 该处理0~25 cm土层平均土壤含盐量为2.9 g·kg-1, 显著低于咸水直接入渗的10.6 g·kg-1。  相似文献   

2.
In this study, a controlled experiment was designed to determine the potential impacts that salt types impose on soil reflectance spectra. Base soil from a typical inland river basin in China and 99% pure salts of three representive salt types as well as their combinations in different proportions were used to create composite soil samples. Seven levels of salt concentration were assigned for each saline soil treatment. The results revealed that salt concentration did not affect pattern parameters significantly (P > 0.5), where varying the salt concentrations only led to changes in the confined range that corresponded to salt types. Statistical parameter Rmean was sensitive to salt types but was limited to single-type salts. Therefore, salt types largely determined the overall shapes of soil reflectance spectra rather than salt concentrations. It is therefore necessary to identify salt type before retrival of salt concentration in saline soils by use of remote sensing data.  相似文献   

3.
利用放射性I131和S35研究松沙土土体和地下水盐分的运动   总被引:1,自引:0,他引:1  
盐碱土表土盐分积累的来源,不仅与地下水埋深及其矿化度有关,而且与土体盐分再分配有关。本试验是利用放射性I131(NaI131)和S35(Na2S35O4)的示踪方法,探讨在含盐地下水正常补给情况下,土体和地下水盐分运行的一些规律,有助于全面了解表土积盐的过程。  相似文献   

4.
滨海盐渍区海水养殖废水利用与减蒸抑盐措施研究   总被引:1,自引:0,他引:1  
赵耕毛  刘兆普  张博  李杰 《土壤》2010,42(2):292-296
在半干旱的莱州地区,利用微区试验研究了海水养殖废水灌溉和秸秆覆盖双重作用下滨海盐土水盐行为及其耐盐能源作物(菊芋)效应。结果表明:秸秆覆盖能明显抑制土面蒸发,具有很好的保墒效果;秸秆覆盖能明显减弱土壤盐分的表聚作用,有效缓解了盐分对作物的直接接触危害。因海水养殖废水灌溉带入土体的大量盐分通过低频次的补充灌溉措施,以及夏季雨水的自然淋洗,土壤表层盐分在可控范围之内。秸秆覆盖能改善作物株形,显著增加作物产量,为我国滨海盐碱地区高矿化度的咸水资源有效利用以及耐盐能源作物生产提供了基本依据。  相似文献   

5.
Soil salinization is one of the major causes of declining agricultural productivity in many arid and semiarid regions of the world. Excessive salt concentrations in soils, in most cases, cannot be reduced with time by routine irrigation and crop management practices. Such situations demand soil amelioration. Various means used to ameliorate saline soils include: (a) movement of excess soluble salts from upper to lower soil depths via leaching, which may be accomplished by continuous ponding, intermittent ponding, or sprinkling; (b) surface flushing of salts from soils that contain salt crusts at the surface, a shallow watertable, or a highly impermeable profile; (c) biological reduction of salts by harvest of high‐salt accumulating aerial plant parts, in areas with negligible irrigation water or rainfall available for leaching; and (d) amelioration of saline soils under cropping and leaching. Among these methods, cropping in conjunction with leaching has been found as the most successful and sustainable way to ameliorate saline soils. Cropping during leaching or between leachings causes an increase in salt‐leaching efficiency because a decrease in soil water content occurs under unsaturated water flow conditions with a concurrent decrease in large pore bypass and drainage volume. Consequently, anaerobic conditions in soil may occur during leaching that can affect crop growth. Thus, in addition to the existing salt‐tolerant crop genotypes, research is needed to seek out or develop genotypes with increased tolerances to salinity and hypoxia. Since salt leaching is interacted by many factors, evaluation of the traditional concepts such as the leaching requirement (LR), the leaching fraction (LF) and the salt balance index (SBI) demands incorporation of a rapid, efficient and economical way of monitoring changes in soil salinity during amelioration. Besides this, numerous models that have been developed for simulating movement and reactions of salts in soils need evaluation under actual field conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Most studies on the effect of salinity on soil organisms are conducted with NaCl but this might not be representative of effect when other salt ions are predominant. To assess the impact of different salt cations and anions on saline toxicity to earthworms, two experiments were conducted with specimens of Eisenia fetida exposed in the laboratory for 28 days using OECD artificial soil. In both experiments, series of concentrations (0–125 mM) of different salts were used. In experiment 1, which focused on cations, soil salinity was adjusted using NaCl, KCl, CaCl2 or MgCl2 while in the second experiment, which focused on anions: NaCl, NaNO3, NaHCO3, Na2HPO4 or Na2SO4 were used to allow partial comparison of the toxic effects of the cations and anions. The changes in electrical conductivity (EC) of substrates under the different salts were assessed at the beginning of the experiments. Mortality and weight change of worms were assessed at days 14 and 28. In experiment 1, the chlorides of the divalent cations (Mg2+ and Ca2+) had similar EC values which were higher than those of the monovalent cations (Na+ and K+) and this could explain their higher effects on all worm parameters than those of the monovalent cations. In experiment 2, among the anions, SO42− had the highest EC value while HCO32− had the lowest. The toxicity of the ions did not correlate perfectly with the EC values; therefore the use of EC in the assessment of saline toxicity to soil organisms should be used with caution. These results suggest that the ionic constitution of salts could define the severity of saline toxicity to earthworms, therefore a site specific assessment of soil salinization in affected areas with respect to type of predominant ions should be considered.  相似文献   

7.
The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1–3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8–9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.  相似文献   

8.
以塔克拉玛干沙漠公路沿线防护林植物及土壤为研究对象,综合研究咸水灌溉对植物根系及风沙土演变的作用。结果表明,柽柳的根系较深,达到200 cm,而梭梭和沙拐枣根系为100~150 cm。林地表层土壤出现显著的土壤盐分(8 m S cm-1)和养分聚集现象。但在植物根系分布最多的40~60 cm的土壤层中并没有出现土壤盐渍化现象(1.0 m S cm-1)。防护林地土壤养分含量显著高于流沙地,且土壤的黏粒和粉粒以及土壤团聚体和团聚体稳定性均显著增加。综上所述,地下咸水灌溉并未对植物的正常生长产生盐害或毒害,同时有利于沙漠风沙土的演变。  相似文献   

9.
The effect of digging activity of little souslik (Spermophilus pygmaeus Pall.) on the microtopography and soils was studied in the areas with shallow saline groundwater developing under continental conditions for 10.5–12.7 ka. The portion of microtopographic features related to the digging activity was quantified. It was found that the micromounds formed by sousliks appear on recently dried surfaces with shallow saline groundwater. However, their portion in this case is less than 3% because of the poor vegetation and shallow groundwater. Then, with the lowering of the base of erosion and aging of the territory, the zoogenic effect becomes more pronounced. On the first terrace of Khaki Sor (salt lake), the digging activity of sousliks creates the initial heterogeneity of soils and vegetation. The soil cover is composed of the virgin quasigleyed solonchakous solonetzes under the Atriplex-Artemisia santonica association (Gypsic Salic Solonetz (Albic, Ruptic, Oxiaquic, Siltic)) and of the zooturbated solonetzes under the Artemisia santonica-A. lerchiana association (Endosalic Hypogypsic Gypsisol (Sodic, Siltic, Novic)). A comparative analysis of morphology and some chemical properties of virgin and zooturbated soils is given. The soils of souslik-made mounds are strongly mixed, and the structure of their horizons is completely disturbed. They are characterized by an increased total content of salts mainly due to gypsum accumulation. At the same time, the content of toxic salts in the soil profile remains rather high because of their ascending migration from the strongly saline groundwater. On the first terrace, the process of zoogenic amelioration of solonetzes by sousliks is limited and does not affect deep soil layers.  相似文献   

10.
Saline ice meltwater can be used for irrigation and leaching of salts in salt-affected soil regions.A laboratory experiment was conducted using soil columns to investigate the redistribution of soil moisture, salt and sodium adsorption ratio(SAR) in saline-sodic soil under the infiltration of saline ice meltwater.Soils were treated using saline water of three irrigation volumes(1 600, 2 400 and 3 200 mL) at four salinity levels.These four salinity levels included salt free(0 g L~(-1)), low salinity level(1.4 g L~(-1)), moderate salinity level(2.7 g L~(-1)) and high salinity level(4.1 g L~(-1)).The prepared saline water was frozen into ice, and then the ice was put on the surface of soil columns.After 96 h, the infiltration rate and soil moisture content of saline ice treatments were greater than those of salt-free ice treatments, increasing with the increase of ice salinity.Infiltration of saline ice meltwater increased soil moisture content in the upper layers for all treatments.Both salt contents and SAR values in the upper soil layers decreased in all saline ice treatments and were lower than those in salt-free ice treatment.However, this trend was reversed in the deeper(below 20 cm) soil layers.The highest desalting rate and lowest SAR were observed in high-salinity treatment under three irrigation volumes in the 0–15 cm soil layer,especially under irrigation volume of 2 400 mL.These results indicate that saline ice(0–20 cm) meltwater irrigation is beneficial to saline-sodic soil reclamation, and the best improvement effect would be achieved when using high-salinity ice under optimal irrigation volume.  相似文献   

11.
Seed germination is a key life‐history stage of halophytes. Most studies on seed germination of halophytes have focused on the effects of a single salt, while little information is available on the effects of mixed salt in the natural habitat. Due to the contribution of multiple ions in saline soil, we hypothesized that the effect of mixed salt on seed germination will differ from that of a single salt and the mechanism of how germination is affected will differ as well. The effects of mixed salt and NaCl on germination, water imbibition, and ionic concentrations of seeds of Suaeda salsa (L.) Pall. were compared at various salinity levels. Germination percentage (GP) and rate (GR) decreased with increasing salinity level, regardless of salt type. There was no difference in GP or GR between mixed salt and NaCl when the salinity level was below 20 dS m?1. Above 20 dS m?1, GP and GR in NaCl were lower than those in mixed salt. At the same salinity level, Na+ concentration in seeds was higher in NaCl than that in mixed salt, but the reverse was true for Ca2+ and Mg2+ concentrations. Imbibition rate for seeds in NaCl was lower than that in mixed salt at the same salinity level. Addition of Ca2+ and Mg2+ alleviated the inhibition of NaCl on seed germination. In conclusion, our results suggest that the effects of soil salts and NaCl on seed germination are different, and using NaCl instead of soil salt might not be realistic to show the effect of saline stress on seed germination of halophytes in the natural habitat.  相似文献   

12.
盐渍化问题严重制约着新疆地区农业经济的发展,而掌握土壤盐分迁移情况是防治土壤盐渍化的前提。为更好地了解滴灌棉田盐渍化土壤盐分的迁移情况,本文选用一典型滴灌棉田为研究对象,采用探地雷达低频天线(250 MHz)进行土壤剖面的探测,由探地雷达图像中的信息,推测土壤盐分在垂直方向上的迁移情况,再用土壤剖面水盐动态、盐分通量变化等实际观测数据进行验证。结果表明:(1)当土壤盐分浓度具有一定梯度时,采用探地雷达低频天线收集的雷达图像中可以划分出盐分积累带、包气带和蒸发面。(2)在整个研究阶段盐分实际运移情况为先整体向上再整体向下。通过水盐动态和盐分通量等方式的验证,发现探地雷达图像中的蒸发面变化情况与实际盐分运移情况一致。因此,使用探地雷达低频天线监测滴灌棉田土壤盐分在垂直方向上的迁移情况是可行的,并且可以使用探地雷达中蒸发面的变化情况表征盐分的整体运移情况。探地雷达低频天线对蒸发面快速无损的识别,为防治盐分迁移导致的土壤盐渍化问题提供了新思路。  相似文献   

13.
咸水结冰融水入渗对土壤水盐运移和玉米苗期生长的影响   总被引:2,自引:0,他引:2  
依据咸水冰盐水融离原理,利用土柱模拟试验,设置4个灌溉方式,分别为对照处理(淡水)、咸水灌溉、咸水结冰灌溉和咸水结冰灌溉+秸秆覆盖,研究咸水结冰灌溉条件下土壤水盐的独特运移机制。结果表明,与淡水灌溉相比,咸水灌溉处理表层0~40 cm土壤水分含量偏低,而深层土含水量则较高;咸水结冰灌溉下这一规律更为明显。但配合秸秆覆盖措施能在一定程度提高咸水结冰灌溉后各土层土壤含水量。咸水直接浇灌使各土层土壤盐度EC1:5偏高,盐分累积量增大,且盐分具有明显表层聚集特性,表层0~40 cm盐分累积量占0~80 cm土体的62.2%;而咸水结冰后灌溉则显著降低表层0~40 cm土层的盐分累积,仅占18.6%;咸水结冰后灌溉配合秸秆覆盖则进一步促进表层的脱盐率提高,特别在0~10 cm土层,土壤盐度仅为0.15 dS·m -1,盐分累积67.8 g·m-2,与淡水处理间差异未达显著水平(P>0.05)。咸水结冰灌溉配合秸秆覆盖可促进表层土壤的脱盐,使土壤根系分布密集层保持较低盐分水平,缓解或消除盐分对作物生长的危害,使玉米的生长状况达到淡水灌溉处理的效果。  相似文献   

14.
张粹雯  王遵亲 《土壤学报》1987,24(3):281-285
应用偏光显微镜技术与扫描电子显微镜技术,对三种不同类型盐土的盐结晶进行观察研究。从土壤溶液的蒸发过程中,我们观察到石膏(CaSO4·2H2O)、芒硝(Na2SO4·10H2O)、泻利盐(MgSO4·7H2O)、石盐(NaCl)结晶的析出过程,析出顺序受温度的影响。用这种方法可以快速确定土壤溶液中主要盐分类型。扫描电子显微镜的照片,展示出某些盐类结晶的自然特征,它们是:与土粒胶结紧密的石盐(NaCl)、由芒硝(Na2SO4·10H2O)脱水转变成的无水芒硝(Na2SO4)、或由硫酸钠、硫酸钙形成的复盐——钙芒硝Na2Ca(SO4)2。各种盐类在土壤中结晶出来形态清晰。以硫酸钠的溶解特性为例,扼要地讨论了土壤中芒硝—无水芒硝的转化条件及其对土壤结构产生的影响。  相似文献   

15.
The rose of an isolate of the arbuscular mycorrhizal (AM) fungusGlomus mosseae in the protection ofMedicago sativa (+Rhizobium meliloti) against salt stress induced by the addition of increasing levels of soluble salts was studied. The interactions between soluble P in soil (four levels), mycorrhizal inoculum and degree of salinity in relation to plant growth, nutrition and infective parameters were evaluated. Salt stress was induced by sequential irrigation with saline water having four concentrations of three salts (NaCl, CaCl2, and MgCl2).15N-labelled ammonium sulphate was added to provide a quantitative estimate of N2 fixation under moderate to high salinity levels. N and P concentration and nodule formation increased with the amount of plant-available P or mycorrhizal inoculum in the soil and generally declined as the salinity in the solution culture increased from a moderate to a high level. The mycorrhizal inoculation protected the plants from salt stress more efficiently than any amount of plant-available P in soil, particularly at the highest salinity level applied (43.5 dS m?1). Mycorrhizal inoculation matched the effect on dry matter and nutrition of the addition in the soil of 150 mg P kg?1. Nevertheless the highest saline solution assayed (43.5 dS m?1) affected more severely plants supplemented with phosphorus than those with the addition of mycorrhizal inoculum. Such a saline-depressing effect was 1.5 (biomass), 1.4 (N) and 1.5 (P) times higher in plants supplied with soluble phosphate than with AM inoculum. Mechanisms beyond those mediated by P must be involved in the AM-protectioe effect against salinity. The15N methodology used allowed the determination of N2 fixation as influenced by different P applications compared to mycorrhizal inoculation. A lack of correlation between nodule formation and function (N2 fixation) was evidenced in mycorrhizal-inoculated plants. In spite of the reduced activity per nodule in mycorrhizal-inoculated In spite of the reduced activity per nodule in mycorrhizal-inoculated plants, the N contents determined indicated the highest acquisition of N occurred in plants with the symbiotic status. Moreover, N and P uptake increased while Ca and Mg decreased in AM-inoculated plants. Thus P/Ca ratios and cation/anion balance in general were altered in mycorrhizal treatments. This study therefore confirms previous findings that AM-colonized plants have optional and alternative mechanisms available to satisfy their nutritive requirements and to maintain their physiological status in stress situations and in disturbed ecosystems.  相似文献   

16.
Abstract

Salinity and sodicity effects on manganese (Mn) sorption in a mixed sodium‐calcium (Na‐Ca) soil system were studied. Soil samples were taken at 0–30 cm depth from Vertisols (El‐Hosh and El‐Suleimi) and Aridisols (El‐Laota) at three sites in Gezira scheme (Sudan). No Mn was applied to these soils. Prior to analysis the soils were equilibrated with NaCl‐CaCL2 mixed salt solutions to attain SAR values at different salt concentrations. The results indicated that saline soils sorbed less Mn and had higher equilibrium Mn concentrations. Sodic soils retained more Mn but had low equilibrium concentrations. Sodicity had a pronounced effect only on increasing Mn retention at higher SAR values. Salinity tended to alleviate sodicity effects on Mn retention, but soluble salts that increased soil pH decreased Mn concentration.  相似文献   

17.
The effect of readily soluble salts on the thermal diffusivity of undisturbed fine-textured loess-like loam was considered. It was shown that the thermal diffusivity of loams depends not only on the salt content but also on the water content. The higher the content of salts, the higher the soil thermal diffusivity is in the dry state. The differences between the thermal diffusivities of nonsaline and saline soils decrease under wetting conditions. No differences are observed at the water content corresponding to the capillary water capacity.  相似文献   

18.
采用田间大区试验,连续3年在河套重盐碱区开展了冬季咸水结冰灌溉试验研究,设置冬季咸水结冰灌溉(FSWI)和无灌溉对照(CK)两个处理,其中FSWI处理的灌水量为180 mm,矿化度为6.79~7.97 g·L~(–1),种植作物为青贮玉米,以分析不同处理下土壤水盐和钠吸附比(SAR)的周年动态以及对作物生长的影响,探究冬季咸水结冰灌溉对河套重盐碱地的改良效果。结果表明:与CK相比,FSWI处理显著改变了春季土壤水盐和SAR动态。0~20 cm土层,春季FSWI处理的土壤含水量显著高于CK处理,玉米苗期, FSWI处理的土壤含水量平均为24.3%,显著高于CK的21.6%; FSWI处理的春季土壤含盐量和SAR显著低于CK处理,其中, FSWI处理的土壤含盐量由灌溉前的33.86 g·kg~(–1)降低至玉米苗期的5 g·kg~(–1)以下,而CK处理土壤含盐量逐渐升高至玉米苗期的34.2 g·kg~(–1); FSWI处理土壤SAR由灌溉前的21.9降低至玉米苗期的9.86, CK土壤SAR则逐渐升高至玉米苗期的25.00。后续地膜覆盖和夏季降雨使FSWI处理的土壤含水量维持在23.0%以上,土壤含盐量保持在5 g·kg~(–1)以下,土壤SAR保持在9左右。20~40 cm土层与0~20 cm土层的土壤水盐和SAR变化趋势与表层一致,但没有表层变化剧烈。此外,随着灌溉年限的延长,同时期土壤含盐量和SAR呈逐年降低的趋势。FSWI处理玉米出苗率在70%以上,干物质产量为9~12t·hm~(–2),而CK处理由于土壤含水量较低(21.0%),并且土壤含盐量和SAR均较高,造成玉米出苗率极低,进而导致绝收。因此冬季咸水结冰灌溉改变了土壤水盐动态过程,变春季积盐为脱盐,显著降低了土壤SAR,并补充了土壤水分,保证了饲用玉米的正常种植和生长,这为该地区盐碱地改良和饲料作物种植提供了技术支持。  相似文献   

19.
不同利用方式的苏打盐渍土剖面盐分组成及分布特征   总被引:6,自引:0,他引:6  
通过野外调查、采样和室内分析,研究了松嫩平原不同利用方式的苏打盐渍土剖面形态特征及可溶盐含量与组成在土壤剖面中的变化。结果表明,土壤的利用方式不同,土壤剖面腐殖质层厚度、耕层和腐殖质层的有机质含量等有明显差异。在围栏草原、旱田、新水田及老水田4个剖面中,土壤可溶盐总量、pH与ESP均是在剖面中部最高,上部和下部较低;可溶盐组成均以K++Na+和HCO 3-、CO23-为主。表明草原围栏、旱田及水田利用均有抑制苏打盐分表聚的作用。放牧草原剖面的可溶盐含量自下向上逐渐增多,盐分表聚非常显著。开垦20余年的水田剖面中,表层土壤的可溶盐总量、pH和ESP值分别降至0.21%、7.56和9.1%,表明苏打盐碱地种稻较草原和旱田利用更有利于土壤脱盐脱碱。  相似文献   

20.
[目的] 通过调理剂进行亲水和疏水处理,探究调理剂不同界面特性对黄灌区土壤水盐运移规律的影响,揭示粉煤灰基土壤调理剂对盐碱地的改良机理,为不同类型盐碱地改良提供科学参考。[方法] 以宁夏回族自治区苏打盐碱土为例,设置土柱试验探究调理剂改性前后土壤中不同盐离子在空间上的运移规律。[结果] 添加未改性调理剂、亲水改性调理剂、疏水改性调理剂后,表层脱盐率分别为79.72%,59.91%和84.79%,远高于未加调理剂的12.64%。较添加未改性调理剂组相比,亲水性处理组含水量提高6.59%,全盐量提高了47.13%;疏水性处理组土壤含水量降低了0.67%,全盐量降低了25.22%;pH值分别从10.5降低至8.08,8.71;表层Na+含量分别降低10.39%和30.46%,K+含量分别降低10.22%和45.93%。[结论] 调理剂的界面特性可显著影响土壤中水盐运移。疏水处理更能提升调理剂对盐碱地的改良效果,强化盐分随土壤水的下渗对盐碱地改良更为重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号