首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A pot experiment was performed to compare the impact of organic manure on soil enzymatic activity, respiration rate and the growth of two barley cultivars (Hordeum vulgare L.) differing in their salt tolerance under a simulated salinized environment. A plastic pot with a hole (2 cm in diameter) in the center of bottom was filled with an anthropogenic (paddy) soil and placed in a porcelain container containing NaCl solution (3.0 g L−1) such that a secondary salinization process was simulated via upward capillary water movement along the soil profile. A treatment with neither organic manure nor simulated soil salinization was taken as a control (CK1). The organic manure was applied either inside or outside rhizobag made of nylon cloth (40 μm of pore size). The soil was treated with: 20 g kg−1 rice straw (RS), 20 g kg−1 pig manure (PM), or 10 g kg−1 rice straw plus 10 g kg−1 pig manure (RS+PM). No organic manure was added in an additional control treatment (CK2). The results indicated that the placement of organic manure both inside and outside rihzobags significantly increased the activity of urease, alkaline phosphatase and dehydrogenase, as well as respiration rate in both rhizosphere and bulk soils. Also, nutrient uptake by barley plants was enhanced in the treatments with organic manure amended either inside or outside rhizobags. The activity of these enzymes along with the respiration rate was higher in rhizosphere than in non-rhizosphere when organic manure was supplied inside rhizobags, while the opposite was found in the case of manure incorporated outside rhizobags. Among all the treatments, RS+PM treatment had most significant stimulating effects on enzymatic and microbial activity and shoot dry weight of barley, followed by PM and RS. Moreover, more significant stimulating effects on both enzyme activity and plant growth were achieved in the treatments with manure amended inside rhizobags than outside rhizobags. The results of the present study confirmed the view that incorporation of organic manure especially into soil-root zones is an effective low-input agro-technological approach to enhancing soil fertility and minimizing phytotoxicity induced by secondary salinization.  相似文献   

2.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

3.
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha−1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied.  相似文献   

4.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   

5.
Climate models predict drier conditions in the next decades in the Mediterranean basin. Given the importance of soil CO2 efflux in the global carbon balance and the important role of soil monoterpene and volatile organic compounds (VOCs) in soil ecology, we aimed to study the effects of the predicted drought on soil CO2, monoterpenes and other VOC exchange rates and their seasonal and interannual variations. We decreased soil water availability in a Mediterranean holm oak forest soil by means of an experimental drought system performed since 1999 to the present. Measurements of soil gas exchange were carried out with IRGA, GC and PTR-MS techniques during two annual campaigns of contrasting precipitation. Soil respiration was twice higher the wet year than the dry year (2.27±0.26 and 1.05±0.15, respectively), and varied seasonally from 3.76±0.85 μmol m−2 s−1 in spring, to 0.13±0.01 μmol m−2 s−1 in summer. These results highlight the strong interannual and interseasonal variation in CO2 efflux in Mediterranean ecosystems. The drought treatment produced a significant soil respiration reduction in drought plots in the wet sampling period. This reduction was even higher in wet springs (43% average reduction). These results show (1) that soil moisture is the main factor driving seasonal and interannual variations in soil respiration and (2) that the response of soil respiration to increased temperature is constrained by soil moisture. The results also show an additional control of soil CO2 efflux by physiology and phenology of trees and animals. Soil monoterpene exchange rates ranged from −0.01 to 0.004 nmol m−2 s−1, thus the contribution of this Mediterranean holm oak forest soil to the total monoterpenes atmospheric budget seems to be very low. Responses of individual monoterpenes and VOCs to the drought treatment were different depending on the compound. This suggests that the effect of soil moisture reduction in the monoterpenes and VOC exchange rates seems to be dependent on monoterpene and VOC type. In general, soil monoterpene and other VOC exchange rates were not correlated with soil CO2 efflux. In all cases, only a low proportion of variance was explained by the soil moisture changes, since almost all VOCs increased their emission rates in summer 2005, probably due to the effect of high soil temperature. Results indicate thus that physical and biological processes in soil are controlling soil VOC exchange but further research is needed on how these factors interact to produce the observed VOCs exchange responses.  相似文献   

6.
Application of crop residues to soil and reduced or no tillage are current management practices in order to achieve better water management, increase soil fertility, crop production and soil erosion control. This study was carried out to quantify the effect of wheat straw mulching in a no tilled Fluvisol under semi-arid conditions in SW Spain and to determine the optimum rate in terms of cost and soil protection. After a 3-years experiment, mulching application significantly improved physical and chemical properties of the studied soil with respect to control, and the intensity of changes was related to mulching rate. The organic matter content was generally increased, although no benefit was found beyond 10 Mg ha1 year1. Bulk density, porosity and aggregate stability were also improved with increasing mulching rates, which confirmed the interactions of these properties. Low mulching rates did not have a significant effect on water properties with respect to control, although the available water capacity increased greatly under high mulching rates. After simulated rainfall experiments (65 mm h1 intensity), it was found that the mulch layer contributed to increase the roughness and the interception of raindrops, delaying runoff generation and enhancing the infiltration of rain water during storms. Mulching contributed to a reduction in runoff generation and soil losses compared to bare soil, and negligible runoff flow or sediment yield were determined under just 5 Mg ha1 year1 mulching rate. It was observed that during simulations, the erosive response quickly decreases with time after prolonged storms (30 min) due to the exhaustion of available erodible particles. These results suggest that the erosive consequences of intermediate intensity 5-years-recurrent storms in the studied area could be strongly diminished by using just 5 Mg ha1 year1 mulching rates.  相似文献   

7.
The effects of animal treading on denitrification in a mixed ryegrass-clover pasture were studied. A single treading event of moderate or severe intensity was applied in plots during spring by using dairy cows at varying stocking rates (4.5 cows 100 m−2 for 1.5 or 2.5 h, respectively). Treading caused a significant short-term 21 days) increase in denitrification. Denitrification rates reached a maximum of 52 g N2O-N ha−1 day−1 at 8 days after severe treading compared to 2.3 g N2O-N ha−1 day−1 under nil treading. Thereafter, denitrification rates declined, and were similar to non-trodden control plots after 28 days. Soil aeration, was significantly reduced by treading as expressed by water-filled porosity. In addition, soil NH4+-N and NO3-N concentrations were also increased by treading. We propose that the underlying processes involved in increasing denitrification under treading were two-fold. Firstly, treading caused a temporary (e.g. 3 days after treading) reduction in soil aeration through soil physical damage, and secondly, reduced soil N utilisation prompted by reduced plant growth led to increased soil NH4+-N and NO3-N availability. This study shows that treading, without the influence of other grazing animal factors (e.g. excretion), can cause a large short-term stimulation of denitrification in grass-clover pastures.  相似文献   

8.
Woody plant invasion of grasslands is prevalent worldwide. In the Rio Grande Plains of Texas, subtropical thorn woodlands dominated by C3 trees/shrubs have been replacing C4 grasslands over the past 150 yr, resulting in increased soil organic carbon (SOC) storage and concomitant increases in soil total nitrogen (STN). To elucidate mechanisms of change in SOC and STN, we separated soil organic matter into specific size/density fractions and determined the concentration of C and N in these fractions. Soils were collected from remnant grasslands (Time 0) and woody plant stands (ages 10-130 yr). Rates of whole-soil C and N accrual in the upper 15 cm of the soil profile averaged 10-30 g C m−2 yr−1 and 1-3 g N m−2 yr−1, respectively, over the past 130 yr of woodland development. These rates of accumulation have increased soil C and N stocks in older wooded areas by 100-500% relative to remnant grasslands. Probable causes of these increased pool sizes include higher rates of organic matter production in wooded areas, greater inherent biochemical resistance of woody litter to decomposition, and protection of organic matter by stabilization within soil macro- and microaggregates. The mass proportions of the free light fraction (<1.0 g cm−3) and macroaggregate fraction (>250 μm) increased linearly with time following woody plant invasion of grassland. Conversely, the mass proportions of free microaggregate (53-250 μm) and free silt+clay (<53 μm) fractions decreased linearly with time after woody invasion, likely reflecting stabilization of these fractions within macroaggregate structures. Carbon and N concentrations increased in all soil fractions with time following woody invasion. Approximately half of the C and N accumulated in free particulate organic matter (POM) fractions, while the remainder accrued in stable macro- and microaggregate structures. Soil C/N ratios indicated that the organic C associated with POM and macroaggregates was of more recent origin (less decomposed) than C associated with the microaggregate and silt+clay fractions. Because grassland-to-woodland conversion has been geographically extensive in grassland ecosystems worldwide during the past century, changes in soil C and N storage and dynamics documented here could have significance for global cycles of those elements.  相似文献   

9.
The effects of tillage on the interaction between soil structure and microbial biomass vary spatially and temporally for different soil types and cropping systems. We assessed the relationship between soil structure induced by tillage and soil microbial activity at the level of soil aggregates. To this aim, organic C (OC), microbial biomass C (MBC) and soil respiration were measured in water-stable aggregates (WSA) of different sizes from a subtropical rice soil under two tillage systems: conventional tillage (CT) and a combination of ridge with no-tillage (RNT). Soil (0–20 cm) was fractionated into six different aggregate sizes (> 4.76, 4.76–2.0, 2.0–1.0, 1.0–0.25, 0.25–0.053, and < 0.053 mm in diameter). Soil OC, MBC, respiration rate, and metabolic quotient were heterogeneously distributed among soil aggregates while the patterns of aggregate-size distribution were similar among properties, regardless of tillage system. The content of OC within WSA followed the sequence: medium-aggregates (1.0–0.25 mm and 1.0–2.0 mm) > macro-aggregates (4.76–2.0 mm) > micro-aggregates (0.25–0.053 mm) > large aggregates (> 4.76 mm) > silt + clay fractions (< 0.053 mm). The highest levels of MBC were associated with the 1.0–2.0 mm aggregate size class. Significant differences in respiration rates were also observed among different sizes of WSA, and the highest respiration rate was associated with 1.0–2.0 mm aggregates. The Cmic/Corg was greatest for the large-macroaggregates regardless of tillage regimes. This ratio decreased with aggregate size to 1.0–0.25 mm. Soil metabolic quotient (qCO2) ranged from 3.6 to 17.7 mg CO2 g− 1 MBC h− 1. The distribution pattern of soil microbial biomass and activity was governed by aggregate size, whereas the tillage effect was not significant at the aggregate scale. Tillage regimes that contribute to greater aggregation, such as RNT, also improved soil microbial activity. Soil OC, MBC and respiration rate were at their highest levels for 1.0–2.0 mm aggregates, suggesting a higher biological activity at this aggregate size for the present ecosystem.  相似文献   

10.
A long-term field experiment was conducted to examine the influence of mineral fertilizer and organic manure on the equilibrium dynamics of soil organic C in an intensively cultivated fluvo-aquic soil in the Fengqiu State Key Agro-Ecological Experimental Station (Fengqiu county, Henan province, China) since September 1989. Soil CO2 flux was measured during the maize and wheat growing seasons in 2002-2003 and 2004 to evaluate the response of soil respiration to additions and/or alterations in mineral fertilizer, organic manure and various environmental factors. The study included seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (NOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Organic C in soil and the soil heavy fraction (organo-mineral complex) was increased from 4.47 to 8.61 mg C g−1 and from 3.32 to 5.68 mg C g−1, respectively, after the 13 yr application of organic manure. In contrast, organic C and the soil heavy fraction increased in NPK soil to only 5.41 and 4.38 mg C g−1, respectively. In the CK treatment, these parameters actually decreased from the initial C concentrations (4.47 and 3.32 mg C g−1) to 3.77 and 3.11 mg C g−1, respectively. Therefore, organic manure efficiently elevated soil organic C. However, only 66% of the increased soil organic C was combined with clay minerals in the OM treatment. Cumulative soil CO2 emissions from inter-row soil in the OM and NPK treatments were 228 and 188 g C m−2 during the 2002 maize growing season, 132 and 123 g C m−2 during the 2002/2003 wheat growing season, and 401 and 346 g C m−2 yr−1 in 2002-2003, respectively. However, during the 2004 maize growing season, cumulative soil CO2 emissions were as high as 617 and 556 g C m−2, respectively, due to the contribution of rhizosphere respiration. The addition of organic manure contributed to a 16% increase in soil CO2 emission in 2002-2003 (compared to NPK), where only 27%, 36% and 24% of applied organic C was released as CO2 during the 2002 and 2004 maize growing seasons and in 2002-2003, respectively. During the 2002/2003 wheat growing season, soil CO2 flux was significantly affected by soil temperature below 20 °C, but by soil moisture (WFPS) during the 2004 maize growing season at soil temperatures above 18 °C. Optimum soil WFPS for soil CO2 flux was approximately 70%. When WFPS was below 50%, it no longer had a significant impact on soil CO2 flux during the 2002 maize growing season. This study indicates the application of organic manure composted with wheat straw may be a preferred strategy for increasing soil organic C and sequestering C in soil.  相似文献   

11.
Restoration of soils burned by a wildfire using composted amendments of different origin (biosolids and municipal organic wastes) and final particle size (screened and unscreened) was studied after 6 and 12 months of application in a field trial in semiarid NW Patagonia. Composts were applied at 40 Mg ha−1. A fertilized treatment with soluble N (100 kg ha−1) and P (35 kg ha−1), and a non-treated control were also included. As indicators of soil response, chemical (electrical conductivity, pH, organic C, total N, extractable P), biological (potential microbial respiration, potential net N mineralization, N retained in microbial biomass) and physical (temperature and soil moisture) properties were evaluated. Plant soil cover was also estimated. Soil chemical and biological properties showed a high response to organic amendment addition, more evident after the wet season (12 months of application). Soil organic C, total N and extractable P increased significantly with biosolids composts (BC), and soil pH with municipal composts (MC). Potential microbial C respiration and net N mineralization were similar for both MC and BC, and significantly higher than in the control and the inorganic fertilized treatment; when calculated on C or N basis the highest values corresponded to MC. Results imply that in terms of organic C accretion, BC were more effective than MC due to higher amounts of total and recalcitrant C. Screened and unscreened composts did not differ significantly in their effects on soil properties. The increase of organic C with BC did not contribute to increase soil moisture, which was even higher in control plots after the wet season; higher plant cover and water consumption in amended plots could also explain this pattern. Inorganic fertilization enhanced higher plant cover than organic amendments, but did not contribute to soil restoration.  相似文献   

12.
Our aim was to establish the long-term effects of repeated applications after 20 y of organic amendments (farmyard manure at 10 t ha−1 y−1, and urban sewage sludge at two different rates, 10 t ha−1 y−1 and 100 t ha−1 every 2 y) on the quality of a sandy and poorly buffered soil (Fluvisol, pH 6). Chemical characteristics and biodegradability of the labile organic matter, which is mainly derived from microbial biomass and biodegradation products of organic residues, were chosen as indicators for soil quality. The organic C content had reached a maximal value (30.6 g C kg−1 in the 100 t sludge-treated soil), i.e. about 2.5 times that in the control. Six years after the last application, the organic C content and the microbial biomass content remained higher in sludge-treated soils than in the control. In contrast, the proportion of labile organic matter was significantly lower in sludge-treated soils than in manure-treated and control soils. The labile organic matter of sludge extracts appeared less humified than that of manure-treated and control soils.  相似文献   

13.
Two beet vinasse forms (fresh (BV) and composted with a cotton gin crushed compost (CV)) have been applied for 4 years on a Typic Xerofluvent under dryland conditions near to Sevilla city (Guadalquivir River Valley, Andalusia, Spain) and their effect on soil physical, chemical and biological properties and their repercussion on soil loss was studied. BV and CV were applied at rates of 5000, 7500, and 10,000 kg ha− 1 organic matter ha− 1, respectively. The application of CV to the soil resulted in improved some soil properties and soil loss decreased. However, when BV was applied soil physical properties deteriorated and soil loss increased. We think that the high amounts of monovalent cations, particularly Na+, and of fulvic acids in BV destabilized soil structure. These results show that the addition of soil organic matter not always prevents soil loss, and they suggest the preferential use of composted beet vinasse versus fresh vinasse under dryland conditions.  相似文献   

14.
Soils were examined at 2505 m elevation in Haleakala's crater (Maui, Hawai?i) beneath 50 adult Hawaiian silversword plants (Argyroxiphium sandwicense DC.); mean canopy diameter was 42.0 cm. Exposed volcanic Inceptisols (Andic Humitropepts) seem significantly eroded beyond the dense rosette crowns, but remain unaffected below plants. Rosettes are perched on isolated basal soil mounds or pedestals 27–121 mm high (mean: 77.5 mm). Geomorphic field response of soils below rosettes and adjacent (∼ 100 cm apart) bare soils differs. Infiltration rates are higher under plants (mean: 158.7 mm/min) than in exposed control soils (60.0 mm/min). Soils below silverswords also show greater shear strength (146.1 g/cm2) and compressibility (2.795 kg/cm2) than unprotected soils (36.1 g/cm2, and 0.108 kg/cm2, respectively). Soil in the plant mounds contains more organic matter; this has influenced other pedological properties, which also differ substantially between sampling positions. Substrate under plants has a porosity ∼ 53% higher than exposed soil, while bulk density is 62% higher in soil outside the plant crown. The observed microtopographic differences are ascribed to greater soil erosion by rainsplash and runoff outside the silversword canopy. The dense rosette crown effectively intercepts raindrops; soils beneath plants also have a high surface cohesiveness provided by a dense network of fine plant rootlets and partially decomposed organic material. Higher runoff rates occur on the less permeable substrate beyond rosettes, which is affected by soil crusting.  相似文献   

15.
Denitrification assays in soils spiked with zinc salt have shown inhibition of the N2O reduction resulting in increased soil N2O fluxes with increasing soil Zn concentration. It is unclear if the same is true for environmentally contaminated soils. Net production of N2O and N2 was monitored during anaerobic incubations (25 °C, He atmosphere) of soils freshly spiked with ZnCl2 and of corresponding soils that were gradually enriched with metals (mainly Zn) in the field by previous sludge amendments or by corrosion of galvanized structures. Total denitrification activity (i.e. the sum of N2O+N2 production rate) was not inhibited by freshly added Zn salts up to 1600 mg Zn kg−1, whereas N2O reduction decreased by 50% (EC50) at total Zn concentrations of 231 mg Zn kg−1 (ZEV soil) and 368 mg Zn kg−1 (TM soil). In contrast, N2O reduction was not reduced by soil Zn in any of the field contaminated soils, even at total soil Zn or soil solution Zn concentrations exceeding more than 5 times corresponding EC50's of the freshly spiked soil. The absence of adverse effects in the field contaminated soils was unrelated to soil NO3 or organic matter concentration. Ageing (2-8 weeks) and soil leaching after spiking reduced the toxicity of Zn on N2O reduction, either expressed as total Zn or soil solution Zn, suggesting adaptation reactions. However, no full recovery after spiking was identified at the largest incubation period in one soil. In addition, the denitrification assay performed with sewage sludge showed elevated N2O release in Zn contaminated sludges (>6000 mg Zn kg−1 dry matter) whereas this was not observed in low Zn sludge (<1000 mg Zn kg−1 dry matter) suggesting limits to adaptation reactions in the sludge particles. It is concluded that the use of soils spiked with Zn salts overestimates effects on N2O reduction. Field data on N2O fluxes in sludge amended soils are required to identify if metals indeed promote N2O emissions in sludge amended soils.  相似文献   

16.
The advantages of no-tillage (NT) over conventional tillage (CT) systems in improving soil quality are generally accepted, resulting from benefits in soil physical, chemical and biological properties. However, most evaluations have only considered surface soil layers (maximum 0-30 cm depth), and values have not been corrected to account for changes in soil bulk density. The objective of this study was to estimate a more realistic contribution of the NT to soil fertility, by evaluating C- and N-related soil parameters at the 0-60 cm depth in a 20-year experiment established on an oxisol in southern Brazil, with a soybean (summer)/wheat (winter) crop succession under NT and CT. At full flowering of the soybean crop, soil samples were collected at depths of 0-5, 5-10, 10-20, 20-30, 30-40, 40-50 and 50-60 cm. For the overall 0-60 cm layer, correcting the values for soil bulk density, NT significantly increased the stocks of C (18%) and N (16%) and microbial biomass C (35%) and N (23%) (MB-C and -N) in comparison to CT. Microbial basal respiration and microbial quotient (qMic) were also significantly increased under NT. When compared with CT, NT resulted in gains of 0.8 Mg C ha−1 yr−1 (67% of which was in the 0-30 cm layer) and 70 kg N ha−1 yr−1 (73% in the 0-30 cm layer). In the 0-5-cm layer, MB-C was 82% higher with NT than with CT; in addition, the 0-30 cm layer accumulated 70% of the MB-C with NT, and 58% with CT. In comparison to CT, the NT system resulted in total inputs of microbial C and N estimated at 38 kg C ha−1 yr−1 and 1.5 kg N ha−1 yr−1, respectively. Apparently, N was the key nutrient limiting C and N stocks, and since adoption of NT resulted in a significant increase of N in soils which were deficient in N, efforts should be focused on increasing N inputs on NT systems.  相似文献   

17.
Biotic soil parameters have so far seldom played a role in practical soil assessment and management of grasslands. However, the ongoing reduction of external inputs in agriculture would imply an increasing reliance on ecosystem self-regulating processes. Since soil biota play an important role in these processes and in the provision of ecosystem services, biological soil parameters should be an integral part of soil assessment. The general objective of the current study is to investigate to what extent biotic soil parameters provide additional value in soil quality assessment of grassland on sandy soils. We measured abiotic and biotic soil parameters together with process parameters underlying ecosystem services in 20 permanent production grasslands. Cross-validated stepwise regression was used to identify abiotic and biotic soil parameters that explained the soil ecosystem services soil structure maintenance, water regulation, supply of nutrients, and grassland production, respectively.Process parameters underlying the ecosystem service soil structure maintenance such as bulk density and the percentage of sub-angular blocky elements were mainly influenced by SOM and its qualities. The correlations between penetration resistance at 0-10 cm and the percentage of soil crumbs with earthworms suggested a relationship to earthworm activity. Parameters underlying the service of water regulation showed no clear relationship to biotic soil parameters. Water infiltration rate in the field was explained by the penetration resistance at 10-20 cm. Process parameters underlying the service of nutrients’ supply such as the potentially mineralizable C and N were mainly determined by soil total N. The potential C and N mineralization were more related to biotic soil parameters, whereby each parameter was the other’s antithesis. The grassland production without N fertilization viz. the nitrogen supply capacity of the soil measured as N yield, was mainly explained by soil organic matter (SOM) and soil moisture, and to a lesser extent by soil total N. One gram of SOM per kg of dry soil corresponded to 3.21 kg N yield ha−1, on top of a constant of 15.4 kg N ha−1. The currently applied calculations in the Dutch grassland fertilization recommendation, underestimated in 85% of the production grasslands, the measured nitrogen supply capacity of the soil by on average 42 kg N ha−1 (31%). This legitimizes additional research to improve the currently applied recommendations for sandy soils. The response of N yield to N fertilization ranged from 35 to 102%. This wide range emphasizes the importance of a better recommendation base to target N fertilizer. The response of N yield to N fertilization was predicted by the total number of enchytraeids, the underlying mechanism of which needs further investigation on different soil types. This knowledge can be important for the optimal use of fertilizer and its consequences for environmental quality.  相似文献   

18.
The effect of organic and inorganic fertiliser amendments is often studied shortly after addition of a single dose to the soil but less is known about the long-term effects of amendments. We conducted a study to determine the effects of long-term addition of organic and inorganic fertiliser amendments at low rates on soil chemical and biological properties. Surface soil samples were taken from an experimental field site near Cologne, Germany in summer 2000. At this site, five different treatments were established in 1969: mineral fertiliser (NPK), crop residues removed (mineral only); mineral fertiliser with crop residues; manure 5.2 t ha−1 yr−1; sewage sludge 7.6 t ha−1 yr−1 or straw 4.0 t ha−1 yr−1 with 10 kg N as CaCN2 t straw−1. The organic amendments increased the Corg content of the soil but had no significant effect on the dissolved organic C (DOC) content. The C/N ratio was highest in the straw treatment and lowest in the mineral only treatment. Of the enzymes studied, only protease activity was affected by the different amendments. It was highest after sewage amendment and lowest in the mineral only treatment. The ratios of Gram+ to Gram− bacteria and of bacteria to fungi, as determined by signature phospholipid fatty acids, were higher in the organic treatments than in the inorganic treatments. The community structure of bacteria and eukaryotic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and redundancy discriminate analyses of the DGGE banding patterns. While the bacterial community structure was affected by the treatments this was not the case for the eukaryotes. Bacterial and eukaryotic community structures were significantly affected by Corg content and C/N ratio.  相似文献   

19.
In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water erosion. Large areas of soil have reached an irreversible state of degradation. In this study, the 137Cs technique was used to quantify erosion rates and identify the main factors involved in the erosion process based on a representative catchment of the Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil losses, samples were collected taking into account the lithology, slope and land use along six selected transects within the Boussouab catchment. The transects were representative of the main land uses and physiographic characteristics of that Rif sector. The reference inventory for the area was established at a stable, well preserved, matorral site (value of 4250 Bq m− 2). All the sampling sites were eroded and 137Cs inventories varied widely (between 245 and 3670 Bq m− 2). The effective soil losses were also highly variable (between 5.1 and 48.8 t ha− 1 yr− 1). Soil losses varied with land use. The lowest average values were on matorral and fallow land (10.5 and 15.2 t ha− 1 yr− 1, respectively) but much higher with alfa vegetation or cereal crops (31.6 and 27.3, respectively). The highest erosion rate was on a badland transect at the more eroded part of the catchment, with rates exceeding 40 t ha− 1 yr− 1 and reaching a maximum of 48.8 t ha− 1 yr− 1.The average soil losses increased by more than 100% when the slope increased from 10° (17.7 t ha− 1 yr− 1) to 25° (40. 8 t ha− 1 yr− 1). Similar results were obtained when comparing erosion rates in soils that were covered by matorral with respect to those under cultivation. Lithology was also a key factor affecting soil loss. Soils on marls were more erodible and the average erosion rates reached 29.36 t ha− 1 yr− 1, which was twice as high as soils on the glacis and old fluvial terraces (average rates of 14.98 t ha− 1 yr− 1). The radiometric approach was very useful to quantify erosion rates and to examine the pattern of soil movement. The analysis of main erosion factors can help to promote rational soil use and establish conservation strategies in the study area.  相似文献   

20.
The accumulation and transformation of organic matter during soil development is rarely investigated although such processes are relevant when discussing about carbon sequestration in soil. Here, we investigated soils under grassland and forest close to the North Sea that began its genesis under terrestrial conditions 30 years ago after dikes were closed. Organic C contents of up to 99 mg g−1 soil were found until 6 cm soil depth. The humus consisted mainly of the fraction lighter than 1.6 g cm−3 which refers to poorly degraded organic carbon. High microbial respiratory activity was determined with values between 1.57 and 1.17 μg CO2-C g−1 soil h−1 at 22 °C and 40 to 70% water-holding capacity for the grassland and forest topsoils, respectively. The microbial C to organic C ratio showed values up to 20 mg Cmic g−1 Corg. Although up to 2.69 kg C m−2 were estimated to be sequestered during 30 years, the microbial indicators showed intensive colonisation and high transformation rates under both forest and grassland which were higher than those determined in agricultural and forest topsoils in Northern Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号