首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Native rainforest tree plantations are increasingly viewed as potentially important for high value timber production and provision of a range of ecological services in tropical and subtropical areas. In order to determine the extent to which conversion of rainforest to native Araucariaceae plantation influences soil fungi, we compared soil fungal communities under native rainforest and 73-74 year-old Araucaria bidwillii, Araucaria cunninghamii and Agathis robusta plantations at Gadgarra State Forest, Queensland, Australia. Following direct extraction of DNA from soil, terminal restriction fragment length polymorphism (T-RFLP) analysis of rDNA internal transcribed spacer (ITS) regions was conducted. Ordination analysis of the T-RFLP data revealed significant separation of the fungal communities according to forest type along the first canonical axis, with the native rainforest samples separating from the three Araucariaceae plantations along the second axis. Overall, the most abundant ITS sequences in clone assemblages from the four forest types were Ascomycota, followed by Basidiomycota, Zygomycota and Chitridomycota, however their relative importance varied in individual forest types. The results indicate that conversion of tropical rainforest to monoculture plantations of native trees can significantly alter soil fungal diversity.  相似文献   

2.
Current theory expects that fungi, on the one hand, are spatially ubiquitous but, on the other, are more susceptible than bacteria to disturbance such as land use change due to dispersal limitations. This study examined the relative importance of location and land use effects in determining soil fungal community composition in south-eastern Australia. We use terminal restriction fragment length polymorphism (T-RFLP; primer pair ITS1-F–ITS4) and multivariate statistical methods (NMDS ordinations, ANOSIM tests) to compare relative similarities of soil fungal communities from nine sites encompassing three locations (ca 50–200 km apart) and four land uses (native eucalypt forest, Pinus radiata plantation, Eucalyptus globulus plantation, and unimproved pasture). Location effects were generally weak (e.g. ANOSIM test statistic R  0.49) and were, in part, attributed to minor differences in soil texture. By contrast, we found clear and consistent evidence of land use effects on soil fungal community composition (R  0.95). That is, soils from sites of the same land use grouped together in NMDS ordinations of fungal composition despite geographic separations of up to ca 175 km (native eucalypt forests) and 215 km (P. radiata plantations). In addition, different land uses from the same location were clearly separate in NMDS ordinations, despite, in one case, being just 180 m apart and having similar land use histories (i.e. P. radiata versus E. globulus plantation both established on pasture in the previous decade). Given negligible management of all sites beyond the early establishment phase, we attribute much of the land use effects to changes in dominant plant species based on consistent evidence elsewhere of strong specificity in pine and eucalypt mycorrhizal associations. In addition, weak to moderate correlations between soil fungal community composition and soil chemical variables (e.g. Spearman rank correlation coefficients for individual variables of 0.08–0.32), indicated a minor contributing role of vegetation-mediated changes in litter and soil chemistry. Our data provide evidence of considerable plasticity in soil fungal community composition over time spans as short as 6–11 years. This suggests that – at least within geographic zones characterised by more-or-less contiguous forest cover – soil fungal community composition depends most on availability of suitable habitat because dispersal propagules are readily available for colonisation after land use change.  相似文献   

3.
The main objective of this study was to assess the impact of the application of an antagonistic strain of Trichoderma atroviride on the native microbial soil communities. The structures of the fungal and bacterial communities were assessed by T-RFLP (terminal restriction fragment length polymorphism) method, based on T-RFLP analysis of 18S and 16S rRNA genes, respectively. Results showed that the introduction of the strain I-1237 into two soils slightly modified the microbial diversity, only for a short period of time. Nine months post-inoculation resilience took place, resulting in similar structures of the fungal and bacterial communities in the inoculated and control soils.  相似文献   

4.
A stable plant cover is essential in the semi-arid soils of the Mediterranean area to maintain their fertility and functionality. In a semi-arid area, we have studied abundance, structure, and presence of active species of fungal communities of a devegetated soil (disturbed soil) and vegetated soil (undisturbed soil). Disturbed soil was covered by small spontaneous vegetation (5–10%) compared to undisturbed soils (70%), and this decreased the content of the total organic C, microbial biomass, microbial activity (adenosine triphosphate), and fungal counts. The composition and activities of fungal communities were also investigated by direct extraction of DNA and RNA from soil. Denaturing gradient gel electrophoresis analysis of 18S ribosomal DNA and 18S ribosomal RNA profiles indicated that total and active fungal communities were changed after vegetation removal.  相似文献   

5.
We studied the distribution of the indigenous bacterial and fungal communities in a forest soil profile. The composition of bacterial and fungal communities was assessed by denaturing gradient gel electrophoresis (DGGE) of total and extracellular DNA extracted from all the soil horizons. Microbial biomass C and basal respiration were also measured to assess changes in both microbial biomass and activity throughout the soil profile. The 16S rDNA-DGGE revealed composite banding patterns reflecting the high bacterial diversity as expected for a forest soil, whereas 18S rDNA-DGGE analysis showed a certain stability and a lower diversity in the fungal communities. The banding patterns of the different horizons reflected changes in the microbial community structure with increasing depth. In particular, the DGGE analysis evidenced complex banding patterns for the upper A1 and A2 horizons, and a less diverse microflora in the deeper horizons. The low diversity and the presence of specific microbial communities in the B horizons, and in particular in the deeper ones, can be attributed to the selective environment represented by this portion of the soil profile. The eubacterial profiles obtained from the extracellular DNA revealed the presence of some bands not present in the total DNA patterns. This could be interpreted as the remainders of bacteria not any more present in the soil because of changes of edaphic conditions and consequent shifting in the microbial composition. These characteristic bands, present in all the horizons with the exception of the A1, should support the concept that the extracellular DNA is able to persist within the soil. Furthermore, the comparison between the total and extracellular 16S rDNA-DGGE profiles suggested a downwards movement of the extracellular DNA.  相似文献   

6.
The contents and the compositions of the pyrrolizidine alkaloid (PA) complex of ragwort (Senecio jacobaea L.) were examined as potential drivers of fungal community structure in the rhizosphere. S. jacobaea plants within the coastal sand dune reserve of Meijendel (the Netherlands) were assayed for concentration and composition of PAs in roots. Rhizosphere soil was collected from pre-flowering plants, which differed up to 8-fold in PA production, and represented both jacobine and senecionine/seneciphylline chemotypes. Bulk soil samples from the same site were also collected for comparative examination. A culture-independent approach, involving direct DNA isolation, PCR of fungal 18S rRNA genes, and denaturing gradient gel electrophoresis (DGGE), was applied to compare the fungal communities of plants with different PA contents, as well as differences between bulk and rhizosphere samples. Cluster analysis of PCR-DGGE profiles revealed no clear evidence for PA-induced selection of specific fungal communities. However, canonical variance analysis showed that fungal communities associated with high-PA jacobine chemotypes could be discriminated from low PA samples and from the senecionine/seneciphylline chemotypes. The diversity of DGGE banding patterns, both in terms of band number and evenness, showed a trend toward lower diversity in the rhizosphere of high-PA plants as compared to low-PA plants and bulk soil. These results indicate that PA chemotypes of S. jacobaea differ in their influence on soil-borne fungal communities, with jacobine-containing plants exerting a greater selection in the rhizosphere than plants containing senecionine/seneciphylline.  相似文献   

7.
The community fingerprints of both the prevalent and the metabolically active microbial community were related to a quantitative estimation of microbial biomass in an arable soil, revealed by substrate-induced-respiration (SIR). Two concentrations of glucose or l-asparagine, representing those used in the SIR measurement or equivalent to those released in root exudates, were studied. Respiration rates and changes in community structure fingerprints were followed for 48 h. Bacterial and fungal community fingerprints were obtained using both reverse transcribed 16S and 18S ribosomal RNA (rRNA) regions and the corresponding rDNA as a template in PCR. Samples were then analysed by denaturing gradient gel electrophoresis (DGGE). Low concentrations of substrate amendments resulted in minor changes in rRNA or rDNA-based bacterial and fungal banding patterns during the whole 48 h incubation. High concentrations of substrates, especially l-asparagine, increased respiration rates and induced significant changes in both 16S rRNA and rDNA-community fingerprints. The prominent rRNA and rDNA bacterial community sequence types were common to all treatments, but in general the bacterial rDNA fingerprints had fewer bands than the corresponding rRNA profiles that assess the active fraction of the community. In contrast, there was little difference between fungal 18S rRNA and rDNA patterns. The number of fungal ribosomal sequence types in DGGE fingerprints was lower than the number of bacterial types. This study indicated that there was a rapid respiration response by the whole microbial community during SIR estimates in soil, but that community structure did not change during the conventional incubation period. In an extended (8-48 h) incubation with high amounts of l-asparagine increased respiration was associated with growth of the microbial community.  相似文献   

8.
Overwintering cattle outdoors causes soil surface disturbance, substantial increases of soil Ntot, Corg, and P and a shift in pH to alkaline levels. Since fungi predominate in unfertilized soils with acidic pH and have filamentous hyphae, we hypothesized that changes caused by overwintering cattle outdoors (trampling, excreta returns, and changes in soil chemistry) will lead to suppressed species richness, lower biomass, and alter the structure of fungal communities. The research was conducted on an upland pasture used more than 10 years for cattle overwintering. Both culture-dependent and -independent methods were used for the determination of either fungal species composition (cultivation; DGGE) or biomass (numbers of CFU; concentration of fungal PLFA marker 18:2ω6,9). Soils under three different levels of cattle disturbance (S - severe, M - moderate, C - no disturbance/control) were investigated during three subsequent years. In addition, the DGGE analysis of soils was completed by comparison with analysis of fresh cattle excrements (Ex). The composition of fungal communities showed significantly higher richness and a substantial shift in species composition in cattle-disturbed soils (S, M) in comparison to the non-disturbed soil (C). The number of separated DGGE bands was significantly higher in S (30.67 ± 1.63; mean ± SD) and M (25.50 ± 1.64) soils than in the C soil (19.33 ± 1.75). Sequencing of typical bands revealed common fungal genera - Alternaria, Penicillium, Fusarium, Rhizopus, Isaria, and Metarhizium. Profiles of the S soil were enriched by bands of rumen-born anaerobic fungi (Neocallimastix, Cyllamyces) occurring mainly in profiles of excrements, where relatively low band richness (14.33 ± 1.15) was observed. The increasing level of cattle disturbance induced an increase in the biomass of complex fungal community over the three-year experimental period from 3.39 ± 2.11 (mean ± SD) nmol of fungal PLFA per gram of the C soil to 5.87 ± 3.16 in the M soil and 9.21 ± 4.69 in the S soil. Concentrations of soil Ntot and Corg were evaluated as the parameters significantly correlating with biomass as well as composition of the fungal community.  相似文献   

9.
Complex soil microbial data produced by molecular profiling techniques, such as terminal restriction fragment length polymorphism (T-RFLP), are often analysed using multivariate statistical methods. Despite this, there has been little evaluation of the sensitivity of multivariate methods to routine data manipulations such as the application of noise thresholds. We examine effects of three percentage area thresholds (0.1%, 0.5% and 1.0%; i.e. ranging from low to commonly applied) on non-metric multidimensional scaling (NMDS) ordinations of soil fungal T-RFLP profiles. We then interpret threshold effects by introducing the concept of structural redundancy in T-RFLP data.NMDS ordinations compared 20 soil samples (encompassing seven sites, two forest types, and three locations) for T-RFLP presence/absence data, which were produced using primers specific to the rDNA internal transcribed spacer (ITS) region, and three separate restriction enzymes (HinfI, AluI and TaqI). Increasing thresholds from 0.1% to 1.0% led to decreases in average number of detected reproducible fragments per site of 57% (HinfI), 75% (AluI), and 69% (TaqI). However, despite the removal of many fragments unique to site/forest type/location, the application of increasing thresholds did not significantly change NMDS patterns for any enzyme in both the complete data and in a more weakly structured sub-group (involving one forest type and two locations). Thus, our data indicate that application of area thresholds up to 1.0% would have minimal impact on NMDS-based comparisons of soil fungal composition.Robustness of NMDS patterns to considerable fragment loss with increasing threshold suggested a degree of ‘structural redundancy’ in our T-RFLP data – that is, multiple fragments per soil sample were interchangeable in the way they contributed to between-sample NMDS patterns. Indeed, for each restriction enzyme, we found 3–4 peels of data (i.e. mutually exclusive sub-sets) that were capable of reproducing overall patterns in presence/absence data at the 0.1% threshold. Despite potential in the T-RFLP method for production of more than one fragment per fungal species/phylotype, we present arguments to support at least some translation of structural redundancy in T-RFLP data to structural redundancy in fungal community comparisons (i.e. the between-soil similarity patterns can be explained by, or are imprinted in, multiple groups of fungal phylotypes). Our analyses highlight structural redundancy as an efficient method for identifying key phylotypes responsible for differences in community composition among soils, and as a promising starting point for improved understanding of many aspects of spatial soil ecology.  相似文献   

10.
Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca sativa var. Tango), zucchini (Cucurbita pepo spp. pepo var. Black Beauty), and pumpkin (C. pepo spp. pepo var. Howden) 16S rDNA terminal restriction fragment length polymorphism (T-RFLP) profiles of rhizosphere microbial communities from different soil/plant combinations were compared with a pairwise Pearson correlation coefficient. Rhizosphere microbial communities of zucchini and pumpkin grown in the media amended with highest degree of contaminated soil clustered separately, whereas communities of these plants grown in unamended or amended with lower concentrations of contaminated soil, grouped in a second cluster. Lettuce communities grouped similarly to cucurbits communities, whereas wheat communities did not display an obvious clustering. The variability of 16S rDNA T-RFLP profiles among the different plant/soil treatments were mostly due to the difference in relative abundance rather than presence/absence of T-RFLP fragments. Our results suggest that in highly contaminated soils, the rhizosphere microbial community structure is governed more by the degree of contamination rather than the plant host type.  相似文献   

11.
Soil microbial communities are very sensitive to changes in land use and are often used as indicators of soil fertility. We evaluated the microbial communities in the soils of four types of vegetation (cropland (CP), natural grassland (NG), broadleaf forest (BF) and coniferous forest (CF)) at depths of 0–10 and 10–20 cm on the Loess Plateau in China using phospholipid fatty acid (PLFA) profiling and denaturing gradient gel electrophoresis (DGGE) of DNA amplicons from polymerase chain reactions. The soil microbial communities were affected more by vegetation type than by soil depth. Total organic carbon, total nitrogen, soil-water content, pH, bulk density (BD) and C:N ratio were all significantly associated with the composition of the communities. Total PLFA, bacterial PLFA and fungal PLFA were significantly higher in the BF than the CP. The DGGE analyses showed that NG had the most diverse bacterial and fungal communities. These results confirmed the significant effect of vegetation type on soil microbial communities. BFs and natural grass were better than the CFs for the restoration of vegetation on the Loess Plateau.  相似文献   

12.
The effect of common bean (Phaseolus vulgaris L.) on the composition of nitrogen fixing bacterial assemblages in soil was studied by comparing planted and unplanted soil. The community composition was studied by terminal restriction fragment length polymorphism (T-RFLP) of the nitrogenase reductase gene (nifH). Principal component analysis (PCA) of T-RFLP profiles showed the separation of profiles from planted and unplanted soil. Terminal restriction fragments (T-RFs) corresponding to rhizobial bacteria were identified preferentially in planted soil; however most nifH T-RFs in soil could not be assigned to T-RFs simulated from a database of known diazotrophs. To specifically study rhizobial bacteria in the soil and nodules, PCR products from the alpha subunit of the nitrogenase enzyme (nifD) were analyzed by denaturing gradient gel electrophoresis (DGGE). DGGE results showed the specific stimulation of the rhizobial microsymbionts in planted soil.  相似文献   

13.
森林转换对土壤活性有机碳组分的影响   总被引:1,自引:0,他引:1  
为了研究林型转换对土壤活性有机碳组分的影响,在安徽皖南地区蔡家桥林场选取了马尾松次生林、湿地松人工林以及杉木人工林3种森林类型,分别采集了0—10,10—30,30—50 cm的土壤,测定了土壤有机碳(SOC)、颗粒有机碳(POC)、易氧化有机碳(EOC)、微生物生物量碳(MBC)、可溶性有机碳(DOC)以及土壤理化指标,分析了林型转换后土壤活性有机碳组分变化特征及其与土壤理化因子间的相关关系。结果表明:(1)马尾松次生林转换成湿地松人工林和杉木人工林后主要对0—10 cm土壤活性有机碳组分产生影响,其中土壤SOC,POC,EOC含量均在林型转换后出现下降,DOC含量上升,而MBC在林型转换前后无显著差异。(2)林型转换后各土层POC/SOC均出现下降,DOC和EOC占SOC比例总体呈升高趋势,MBC/SOC则未表现出明显规律。(3)土壤有机碳与活性碳组分以及TN,EC,NH+4-N,NO-3-N均呈极显著正相关,各活性碳组分之间也存在极显著正相关关系(p<0.01)。综上,马尾松次生林转换成...  相似文献   

14.
The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from the surrounding non-mat soils. In this study, we examined the fungal and bacterial communities associated with Piloderma mat and non-mat soils. Each mat and non-mat area was repeatedly sampled at four times throughout the year. Characterization of the mat activity and community was achieved using a combination of N-acetylglucosaminidase (NAGase) enzyme assays, and molecular analysis of fungal and bacterial communities using T-RFLP profiles, clone libraries, and quantitative PCR. Piloderma mats had consistently greater NAGase activity across all dates, although the magnitude of the difference varied by season. Furthermore, we found distinct fungal and bacterial communities associated with the Piloderma mats, yet the size of the microbial populations differed little between the mat and non-mat soils. Significant temporal variation was seen in the NAGase activity and in the sizes of the fungal and bacterial populations, but the community composition remained stable through time. Our results demonstrate the presence of two distinct microbial communities occupying the forest floor of Douglas-fir stands, whose populations and activities fluctuate seasonally but with little change in composition, which appears to be related to the physiochemical nature of mat and non-mat habitats.  相似文献   

15.
The autotrophic ammonia-oxidising bacterial (AOB) community composition was studied in acid coniferous forest soil profiles at a site in southwestern Sweden 6 years after liming. Liming caused a significant increase in pH in the organic horizons, while the mineral soil was unaffected. The AOB communities were studied by single-strand conformation polymorphism (SSCP) in parallel with denaturing gradient gel electrophoresis (DGGE) analysis of partial 16S rRNA genes amplified by PCR using primers reported to be specific for β-Proteobacteria AOB, followed by nucleotide sequencing. High genetic diversity of Nitrosospira-like sequences was found in the limed soil profiles, whereas no AOB-like sequences were detected in the control soil at any depth, according to both the SSCP and DGGE analyses. This clearly showed that liming induced growth of a diverse flora of AOB at this forest site. Both Nitrosospira cluster 2 and cluster 4 sequences were present in the limed soil profiles, regardless of soil pH, but we found a higher number of sequences affiliated with cluster 4. The high lime dose seemed to affect the AOB community more than the low dose, and its effects reached deeper into the soil profile. Seven different Nitrosospira-like sequences were found 10 cm under the litter layer in the soil limed with the high dose, but only two in the soil amended with the low lime dose.  相似文献   

16.
Arctic soil microorganisms remain active at ecologically relevant rates in frozen soils. We used bromodeoxyuridine (BrdU) labeling and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene amplicons to examine active bacterial communities in two Alaskan tundra soils collected in summer and winter of 2005. Active community T-RFLP profiles were compared to total community profiles to determine if active bacteria were a subset of the total community. In shrub soils, active bacteria communities differed in composition between summer and winter, and winter-active bacterial taxa were not detected in the total community, suggesting that they are likely rare within the overall community. In contrast, tussock tundra soil contained more bacterial taxa that were active in both summer and winter and also represented a large portion of the total community. Using in silico digest of a sequence library from this site, we attempted to identify the dominant organisms in our samples. Our previous research suggested that the total microbial community was stable throughout the year, but this new study suggests that the active community is more dynamic seasonally. In general, only a subset of the total community was growing at a given time. This temporal niche partitioning may contribute to the high diversity of microbial communities in soils. Understanding which taxa contribute to microbial function under different conditions is the next frontier in microbial ecology and linking composition to biogeochemical cycling.  相似文献   

17.
A long-term prescribed burning experiment, incorporating replicated plots that receive burning biennially (2 yr burn) or quadrennially (4 yr burn) and unburned controls, has been maintained in a wet sclerophyll forest at Peachester, Queensland, Australia since 1972. In 2003 we extracted DNA from soil collected from the experimental plots and investigated the influence of the burning on the soil fungal community by comparing denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified partial rDNA internal transcribed spacer regions (ITS1). Canonical analysis of principal coordinates (CAP) of the DGGE profiles of the upper 10 cm of the soil profile grouped the data strongly according to treatment, indicating that both burning regimes significantly altered fungal community structure compared to the unburned controls. In contrast, no obvious trend was observed for soil from a depth of 10-20 cm of the profile. Sequencing of selected DGGE bands found no obvious patterns of presence/absence of taxonomic groups between the treatments. Analysis of soil nitrogen and carbon by mass spectrometry indicated that total soil C and N, along with both gross and net N mineralisation, were significantly lower in 2 yr plots compared to control and 4 yr plots.  相似文献   

18.
The diversity of endobacteria associated with ectomycorrhizas of Suillus variegatus and Tomentellopsis submollis, in two Corsican pine (Pinus nigra) stands was analysed by cultivation-dependent and cultivation-independent molecular methods. Denaturing gradient gel electrophoresis (DGGE) analysis revealed the cultivable endobacterial communities associated with S. variegatus were similar within the same stand. The most abundant cultivable bacterial species belonged to the genera Pseudomonas and Burkholderia. Cultivation-independent molecular analysis indicated that the structure of the endobacterial communities in ectomycorrhizas was consistent across all samples regardless of ECM fungal species or the pine stand from which the samples were collected. However, comparison between rDNA- and rRNA-derived DGGE gels showed that metabolically active endobacterial species were not always detected in rDNA-based profiles. Clone libraries constructed from rRNA molecules indicated that Pseudomonas and Burkholderia spp. were metabolically active bacteria. As some of the most abundant cultivable bacteria, including Bacillus/Paenibacillus spp., were not detected in cultivation-independent DGGE profiles, a combination of cultivation-dependent and -independent approaches provided a more complete assessment of the diversity of endobacteria associated with ectomycorrhizas.  相似文献   

19.
The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (−8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.  相似文献   

20.
【目的】毛竹是喜氮植物,土壤氮素水平对毛竹生长至关重要。生物固氮是土壤氮素的重要来源,因此,探索阔叶林改种毛竹后土壤固氮细菌和土壤氮素的变化具有重要意义。【方法】选择立地条件相近的毛竹林(100多年前由阔叶林改种而来)和阔叶林,每种林地在东北坡向位置随机选择4个10 m×10 m标准样地,每个标准样地选取5个采样点,分层采集0—20 cm(表层)和20—40 cm(次表层)土壤样品,分析了土壤pH、有机碳、碱解氮、有效磷、速效钾和含水量等常规理化性质; 采用引物对AQER和PolF,以土壤总DNA为模板扩增了固氮细菌功能基因(nifH )片段,应用变性梯度凝胶电泳(DGGE)和实时荧光定量PCR(Real-time PCR),分析了固氮细菌群落结构、多样性以及丰度(nifH 基因拷贝数)变化; 通过基因克隆测序对土壤固氮细菌进行初步鉴定。【结果】阔叶林改种毛竹后土壤pH显著(P0.05)提高; 毛竹林土壤的含水量、碱解氮以及表层土壤的速效钾显著高于(P0.05)同层的阔叶林土壤,而有效磷则显著(P0.05)低于同层的阔叶林土壤。总体来说,阔叶林改种毛竹后土壤养分含量明显提高; 阔叶林土壤固氮细菌DGGE条带数以及多样性指数(Shannon-Wiener index)都高于毛竹林; 基于DGGE条带信息的聚类分析和主成分分析(PCA)结果表明,阔叶林和毛竹林区分为2个类群,而同一林分的不同土层之间差异较小; 实时荧光定量PCR结果显示,毛竹林土壤的固氮细菌 nifH 基因丰度显著(P0.05)高于阔叶林土壤; 通过克隆测序,14个阳性克隆分别属于2个不同的菌属,其中13个均为Bradyrhizobium,1个为Azohydromonas lata,条带序列与已知序列的相似度为93%~98%。【结论】阔叶林改种毛竹后土壤固氮细菌的种类减少,而功能基因丰度却明显增加; 土壤氮素水平明显提高,这可能是土壤固氮能力增强的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号