首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micropropagated sugarcane plants have been used in Brazil for almost three decades. Besides the improvement in plant health, micropropagated sugarcane carries no endophytic plant growth-promoting bacteria. The Brazilian inoculation technology to reintroduce diazotrophic bacteria in micropropagated sugarcane plantlets revealed a synergistic-like effect in PGP-bacteria mixed inoculations. The infection model of single diazotrophic bacteria species in sugarcane was studied in detail, but still many questions remain open. In this study we used a combined fluorescence in situ hybridization (FISH) and a cultivation based approach (MPN) to evaluate the colonization of sugarcane plantlets by mixed inocula. The highest colonization for three out of the five species studied was obtained with a mixed inoculum, when the Azospirillum amazonense showed an increase by almost 100 times in colonization and Herbaspirillum spp. and Burkholderia tropica was determined at 107 cells per gram root fresh weight. All of the inoculated bacterial species could be detected using the FISH probes 12 h after bacterial inoculation. The FISH results confirmed the MPN counts and showed differences in the population numbers and colonization behavior of particular bacterial inoculum strains in the different mixed inocula. A putative antagonistic effect among the inoculated H. seropedicae and H. rubrisubalbicans strains was observed using FISH, as well as the better competitiveness of B. tropica as compared to the A. amazonense strain. The observed data probably reflect also specific interactions with the sugarcane variety used in this particular inoculation system, and may not be generalized as a rule. This is the first study about the competition for sugarcane colonization in a mixed bacterial inoculum.  相似文献   

2.
The knowledge of the survival of inoculated beneficial fungal and bacterial strains in the field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developing. The aim of this study was to monitor, 4 years after plantation into the field site, the effects of Douglas fir (Pseudotsuga menziesii) co-inoculation with the mycorrhiza helper bacterial strain Pseudomonas fluorescens BBc6R8 and/or the fungal strain Laccaria bicolor S238N on seedling growth and on the indigenous bacterial and ectomycorrhizal communities using quantitative and qualitative approaches. The field persistence of the inoculated strains was also monitored. The seedling shoot volume estimate was statistically significantly higher in the fungal inoculated plots in comparison to the non-inoculated plots but no treatment-related changes in the quantitave or qualitative microbial measurements were observed and the inoculated strains could not be detected after 4 years.  相似文献   

3.
Fifty strains of bacteria isolated from banana roots were studied for their plant growth promoting (PGP) activities. Indole -3- acetic acid (IAA) production by root-associated bacteria ranged from 20 to 302 µg ml?1. Seventeen isolates (34%) were positive for siderophore production and 18 isolates (36%) showed phosphate solubilization. None of the isolates showed potassium solubilization. All the isolates showed growth on nitrogen free Jensen medium. Identification of the bacteria based on 16S rRNA gene sequencing revealed that the isolates belonged to genus Bacillus sp, Klebsiella sp, Microbacterium sp and Enterobacter sp. A pot experiment in a greenhouse was conducted to investigate the effect PGP bacteria on banana plant growth and enzyme activities. The results demonstrated a significant (P < 0.05) increase in plant growth, chlorophyll, total phenolics, proline, catalase and ascorbic acid oxidase in banana plants treated with PGP bacteria as compared to control. However, the plant-growth response was variable and dependent on the bacterial strains, enzyme activity, and growth parameter observed. The present study revealed that bacteria showing multiple PGP activity could be used as biostimulants in enhancing banana production.  相似文献   

4.
Banana production has been severely hindered by the long-term practice of monoculture agriculture. Fusarium wilt, caused by the Fusarium oxysporum f. sp. cubense (FOC), is one of the most destructive diseases that can afflict banana plants. It is both necessary and urgent to find an efficient method for protecting banana production worldwide. In this study, 57 antagonistic bacterial strains were isolated from the rhizospheres of healthy banana plants grown in a heavily wilt-diseased field; of the 57 strains, six strains with the best survival abilities were chosen for further study. Compared with the control and the other strains in the greenhouse experiment, W19 strain was found to observably decrease the incidence of Fusarium wilt and promote the growth of banana plants when combined with the organic fertilizer (OF). This strain was identified as Bacillus amyloliquefaciens based on its morphological, physiological, and biochemical properties, as well as 16S rRNA analysis. Two kinds of antifungal lipopeptides (iturin and bacillomycin D) produced by W19 strain were detected and identified using HPLC–ESI-MS. Another lipopeptide, called surfactin, was also produced by the thick biological film forming W19 strain. In addition to lipopeptides, 18 volatile antifungal compounds with significant antagonistic effect against F. oxysporum were detected and identified using gas chromatography–mass spectrometer (GC–MS). The work described herein not only highlights how the bioorganic fertilizer with B. amyloliquefaciens can be used to control Fusarium wilt of banana but also examines some of the potential mechanisms involved in the biocontrol of Fusarium wilt.  相似文献   

5.
This study tested the competitive ability of three locally isolated Cyclopia rhizobia and strain PPRICI3, the strain currently recommended for the cultivation of Cyclopia, a tea-producing legume. Under sterile glasshouse conditions, the three locally isolated strains were equally competitive with strain PPRICI3. In field soils, the inoculant strains were largely outcompeted by native rhizobia present in the soil, although nodule occupancy was higher in nodules growing close to the root crown (the original inoculation area). In glasshouse experiments using field soil, the test strains again performed poorly, gaining less than 6% nodule occupancy in the one soil type. The presence of Cyclopia-compatible rhizobia in field soils, together with the poor competitive ability of inoculant strains, resulted in inoculation having no effect on Cyclopia yield, nodule number or nodule mass. The native rhizobial population did not only effectively nodulate uninoculated control plants, they also out-competed introduced strains for nodule occupancy in inoculated plants. Nonetheless, the Cyclopia produced high crop yields, possibly due to an adequate supply of soil N.  相似文献   

6.
Denitrification by Bradyrhizobium japonicum bacteroids contributes to nitric oxide (NO) production within soybean nodules in response to flooding conditions. However, the physiological relevance of NO production by denitrification in B. japonicum-Glycine max symbiosis is still unclear. In this work, soybean plants were inoculated with B. japonicum strains lacking the nirK or norC genes which encode the copper-containing nitrite reductase and the c-type nitric oxide reductase enzymes, respectively. 14 days flooding increased nodule number of plants inoculated with the WT and norC strains, but not of plants inoculated with the nirK mutant. However, nodule dry weight was not affected by 14 days flooding regardless of the strain used for inoculation. Supporting this observation, individual nodule growth was significantly higher in plants inoculated with nirK than those inoculated with WT or norC after 14 days flooding. Nodule functioning was strongly inhibited by flooding since leghemoglobin content of the nodules induced by any of the strains was significantly decreased after 7 or 14 days flooding compared to control plants. However, this effect was more relevant in nodules of plants inoculated with the WT or norC mutant than in those inoculated with the nirK mutant. Nitrogen fixation was also estimated by analyzing nitrogen content derived from biological nitrogen fixation in shoots, using the 15N isotope dilution technique. By using this approach, we observed that the negative effect of 14 days flooding on nitrogen fixation was more pronounced in plants inoculated with the norC mutant. However, nitrogen fixation of plants inoculated with nirK showed the highest tolerance to 14 days flooding. These findings allowed us to demonstrate the previously proposed hypothesis which suggests that NO formed by copper-containing nitrite reductase in soybean nodules, in response to flooding, has a negative effect on nitrogenase activity. We propose that inoculation of soybeans with a B. japonicum nirK mutant, which does not produce NO from nitrate, increases the tolerance of symbiotic nitrogen fixation to flooding.  相似文献   

7.
To quantify the contribution of biological nitrogen fixation (BNF) to legume crops using the 15N natural abundance technique, it is necessary to determine the 15N abundance of the N derived from BNF—the B value. In this study, we used a technique to determine B whereby both legume and non-N2-fixing reference plants were grown under the same conditions in two similar soils, one artificially labelled with 15N, and the other not. The proportion of N derived from BNF (%Ndfa) was determined from the plants grown in the 15N-labelled soil and it was assumed that the %Ndfa values of the legumes grown in the two soils were the same, hence the B value of the legumes could be calculated. The legumes used were velvet bean (Mucuna pruriens), sunnhemp (Crotalaria juncea), groundnut (Arachis hypogaea) and soybean (Glycine max) inoculated, or not, with different strains of rhizobium. The values of %Ndfa were all over 89%, and all the legumes grown in unlabelled soil showed negative δ15N values even though the plant-available N in this soil was found to be approximately +6.0‰. The B values for the shoot tissue (Bs) were calculated and ranged from approximately −1.4‰ for inoculated sunnhemp and groundnut to −2.4 and −4.5‰ for soybean inoculated with Bradyrhizobium japonicum strain CPAC 7 and Bradyrhizobium elkanii strain 29W, respectively. The B (Bwp) values for the whole plants including roots, nodules and the original seed N were still significantly different between the soybean plants inoculated with CPAC 7 (−1.33‰) and 29W (−2.25‰). In a parallel experiment conducted in monoxenic culture using the same soybean variety and Bradyrhizobium strains, the plants accumulated less N from BNF and the values were less negative, but still significantly different for soybean inoculated with the two different Bradyrhizobium strains. The results suggest that the technique utilized in this study to determine B with legume plants grown in soil in the open air, yields B values that are more appropriate for use under field conditions.  相似文献   

8.
Zea mays, one of the most important cereals worldwide, is a plant not only with food and energy value, but also with phytoremediation potential. The use of plant growth promoting (PGP) rhizobacteria may constitute a biological alternative to increase crop yield and plant resistance to degraded environments. In search for PGP rhizobacteria strains, 6 bacterial isolates were isolated from a metal contaminated site, screened in vitro for their PGP characteristics and their effects on the growth of Z. mays were assessed. Isolates were identified as 3A10T, ECP37T, corresponding to Chryseobacterium palustre and Chryseobacterium humi, and 1ZP4, EC15, EC30 and 1C2, corresponding to strains within the genera Sphingobacterium, Bacillus, Achromobacter, and Ralstonia, respectively. All the bacterial isolates were shown to produce indole acetic acid, hydrogen cyanide and ammonia when tested in vitro for their plant growth promoting abilities, but only isolates 1C2, 1ZP4 and ECP37T have shown siderophore production. Their further application in a greenhouse experiment using Z. mays indicated that plant traits such as root and shoot elongation and biomass production, and nutrient status, namely N and P levels, were influenced by the inoculation, with plants inoculated with 1C2 generally outperforming the other treatments. Two other bacterial isolates, 1ZP4 and ECP37T also led to increased plant growth in the greenhouse. These 3 species, corresponding to strains within the genera Ralstonia (1C2), Sphingobacterium (1ZP4), and to a strain identified as C. humi (ECP37T) can thus be potential agents to increase crop yield in maize plants.  相似文献   

9.
The effects of soil disturbance and residue retention on the functionality of the symbiosis between medic (Medicago truncatula L.) and arbuscular mycorrhizal fungi (AMF) were assessed in a two-stage experiment simulating a crop rotation of wheat (Triticum aestivum L.) followed by medic. Plants were inoculated or not with the AMF, Glomus intraradices and Gigaspora margarita, separately or together. The contribution of the arbuscular mycorrhizal (AM) pathway for P uptake was determined using 32P-labeled soil in a small hyphal compartment accessible only to hyphae of AMF. In general AM colonization was not affected by soil disturbance or residue application and disturbance did not affect hyphal length densities (HLDs) in soil. At 4 weeks disturbance had a negative effect on growth and phosphorus (P) uptake of plants inoculated with G. margarita, but not G. intraradices. By 7 weeks disturbance reduced growth of plants inoculated with G. margarita or AMF mix and total P uptake in all inoculated plants. With the exception of plants inoculated with G. margarita in disturbed soil at 4 weeks, the AM pathway made a significant contribution to P uptake in all AM plants at both harvests. Inoculation with both AMF together eliminated the negative effects of disturbance on AM P uptake and growth, showing that a fungus insensitive to disturbance can compensate for loss of contribution of a sensitive one. Application of residue increased growth and total P uptake of plants but decreased 32P in plants inoculated with the AMF mix in disturbed soil, compared with plants receiving no residue. The AMF responded differently to disturbance and G. intraradices, which was insensitive to disturbance, compensated for lack of contribution by the sensitive G. margarita when they were inoculated together. Colonization of roots and HLDs in soil were not good predictors of the outcomes of AM symbioses on plant growth, P uptake or P delivery via the AM pathway.  相似文献   

10.
本文研究了不同干旱胁迫下抗旱性不同的帝王蕉和粉蕉幼苗叶片和根系的可溶性蛋白质和可溶性糖主要渗透调节物质的含量变化。结果表明:2种香蕉幼苗叶片可溶性蛋白质和可溶性糖含量随着干旱胁迫程度的增加而显著增多;根系可溶性蛋白质和可溶性糖含量并未持续上升,而是重度胁迫低于中度胁迫,但仍高于对照和轻度胁迫。干旱胁迫后,除帝王蕉根系可溶性糖含量外,帝王蕉根系可溶性蛋白质、粉蕉根系可溶性蛋白质和可溶性糖含量在3个胁迫程度下增加幅度均大于叶片增加幅度,且粉蕉较帝王蕉更能适应干旱胁迫环境。本文将为香蕉抗旱品种选育和栽培提供一定的理论依据和实践意义。  相似文献   

11.
Ca uptake by micropropagated ‘Norland’ potato plantlets was investigated in relation to cation and macroelement salt concentrations in modified Murashige and Skoog (1962) basal media. Increased Ca:specific cations, by lowering NH4, Mg, or K, had little effect on the Ca content of plantlets grown on these media. Increased Ca:total cation ratio, by raising Ca from 3 to 6 mM in the medium, promoted Ca content of micropropagated plantlets. At equivalent Ca:total cation ratio, macroelement dilution increased the osmotic potential of the medium, and had an even greater impact on plantlet shoot Ca content. Root pressure, which is sensitive to variations in salt concentration, was probably the primary Ca delivery method to developing tissues since transpiration was limited in vitro. In vitro systems appear ideal for studying some aspects of nutrient relationships of plants.  相似文献   

12.
A field inoculation experiment using two Bradyrhizobium sp. strains was set up in Madagascar to test the growth response of Acacia mangium and to follow up the survival of inoculant strains using molecular tools. Three months after inoculation, one of the inoculant strains, AUST13c, exhibited a marked growth-promoting effect with a shoot height about 40% higher than that of the uninoculated control plants or TEL8-inoculated plants. The positive effect on tree growth initially observed with AUST13c was no more significant 6 months after transfer to the field and disappeared completely at 13 and 19 months. Analyses of nodule bacterial rRNA by PCR/RFLP displayed an early contamination of the different inoculation treatments by AUST13c 3 months after inoculation, spreading to almost all nodules of the trial 6 months later. This work clearly demonstrated that the progressive reduction of the positive effect of AUST13c inoculation on tree growth after field transplanting was not due to a progressive disappearance of this introduced strain but, on the contrary, was related to the widening spreading of AUST13c in all the plots. This was attributed to a higher competitiveness and effectiveness of AUST13c over the local strains and TEL8.  相似文献   

13.
Continuous cropping with banana results in an enrichment of Fusarium oxysporum f. sp. cubense race 4 (FOC) in soil, causing the soil-borne disease Fusarium wilt. Crop rotation has been an effective method of controlling various soil-borne diseases. However, no information is currently available concerning variations in soil microbial community structure in banana crop rotations. Thus, the influence of two-year crop rotation systems of pineapple–banana and maize–banana on the population density of FOC and soil microbial community structure was investigated to identify which rotation system is more effective in FOC suppression and differences in microbial community composition among different rotations. Bacterial and fungal communities were interrogated by pyrosequencing of the 16 S RNA gene and the internal transcribed spacer (ITS) region. The pineapple–banana rotation was more effective than maize–banana in reducing FOC abundances and suppressing Fusarium wilt disease incidence. Allelopathic effects of pineapple root exudates on FOC were not observed. Greater fungal community variations than bacterial were identified between the two rotation systems, suggesting that fungal communities may play a more important role in regulating FOC abundances. Furthermore, in the pineapple–banana rotation, Acidobacteria, Planctomycetes, Chloroflexi phyla, Gp1, Gp2 and Burkholderia bacterial genera increased while the fungal phyla Basidiomycota, (esp. Gymnopilus) increased and Sordariomycetes decreased. Such changes may be important microbial factors in the decrease in FOC.  相似文献   

14.
Banana (Musa spp.) is widely cultivated in tropical regions because of their economic importance for the local market as the source of food for the regional population. In the Amazon region, the banana crop was cultivated in the river basin before the 90th decade of the last century, but after the black sigatoka (Mycosphaerella fijiensis) and the increases of the bacteria wilt (Raostonia solanarum), the crops migrated to upper land soils with low natural fertility where there was no influence of floods for natural fertilization from the regional rivers. Nitrogen (N) and potassium (K) have been the foremost nutrient required by the banana trees and the aim of this study was to evaluate during two growing periods, the influence of the N and dipotassium oxide (K2O) fertilization in yield and nutritional status of banana. The experimental design was a completely randomized blocks in a factorial 3 × 4 scheme with three replicates. The treatments were three N rates (0, 267, and 533 kg ha?1) and four K2O rates (200, 800, 1,600, and 2,400 kg ha?1). The field plots had seven plants where the useful area had only five plants spaced 3 m × 2 m. The foliar N and sulfur (S) content were significantly influenced by the N rates, while foliar K, magnesium (Mg), and copper (Cu) were significant under the K2O rates. The N, K2O, and N × K2O interaction interfered the foliar zinc (Zn) content. In both crop cycles, the bunch biomass and banana yield were not influenced by the N and K2O rates.  相似文献   

15.
The growth of clover (Trifolium repens ) and its uptake of N, P and Ni were studied following inoculation of soil with Rhizobium trifolii, and combinations of two Ni-adapted indigenous bacterial isolates (one of them was Brevibacillus brevis) and an arbuscular mycorrhizal (AM) fungus (Glomus mosseae). Plant growth was measured in a pot experiment containing soil spiked with 30 (Ni I), 90 (Ni II) or 270 (Ni III) mg kg−1 Ni-sulphate (corresponding to 11.7, 27.6 and 65.8 mg kg−1 available Ni on a dry soil basis). Single inoculation with the most Ni-tolerant bacterial isolate (Brevibacillus brevis) was particularly effective in increasing shoot and root biomass at the three levels of Ni contamination in comparison with the other indigenous bacterial inoculated or control plants. Single colonisation of G. mosseae enhanced by 3 fold (Ni I), by 2.4 fold (Ni II) and by 2.2 fold (Ni III) T. repens dry weight and P-content of the shoots increased by 9.8 fold (Ni I), by 9.9 fold (Ni II) and by 5.1 fold (Ni III) concomitantly with a reduction in Ni concentration in the shoot compared with non-treated plants. Coinoculation of G. mosseae and the Ni-tolerant bacterial strain (B. brevis) achieved the highest plant dry biomass (shoot and root) and N and P content and the lowest Ni shoot concentration. Dual inoculation with the most Ni-tolerant autochthonous microorganisms (B. brevis and G. mosseae) increased shoot and root plant biomass and subtantially reduced the specific absorption rate (defined as the amount of metal absorbed per unit of root biomass) for nickel in comparison with plants grown in soil inoculated only with G. mosseae. B. brevis increased nodule number that was highly depressed in Ni I added soil or supressed in Ni II and Ni III supplemented soil. These results suggest that selected bacterial inoculation improved the mycorrhizal benefit in nutrients uptake and in decreasing Ni toxicity. Inoculation of adapted beneficial microorganisms (as autochthonous B. brevis and G. mosseae) may be used as a tool to enhance plant performance in soil contaminated with Ni.  相似文献   

16.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

17.
A potassium-releasing bacterial strain Bacillus edaphicus NBT was examined for plant-growth-promoting effects and nutrient uptake on cotton and rape in K-deficient soil in pot experiments. Inoculation with bacterial strain B. edaphicus NBT was found to increase root and shoot growth of cotton and rape. Strain NBT was able to mobilize potassium efficiently in both plants when illite was added to the soil. In cotton and rape growing in soils treated with insoluble potassium and inoculated with strain NBT, the potassium content was increased by 30 and 26%, respectively. Bacterial inoculation also resulted in higher N and P contents of above ground plant components. The bacterial isolate was also able to colonize and develop in the rhizosphere soil of cotton and rape after root inoculation.  相似文献   

18.
In this study, we used Herbaspirillum sp. B501gfp1 (B501gfp1), an isolate from wild rice, to investigate the interaction between a non-host nitrogen-fixing endophytic bacterium and micropropagated sugarcane plants under aseptic condition. Two Japanese sugarcane plants (Saccharum sp.) cultivars (cvs) NiF8 and Ni15 were inoculated using B501gfp1 in two inoculum doses of 108 and 102 bacterial-cells-per-milliliter suspension. The results showed that bacterial cells colonized both the root and stem tissues, and colonization was apparent in the intercellular spaces. Higher bacterial numbers were detected in plant tissues inoculated with the higher inoculum concentration treatment. Bacterial numbers also varied between the two cultivars, with the higher values determined in cv Ni15. This study provides evidence that Herbaspirillum sp. B501gfp1, a rice isolate, could colonize sugarcane tissues, suggesting non-specificity of host plant among endophytes.  相似文献   

19.
Lime pelleting of the inoculated seed is recommended for most pasture legume species to improve survival of the rhizobia on the seed and to counter deleterious effects of soil or fertiliser acidity on rhizobial numbers. Except for New South Wales, lime pelleting is specifically not recommended for serradella (Ornithopus spp.). Our objectives were to evaluate effects of lime pelleting on bradyrhizobial numbers on seed, and nodulation and growth of the serradella plants. Three experiments are reported at two acid-soil sites in northern New South Wales involving four cultivars of yellow serradella (Ornithopus compressus) and Bradyrhizobium sp. (Lupinus) strains WSM471 (current inoculant strain) and WU425 and WSM480. Lime pelleting increased bradyrhizobial numbers on seed, 24 h after inoculation, by an average of 90%. Similarly, lime pelleting increased nodulation and shoot dry matter of the inoculated plants by an average of 57 and 28%, respectively. The three strains were similar in effects on plant growth. Relative values for shoot dry weight, averaged over sites, were 100 for WSM471 and 98 for both WU425 and WSM480. Our results confirmed previous research that lime pelleting inoculated serradella seed was not deleterious to survival of the bradyrhizobial inoculum, and showed that it could result in enhanced symbiotic activity of the inoculum in some instances. We recommend lime pelleting of serradella and that WSM471 remain the inoculant strain.  相似文献   

20.
钾钙镁营养对香蕉产量、品质及贮藏性的影响   总被引:5,自引:0,他引:5  
香蕉是嗜K作物,养分需求最大的4种元素为KNCaMg,而K、Ca、Mg三者间存在交互作用。本文研究了不同K、Ca、Mg营养条件下香蕉产量、品质及其贮藏性的变化,结果表明:适量配施K、Ca、Mg肥能有效促进香蕉果实的生长发育,提高香蕉果实品质及产量;有效降低香蕉果皮多酚氧化酶活性、果皮丙二醛含量和果肉淀粉酶活性,减少贮藏过程中的重量损失,延缓香蕉果实的衰老进程,提高香蕉果实的耐贮藏性。在广东省高州市香蕉产区,为实现香蕉高产优质耐贮藏,适宜施肥量为K2O990kg·hm-2,Mg37.5kg·hm-2,Ca90.0kg·hm-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号