首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five rye lines exhibiting a wide range of extract viscosities were evaluated for the rheological and baking properties of their flours, individually and in blends with hard red spring wheat flour. Commercial cultivars of rye and triticale were included in the study as controls. Extract viscosities of rye flours were higher than those of corresponding wholemeals, indicating shifting of water-extractable arabinoxylan into flour during roller milling. Falling numbers of the rye flours correlated positively with their extract viscosities in the presence (r = 0.73, p < 0.05) or absence (r = 0.65, p < 0.05) of an enzyme inhibitor. Farinograms revealed the weakness of rye and triticale flours compared to wheat flour. Extract viscosities of rye flours were negatively correlated (r = -0.65, p < 0.05) with mixing tolerance index and positively correlated (r = 0.64, p < 0.05) with dough stability, suggesting a positive impact of extract viscosity on dough strength. Extract viscosity was negatively correlated (r = -0.74, p < 0.05) with loaf volume and specific volume (r = -0.73, p < 0.05) and positively correlated (r = 0.73, p < 0.05) with loaf weight of rye/wheat bread. Overall, the results indicated that 30% of flour from high or low extract viscosity rye could be incorporated into rye/wheat breads without seriously compromising bread quality. Inclusion of rye, particularly high extract viscosity rye, in chick diets seriously impeded growth performance and feed efficiency. Part of the arabinoxylan survived bread-making and exerted an effect on chicks, although substantially lower digesta viscosities were observed in chicks fed rye bread diets than in those fed rye wholemeals.  相似文献   

2.
Arabinoxylans (AX) are well known to have a wide‐ranging influence on wheat (Triticum aestivum L.) end‐use quality and are associated with health benefits. There is little information on the effects of processing on AX properties in high‐water‐content batter‐based products and on the associations between AX properties and end‐use quality in such products. The objective of this study was to track total and water‐extractable AX (TAX and WEAX, respectively) contents and determine changes in AX characteristics throughout the baking process of pancakes, a batter‐based wheat product. The TAX and WEAX contents along with the arabinose‐to‐xylose (A/X) ratio were quantified in refined flour and wholemeal as well as batter and pancakes from two soft and three hard wheat varieties. ANOVA F values indicated that the variation in TAX content was influenced most by sample type differences (flour versus batter versus pancakes), whereas varietal differences were responsible for the greatest differences in WEAX. In separate analyses on refined and wholemeal flours, the highest F values were for variety WEAX, largely attributed to the higher WEAX content of the three hard varieties. WEAX levels generally increased slightly from flour to batter to pancakes in refined flour. The WEAX content in flour, batter, and pancakes of both refined flour and wholemeal was highly correlated with pancake volume. These observations suggest moderate changes in wheat AX characteristics during processing and a positive association of WEAX levels with end‐product volume in a batter‐based product.  相似文献   

3.
The effects of Trametes hirsuta laccase and Pentopan Mono BG xylanase and their combination on oat, wheat, and mixed oat-wheat doughs and the corresponding breads were investigated. Laccase treatment decreased the content of water-extractable arabinoxylan (WEAX) in oat dough due to oxidative cross-linking of feruloylated arabinoxylans. Laccase treatment also increased the proportion of water-soluble polysaccharides (WSNSP) apparently due to the beta-glucanase side activity present in the laccase preparation. As a result of the laccase treatment, the firmness of fresh oat bread was increased. Xylanase treatment doubled the content of WEAX in oat dough and slightly increased the amount of WSNSP. Increased stiffness of the dough and firmness of the fresh bread were detected, probably because of the increased WEAX content, which decreased the amount of water available for beta-glucan. The combination of laccase and xylanase produced slight hydrolysis of beta-glucan by the beta-glucanase side activity of laccase and enhanced the availability of AX for xylanase with concomitant reduction of the amount and molar mass of WSNSP. Subsequently, the volume of oat bread was increased. Laccase treatment tightened wheat dough, probably due to cross-linking of WEAX to higher molecular weight. In oat-wheat dough, laccase slightly increased the proportion of WSNSP between medium to low molecular weight and increased the specific volume of the bread. Xylanase increased the contents of WEAX and WSNSP between medium to low molecular weight in oat-wheat dough, which increased the softness of the dough, as well as the specific volume and softness of the bread. The results thus indicate that a combination of laccase and xylanase was beneficial for the textures of both oat and oat-wheat breads.  相似文献   

4.
This study was carried out to evaluate the effects of a pure xylanase, a pure beta-glucanase, a mix of the two pure enzymes, and a commercial enzyme preparation (Quatrazyme HP, Nutri-Tomen Les Ulis, France) on the viscosity exhibited by water-soluble nonstarch polysaccharides of several feedstuffs (Rialto wheat, Sidéral wheat, Isengrain wheat, triticale, rye, barley, oats, corn, wheat bran, rice bran, wheat screenings, soybean meal, rapeseed meal, sunflower meal, and peas). The viscosity depended on the feedstuffs and varieties of the same feedstuff. There was a correlation (R (2) = 0.86) between viscosity of cereals and their arabinoxylan and beta-glucan contents. The correlation was greater (R (2) = 0.99) when the type of cereal was taken into account. The addition of pure xylanase significantly decreased the viscosity of all feedstuffs except sunflower meal (P < or = 0.05). However, pure beta-glucanase was unable significantly to decrease the viscosity of Isengrain wheat, corn, rice bran, wheat screenings, soybean meal, and sunflower meal. There was a greater decrease in viscosity with the combination of xylanase and beta-glucanase than with addition of xylanase or beta-glucanase alone. This synergistic action of xylanase and beta-glucanase was observed only in Rialto wheat, Sidéral wheat, triticale, rye, barley, oats, and peas. Finally, the commercial enzyme preparation produced a greater reduction (P < or = 0.05) in viscosity for all feedstuffs compared to xylanase or beta-glucanase used alone or in combination. The greater effectiveness of the commercial enzyme preparation was due to the presence of side enzymatic activities (arabinofuranosidase, xylosidase, glucosidase, galactosidase, cellulase, and polygalacturonase).  相似文献   

5.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

6.
This article aimed at investigating the synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation of white wheat, wholemeal wheat, and rye flours. Sourdough lactic acid bacteria, selected previously for proteinase and peptidase activities toward wheat proteins or for the capacity of synthesizing GABA, were used. The highest ACE-inhibitory activity was found by fermenting flour under semiliquid conditions (dough yield 330) and, especially, by using wholemeal wheat flour. Fourteen peptides, not previously reported as ACE-inhibitory, were identified from the water/salt-soluble extract of wholemeal wheat sourdough (IC 50 0.19-0.54 mg/mL). The major part of the identified peptides contained the well-known antihypertensive epitope VAP. The synthesis of GABA increased when the dough yield was decreased to 160. The highest synthesis of GABA (258.71 mg/kg) was found in wholemeal wheat sourdough.  相似文献   

7.
Rye breads made from commercial rye blends lower the postprandial insulin demand and appear to facilitate glucose regulation. However, differences in metabolic responses may occur between rye varieties. In the present work, five rye varieties (Amilo, Evolo, Kaskelott, Picasso. and Vicello) and a commercial blend of rye grown in Sweden were investigated with regard to their postprandial insulin, glucose, and appetite regulation properties in a randomized crossover study in 20 healthy subjects. The rye flours were baked into whole grain breads, and a white wheat bread (WWB) was used as reference (50 g of available starch). Picasso and Vicello rye bread showed lower glycemic indices (GIs) compared with WWB (80 and 79, respectively) (P < .0.05). In addition to the GI, two measures of the glycemic profile (GP and GP(2)) were calculated by dividing the incremental duration of the plasma glucose curve with the incremental glucose peak and squared incremental glucose peak, respectively. Vicello and Picasso ryes were characterized by a higher GP(2) than that of the WWB, suggesting a better regulated course of glycemia. Rye bread made from not only Vicello and Picasso but also Amilo and Kaskelott displayed significantly lower insulin indices (IIs) than WWB (74-82). A high GP and GP(2) and a low GI were related to a lower II and insulin incremental peak. A high content of insoluble fibers and a high GP(2) were related to a higher subjective satiety in the early and late postprandial phase (tAUC 0-60 min and tAUC 120-180 min, respectively). The results suggest that there may be differences in the course of glycemia following different rye varieties, affecting postprandial insulin responses and subjective satiety.  相似文献   

8.
《Cereal Chemistry》2017,94(2):242-250
The global market for frozen bread dough is rising; however, its quality could deteriorate during extended storage. Our previous study indicated that undesirable changes caused by freezing could be reduced by adding arabinoxylan‐rich fiber sources. The present study investigated the changes in arabinoxylan properties of yeasted dough during frozen storage. Dough samples made from refined, whole, and fiber‐enriched (15% either wheat aleurone or bran) flours were stored at –18°C for nine weeks, and structural properties of arabinoxylan were probed during storage. Water‐extractable arabinoxylan (WEAX) content in dough samples increased by about 19–33% during the first three weeks of storage. Prolonged storage of dough (weeks 6 and 9), however, correlated with a decline in WEAX content. Average molecular weight and intrinsic viscosity of WEAX decreased during storage for all frozen dough samples. Arabinose‐to‐xylose ratios also decreased by 11 and 6% for control and composite dough samples, respectively. There was a significant positive correlation (r = 0.89, P < 0.0001) between WEAX content of dough and bread quality throughout the storage period. The results demonstrated that changes in dough quality during frozen storage were related to changes in the content and structure of WEAX that took place during frozen storage.  相似文献   

9.
Arabinoxylans are a minor but important constituent in wheat that affects bread quality, foam stability, batter viscosity, and sugar snap cookie diameter. Therefore, it is important to determine the distribution of arabinoxylans in flour mill streams to better formulate flour blends. Thirty‐one genetically pure grain lots representing six wheat classifications common to the western U.S. were milled on a Miag Multomat pilot mill, and 10 flour mill streams were collected from each. A two‐way ANOVA indicated that mill streams were a greater source of variation compared to grain lots for total arabinoxylans (TAX), water‐unextractable arabinoxylans (WUAX), and water‐extractable arabinoxylans (WEAX). TAX and WUAX were highly correlated with ash at r = 0.94 and r = 0.94, respectively; while the correlation for WEAX and ash decreased in magnitude at r = 0.60. However, the 5th middlings mill streams exhibited disparity between TAX and ash content as well as between WUAX and ash content. This may indicate that TAX and WUAX in mill streams are not always the result of bran contamination. Cumulative extraction curves for TAX, WUAX and WEAX revealed increasing gradients of arabinoxylans parallel to extraction rate. Therefore, arabinoxylans may be an indicator of flour refinement.  相似文献   

10.
Different types of novel wheat lines with different starch contents and amylose/amylopectin ratios, relating to defined alterations in the number and activity of starch synthase IIa genes, were processed by pilot-plant extrusion. Two types of products were produced: pure wholemeal products and breakfast cereals made from wholemeal/maize blends. Lower apparent shear viscosity was obtained in the extruder with lower starch content and higher amylose/amylopectin ratio flours (SSIIa-deficient line). The bulk density of the products decreased with increasing extrusion temperature and was always higher for the triple-null line. The bulk density was not completely explained by the melt shear viscosity, suggesting the importance of the fillers (fibers, brans) in the process of expansion and structure acquisition. The different mechanical properties were explained by the density and by the material constituting the cell walls. Enzyme-resistant starch (RS) content and hydrolysis index (HI) were not correlated to the extrusion temperature, but RS was higher in pure wholemeal products and in the SSIIa-deficient line. These results are discussed in terms of starch molecular architecture and product microstructure.  相似文献   

11.
A collaborative study was conducted to determine the insoluble dietary fiber (IDF), soluble dietary fiber (SDF), and total dietary fiber (TDF) content of food and food products by using a combination of enzymatic and gravimetric procedures. The method was basically the same as that developed for TDF only, which was adopted official final action by AOAC, except for changing the concentration of buffer and base and substituting hydrochloric acid for phosphoric acid. These changes were made to improve the robustness of the method. Duplicate blind samples of soy isolate, white wheat flour, rye bread, potatoes, rice, corn bran, oats, Fabulous Fiber, wheat bran, and a high fiber cereal were analyzed by 13 collaborators. Dietary fiber values (IDF, SDF, and TDF) were calculated as the weight of residue minus the weight of protein and ash. The coefficients of variation (CVs) of both the independent TDF determination and the sum of IDF and SDF were better than 15 and 18%, respectively, with the exception of rice and soy isolate. These 2 foods, however, contained only about 1% TDF. The CVs of the IDF were equally good, except for Fabulous Fiber, for which filtration problems occurred. The CVs for the SDF were somewhat high, but these products had very low SDF content. There was excellent agreement between the TDF determined independently and the TDF determined by summing the IDF and SDF. The method for separate determination of IDF and SDF requires further study. The modifications (changes in concentration of buffer and base and the use of hydrochloric acid instead of phosphoric acid) to the official final action method for TDF have been adopted.  相似文献   

12.
Amplified fragment length polymorphism markers were evaluated to determine the genetic diversity and relationships among cultivated and weedy ryes (Secale cereale L.) using a large global set of accessions. On the basis of 395 polymorphic bands resulted from nine PstI-MseI primer combinations, cultivated rye exhibited higher average genetic diversity (Ht?=?0.34) than that of the weedy rye (Ht?=?0.27), however, it had lower genetic differentiation (Fst?=?0.16). The average genetic diversity of cultivated rye varied from region to region ranging from 0.21 to 0.31. As expected, all cultivated accessions clustered together both in dendrogram and principal coordinate diagram indicating common breeding program selection criteria based on similar value-added agronomic characteristics. A clustering of cultivated rye accessions into groups based strictly on geographical origin was not found. The relationships among cultivated, weedy and wild ryes were discussed.  相似文献   

13.
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.  相似文献   

14.
From a nutritional point of view, cereal lipids include valuable molecules, such as essential fatty acids, phytosterols, and fat-soluble vitamins. Spelt (Triticum spelta L.) is an alternative hulled bread cereal mostly grown in Belgium, where it is mainly intended for animal feed but should increasingly be used for human consumption. The present research focused on phytosterol quantification by LC/APCI-MS2 in saponified wholemeal extracts of 16 dehulled spelt and 5 winter wheat (Triticum aestivum L.) varieties grown in Belgium during 2001-2002 at the same location. Glycosylated sterols and free and formerly esterified sterols could be determined in saponified extracts. Results show that the mean phytosterol content is comparable in both cereals (whereas other lipids, such as oleic and linoleic acids, are increased in spelt wholemeal): spelt extract has, on average, 527.7 microg of free and esterified sterols g(-1) of wholemeal and 123.8 microg of glycosylated sterols g(-1) of wholemeal versus 528.5 and 112.6 microg x g(-1) in winter wheat (values not corrected for recoveries). This is the first report on the application and validation of an LC/MS2 method for the quantification of phytosterols in spelt and winter wheat.  相似文献   

15.
To evaluate the effect of storage temperature, the degradation kinetics of carotenoids in wholemeal and white flour of einkorn cv. Monlis and bread wheat cv. Serio, stored at -20, 5, 20, 30, and 38 degrees C, was assessed by normal-phase high-performance liquid chromatography. In Monlis, the carotenoids content (8.1 and 9.8 mg/kg for wholemeal and white flour, respectively) was 8-fold higher than in Serio (1.0 and 1.1 mg/kg). Only lutein and zeaxanthin were detected in bread wheat, while significant quantities of (alpha and beta)-carotene and beta-cryptoxanthin were observed in einkorn. Carotenoids degradation was influenced by temperature and time, following first-order kinetics. The degradation rate was similar in wholemeal and white flour; however, loss of lutein and total carotenoids was faster in Serio than in Monlis. The activation energy E(a) ranged from 35.2 to 52.5 kJ/mol. Temperatures not exceeding 20 degrees C better preserve carotenoids content and are recommended for long-term storage.  相似文献   

16.
The objective of this research was to analyze the antioxidant capacity directly of water‐extractable nonstarch polysaccharides (NSP) and feruloylated arabinoxylans (WEAX) following their characterization. NSP were isolated from barley, wheat, and wheat fractions (germ, bran, and aleurone). WEAX were extracted only from wheat fractions. Antioxidant capacity of NSP measured with the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS), and oxygen radical absorbance capacity (ORAC) assays was 24.0–99.0, 40.0–122.0, and 140.0–286.0μM Trolox equivalents (TE)/g, respectively. The antioxidant capacity of WEAX was 75.7–84.0, 58.0–105.0, and 110.0–235.0μM TE/g for those three assays. DPPH and ABTS were highly correlated to xylose content (R2 = 0.85), degree of substitution (R2 = −0.99), total phenolic acids (R2 = >0.73), total phenolic content (TPC) (R2 = >0.78), and ferulic acid content (R2 = >0.86). ORAC was only influenced by TPC (R2 = 0.63). By taking yield and antioxidant capacity into account, NSP would provide about 0.4–4.2, 0.6–5.1, and 2.8–12.0μM TE/g of flour of radical scavenging activity as measured by DPPH, ABTS, and ORAC, respectively, compared with WEAX (0.4–1.0, 0.3–1.3, and 0.6–2.8μM TE/g). Our results suggest that NSP or WEAX may play a role in protection against free radicals in a food matrix and likely in the gastrointestinal tract.  相似文献   

17.
Genotypic variation and mycorrhiza play an important role in plant uptake of phosphorus (P). A pot experiment was conducted with three cereals, wheat (Triticum aestivum L. cv. PBW-34), rye (Secale cereale L. cv. R-308), and triticale (Triticale octoploide L. cv. DT-46), a hybrid of wheat and rye, to examine the genetic variation in the degree of arbuscular-mycorrhizal (AM) infection and its inheritability from parents (wheat and rye) to their progeny (triticale). The soil used for pot culture was low in available P (7.8 mg P kg?1soil). Inoculation with AM fungi showed a significant increase in extent of root colonization for all three cereals (average 70%) compared with their performance without AM (average 19.1%). However, among the three cereals, this increase was significantly greater in rye than in the other two crops, while wheat and triticale did not differ significantly. Mycorrhizal infection resulted in 1.6, 1.7, and 1.8-fold increases in shoot, root, and total plant dry matter, respectively, compared with the un-inoculated treatment. Among the three cereals, rye recorded maximum shoot, root, and total plant dry mass and P content with AM inoculation. The P uptake by wheat, rye, and triticale was 10%, 64%, and 35%, respectively, higher with rather than without mycorrhizal infection. Rye was most responsive to AM inoculation, with mycorrhizal dependency of 193%; here again, triticale followed wheat, with similar mycorrhizal dependency. Rye showed an increase in P utilization efficiency (PUE) without AM inoculation while the PUE of triticale was intermediate between wheat and rye. High efficiency of AM symbiosis in terms of P uptake exists in rye and most of these traits in triticale seem to be inherited from wheat rather than rye.  相似文献   

18.
The effects of aluminum (Al) on nitrate reductase activity, plastid pigment content, and mineral element composition in wheat, rye, and triticale seedlings were studied. Different responses of the plant species to Al content in the growth solution were observed. Under conditions of different Al concentrations (from 1 to 10 ppm), nitrate reductase (NR) activity increased in wheat and triticale, while in rye an interference with nitrate reductase by Al was observed. A definite tendency in plastid pigment content changes independent on Al levels was not found. The chlorophyll “a”;, chlorophyll “b”;, and carotenoid contents were influenced in a different way in wheat, rye, and triticale seedlings. A positive effect of 1, 5, and 10 ppm Al on the nitrogen (N) content in the shoots of wheat and rye was observed. The N content in the shoots of triticale was not affected by the presence of Al. The presence of Al in the nutrient solution led to a tendency toward reduction of potassium (K), calcium (Ca), and magnesium (Mg) contents in the shoots of rye seedlings, a reduction of K in the shoots and manganese (Mn) content in roots of wheat, and a reduction of K in both shoots and roots and an accumulation of Mn in triticale roots. In general, our investigation on the effect of Al in the early stages of wheat, rye, and triticale development showed that a large number of biochemical and physiological parameters are required to characterize the plant responses to Al stress.  相似文献   

19.
Chemical measures of antioxidant activity within the plant, such as the oxygen radical absorbance capacity (ORAC) assay, have been reported for many plant-based foods. However, the extent to which chemical measures relate to cellular measures of oxidative stress is unclear. The natural variation in the phytochemical content of 22 broccoli genotypes was used to determine correlations among chemical composition (carotenoids, tocopherols and polyphenolics), chemical antioxidant activity (ORAC), and measures of cellular antioxidation [prevention of DNA oxidative damage and of oxidation of the biomarker dichlorofluorescein (DCFH) in HepG2 cells] using hydrophilic and lipophilic extracts of broccoli. For lipophilic extracts, ORAC (ORAC-L) correlated with inhibition of cellular oxidation of DCFH (DCFH-L, r = 0.596, p = 0.006). Also, DNA damage in the presence of the lipophilic extract was negatively correlated with both chemical and cellular measures of antioxidant activity as measured by ORAC-L (r = -0.705, p = 0.015) and DCFH-L (r = -0.671, p = 0.048), respectively. However, no correlations were observed for hydrophilic (-H) extracts, except between polyphenol content and ORAC (ORAC-H; r = 0.778, p < 0.001). Inhibition of cellular oxidation by hydrophilic extracts (DCFH-H) and ORAC-H were approximately 8- and 4-fold greater than DCFH-L and ORAC-L, respectively. Whether ORAC-H has more biological relevance than ORAC-L because of its magnitude or whether ORAC-L bears more biological relevance because it relates to cellular estimates of antioxidant activity remains to be determined. Chemical estimates of antioxidant capacity within the plant may not accurately reflect the complex nature of the full antioxidant activity of broccoli extracts within cells.  相似文献   

20.
Arabinoxylans (AX), xylanase, and xylanase inhibitors have an important role in many cereal food processing applications. The effects of genotype, growing location, and their interaction (G × L) on AX, apparent xylanase activity, and apparent xylanase inhibition activity of Triticum aestivum xylanase inhibitor (TAXI) and xylanase inhibiting protein (XIP) were investigated for six hard red and six hard white spring wheat genotypes grown at three locations. Difference in total AX level among genotypes was not determined to a significant level by genotype. Instead, variability in total AX content was largely dependent on G × L. However, total AX content was significantly different between the two wheat classes. For bran xylanase activity, 25% of the variability could be attributed to G × L interaction. Moreover, there was significant difference between the bran xylanase activities in the two wheat classes. Bran TAXI activity and XIP activity were significantly different among genotypes. Genotype contributed 72% to the variability in TAXI activity and 39% in XIP. However, no significant difference was observed among the two wheat classes for TAXI or XIP activity. These results indicate that TAXI might be a stable parameter in segregating wheat genotypes with varying xylanase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号