首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 271 毫秒
1.
马晶晶  王佩  邓钰婧  马娟娟  孙海涛  陈奇 《土壤》2022,54(3):619-628
根据2018—2020年青海湖流域高寒草甸野外定点监测的温度、降水、土壤水热数据,分析了高寒草甸生态系统土壤冻融特征以及不同冻融阶段土壤温度、水分的日变化和季节动态过程。结果表明:(1)基于土壤温度变化特征分析,可将冻融循环过程划分为始冻期、完全冻结期、解冻期和完全融化期。各阶段持续的天数长短依次为:完全融化期>完全冻结期>解冻期>始冻期。从表层到深层土壤,完全融化天数持续增大,完全冻结天数趋于减小,0~180 cm土层完全融化期持续天数超过半年以上。(2)冻土表现出单向冻结、双向融化的规律,土壤融化速率(5.45 cm/d)快于土壤冻结速率(2 cm/d)。整个冻融过程,不同深度土壤水分的变化比温度的变化更复杂。(3)随着冻融循环过程,土壤温湿度呈现出周期性的季节变动特征。土壤温湿度日变化具有一致性,表层日较差大,随着深度的增加,日较差变小并趋于稳定。土壤剖面的结构特征对土壤水分异质性分布具有较强的解释性。  相似文献   

2.
农田黑土季节性冻融过程及其水分分布特征   总被引:3,自引:2,他引:1  
秋冬、冬春季节转换过程中0~10 cm农田黑土温度日较差较大,土壤经历着反复的冻融交替过程,大于20 cm的土壤温度日较差逐渐减小,冻融作用对深层土壤的影响逐渐减弱。融冻期土壤融化过程是由地表向下和由季节冻结层底面向上两个方向同时进行;而冻融期土壤冻结过程由土壤表面向下单方向进行。冻融过程中土壤水分发生迁移而重新分布,冻结期上层土壤首先冻结并聚集水分;融化期冻层融化水分向冻结锋面迁移,越靠近冻结层水分含量越大。  相似文献   

3.
[目的] 研究冬灌和冻融条件下土壤水热盐的再分布规律及其对作物生长的影响,为防治土壤盐渍化和保障粮食安全提供科学依据。[方法] 基于宁夏青铜峡灌区2018年10月25日至2020年10月3日试验田实测气象、土壤理化指标和作物生长数据,采用统计分析及可视化方法对冬灌与非冬灌区农田水热盐的运移规律及作物生长情况进行对比分析。[结果] 青铜峡灌区土壤温度变化滞后于气温变化,土壤浅表层温度受气温变化影响更显著。土壤从表面开始逐渐向下冻结,冻结深度随着气温的降低不断加深,消融期土壤冻结层从表层和底部同时进行消融,整个土壤冻融期共历时98 d。农田灌溉后含水率显著增高,冻结期灌溉降低各土层土壤温度0.1~1.1 ℃。冬灌农田不同深度土层土壤温度变化趋势和含水率变化特征与非冬灌区农田基本一致。冬灌后各土层盐分含量均下降,其中0—30 cm土层土壤盐分显著下降,但冻融期后冬灌农田土壤出现返盐现象。冬灌农田相较于非冬灌农田,小麦植株较高,玉米生长发育速度较快,小麦增产20.64%,玉米增产4.20%。[结论] 青铜峡灌区冬灌明显改变了土壤水热盐的分布规律,可以有效降低土壤盐分,促进作物生长和增产,特别是明显提高小麦产量。  相似文献   

4.
农田黑土氮素转化特征对冻融作用的响应   总被引:1,自引:1,他引:0       下载免费PDF全文
为了深入了解非生长季农田黑土氮素转化过程,采用室内冻融模拟培养试验研究了不同冻融因子[冻融温度(冻结温度:-3、-6、-9、-12、-15℃;融化温度:2、5℃)、冻融循环次数(1、3、6、10、15;其中在-3℃冻结6 d、2℃融化1 d为1个冻融循环次数)、水分含量(10%、20%、30%)]对农田黑土无机氮组分含量及氮素转化速率的影响。结果表明,较大的冻融温差(-15℃/2~5℃)、适宜的冻融循环次数(1~3)和水分含量(20%~30%)是影响农田黑土氮素转化的主要驱动因子。冻融土壤铵态氮含量、硝态氮含量、净氮矿化速率和硝化速率均随着冻结温度降低显著增加,均随着融化温度升高无显著性变化。随着冻融循环次数增加,冻融土壤铵态氮含量、硝态氮含量、净氮矿化速率和硝化速率均显著降低。随着水分含量增加,冻融土壤铵态氮含量显著增加,这与硝态氮的变化趋势相反,而净氮矿化速率和硝化速率均无显著性变化。可见,冻融作用显著促进非生长季农田黑土氮素转化,有利于土壤有效氮的累积。  相似文献   

5.
冻融影响下黑土耕层剖面速效氮动态变化   总被引:1,自引:0,他引:1  
为了探明冻融过程对东北典型黑土耕层氮(N)生物有效性的影响,试验利用室内模拟方法,探究了不同冻结温度、土壤容重、含水量、冻融循环次数影响下耕层土壤剖面速效氮(AN)的时空分布规律。结果表明,经冻融循环后,土壤AN含量随土层深度增加呈现波动性下降;冻结温度越低,AN随土层深度增加下降的波动性越大,AN峰值、AN土柱平均值越低;冻结温度-15℃时整个土柱AN平均值比-10℃降低9.3%~44.6%;容重增高,AN含量降低,AN/TN值升高,土壤容重1.1 g/cm3时整个土柱AN平均值比容重1.0 g/cm3降低13.0%~18.6%,容重1.1 g/cm3整个土柱AN/TN平均值比容重1.0 g/cm3显著提升0.6~4.7倍;随着含水量的提高,低容重(1.0 g/cm3)表层(0—8 cm)AN越高,底层(20—30 cm)AN越低,而高容重(1.1 g/cm3)土柱表层(4—8 cm)AN越高,表层(0—4 cm)AN、底层(20—30 cm)AN越低;在各个变量中,pH大小与AN累积趋势呈负相关关系,含水量、TDS、电导率、冻结温度均与AN含量成正相关,是否冻融循环对AN垂直分布影响最大,其次是恒温及冻融循环次数(p<0.05)。研究结果可为黑土区冻融过程土壤N素管理、提升土壤肥力、减少N损失等问题提供理论依据和技术支撑。  相似文献   

6.
张鹏  贾丙瑞 《土壤》2023,55(5):1122-1128
基于2009—2019年地表土壤温度和积雪数据,分析了近10 a来我国大兴安岭北部多年冻土区土壤冻融变化特征,包括冻融循环次数和天数、冻融开始和结束时间、持续时间、变动幅度等。表层土壤春季融化过程期主要发生在4月中下旬至5月中旬,秋季冻结过程期主要发生在9月中下旬至10月中旬,平均每年发生冻融39次或41 d。春季融化过程期相比秋季冻结过程期,平均冻融循环次数或天数相差并不大,研究期间内大于、小于和相近年份均有出现。但冻结期冻融循环变动幅度(主要在2.6~15.0℃)大于融化期(主要在2.6~12.5℃)。春季融化期开始时间与积雪结束时间基本吻合,而积雪开始时间均发生在秋季冻结期结束之后。因此,两个冻融期很少有积雪覆盖,冻融循环主要受气温影响。本研究为深入理解大兴安岭多年冻土对气候变化的响应、制定适宜的气候变化对策提供参考依据。  相似文献   

7.
秋耕对北疆季节性冻融期土壤热状况的影响   总被引:2,自引:1,他引:1  
为明确秋耕对季节性冻融土壤热状况的调控作用,对比分析了翻耕(FG)、免耕(MG)、垄沟(LG)、翻耕活性炭覆盖(FH)和翻耕秸秆覆盖(FJ)5种处理对土壤温度、冻融循环以及土壤温度梯度等影响的差异。结果表明:与传统FG处理相比,MG、LG、FH、FJ处理均减弱了土壤温度与气温的相关性,降低了整个冻融期土壤温度的升、降温幅度和不同冻融阶段土壤温度昼夜变化的变异性程度,维持土壤温度序列稳定的能力FJ>FH>LG>MG。FG处理最先冻结和融化,其余处理延缓土壤冻结和融化速度的效果为FJ>FH>LG>MG,且冻结速度和融化速度越小,冻融交替越频繁,冻融循环次数越大。各处理土壤温度梯度与气温均呈极显著的相关关系(P<0.01),相关性程度为FG>LG>MG>FH>FJ,与土壤贮水量均呈极显著的负相关关系(P<0.01),相关性程度为FJ>FH>LG>MG>FG,MG、LG、FH、FJ处理均加强了土壤水热资源的保持,其中翻耕秸秆覆盖和翻耕活性炭覆盖促进了深层土壤热量上移,更有利于改善季节性冻融期间土壤的水热状况,维持北疆春播土壤墒情。  相似文献   

8.
青藏高原多年冻土区土壤冻融期间水热运移特征分析   总被引:9,自引:1,他引:8  
以唐古拉监测点气象及活动层土壤水热资料为基础,对青藏高原高海拔多年冻土区冻融期活动层土壤的水热特征进行了分析。研究结果表明:不同土层的土壤温度变化规律基本一致,土壤温度的变化滞后于气温的变化,而且滞后时间随着土层深度的增大而增大,表层土壤温度变化波动较大,随着深度的增加,土温温度变化趋于平缓;气温的降低引起了土壤温度的降低,从而引起水分的迁移;在冻结期,水分向上下两个冻结锋面迁移,而活动层中部则被疏干,在融化期,活动层底部水分含量高,水分向相变界面附近迁移。拟合了冻结期未冻水含量与土壤温度的关系,相关系数R2平均值为0.89,结果基本能反映实际情况。该研究结果为高海拔多年冻土区冻融土壤水热耦合模拟的研究提供了基础理论依据。  相似文献   

9.
[目的]探讨黑河上游地表冻融指数与径流的关系,为该流域的径流预测及水资源合理开发利用提供科学依据。[方法]利用1979—2006年黑河上游西支水文站和气象站的月平均径流、降水和气温资料,对该流域冻融指数变化、融化和冻结阶段径流变化进行分析,并对地表冻融指数与径流的关系做了进一步探讨。[结果]冻结指数和融化指数分别具有明显减少和增加的趋势,且在1990—2005年表现更为突出。径流在融化阶段变化趋势不明显,在冻结阶段呈现减少趋势,其中冬季径流减少趋势较为明显。季节冻融过程对冬季径流减少具有较为重要的影响,主要表现为冻结指数显著减小,表明土壤季节冻结过程中气温升高,这很可能使得冬季地表积雪更多地进行升华,从而削减了对径流的补给,导致了径流量的减少;融化指数显著增大,导致土壤季节融化深度增加了13~14cm,从而增加了土壤的调蓄空间,使得部分地表水储存于活动层,导致地表冬季径流量减少。[结论]季节冻融变化是影响黑河上游径流的一个不可忽视的特殊因子。  相似文献   

10.
冻融作用对黑土力学性质的影响研究   总被引:5,自引:0,他引:5  
反复的冻融循环会通过改变土壤黏聚力、内摩擦角等土壤力学性质而使其侵蚀加剧。探讨了冻融循环作用对土壤黏聚力及内摩擦角的影响,从冻融机理上分析了冻融作用对土壤抗蚀性的影响机制。以黑土为试验对象,考虑冻融循环周期和土壤含水率2个影响因素,通过室内冻融试验研究了黑土黏聚力c和内摩擦角ψ的变化规律。结果表明,冻融作用对黑土黏聚力影响较大,而对内摩擦角影响较小。随着冻融循环次数的增加,同一含水率下,黑土黏聚力c呈减小趋势,3次冻融循环以后,c值趋于稳定。在冻融循环次数一定时,随着土壤含水率的增加,黑土黏聚力c呈先减小后增大的趋势。在冻结温度一定时,1次冻融循环对土壤黏聚力c的扰乱较大,其后扰动程度则基本不变。与土壤黏聚力不同,土壤内摩擦角在整个冻融循环过程中没有明显变化。  相似文献   

11.
[目的] 揭示中国极端干旱区甘肃省石羊河流域储水灌溉与季节性冻融叠加作用下对土壤呼吸的影响,为进一步提高极端干旱区灌溉水资源利用效率和节约灌溉水源提供理论基础和技术支撑。[方法] 按照1 199.4 m3/hm2低灌溉定额分为灌水和非灌水处理,将冻融循环分为冻结期、冻融期和解冻期3个时间段,采用LI-8100土壤碳通量全自动测量系统对各处理地块的土壤呼吸速率进行观测与分析。[结果] 极端干旱区储水灌溉在季节性冻融作用下农田生态系统土壤呼吸速率增强,土壤碳排放量增加,农田生态系统碳循环被改变,有利于作物的生长和提高粮食产量。不同土地利用方式下土壤呼吸速率对水分和温度的响应程度不同。整个冻融过程中土壤呼吸速率呈现出:解冻期>冻结期>冻融期的规律。冻结期、冻融期和解冻期3个时期的土壤CO2都表现为源,但在夜间极低温度时土壤CO2由源转化为汇。[结论] 储水灌溉调控了整个冻融期土壤呼吸的过程,改变了极端干旱区农田生态系统的碳循环。在水分与季节性冻融叠加作用下,储水灌溉地块土壤呼吸速率相对未储水地块随温度的波动更为剧烈,但与温度的变化趋势一致,水分加剧了其随温度的波动。  相似文献   

12.
中国年均地温的估算方法研究   总被引:2,自引:0,他引:2  
年均地温是土壤重要的物理性质,对区域农业生产有着重要意义。对中国1981—2010年间895个气象站的地面气候资料进行整理,按全国一级标准耕作制度分区分析。结果表明:各区5~40 cm内各深度年均地温均高于相应气象站点的年均气温。同一分区内,各气象站点5~40 cm年均地温随深度增加未表现出相同的变化规律;不同深度的年均地气温差平均值在5~20 cm深度范围内变化≤0.1℃,在20~40 cm深度范围变化较大,个别分区达0.4℃。各分区之间比较,5~40 cm年均地气温差平均值存在地域差异性:自北向南,年均地气温差平均值表现为先减小后增加的变化规律;自东向西,纬度接近的分区年均地气温差平均值逐渐增大;不同分区年均地气温差平均值的变化较大,20 cm深度为1.4~3.9℃,40 cm深度为1.1~4.3℃。利用回归方程法和年均地气温差平均值法,在各标准耕作制度一级区分别建立年均地温估算公式,回归方程法的准确性高于年均地气温差平均值法,但青藏高原区和内蒙古高原及长城沿线区的估算公式未达到很好的估算效果。对各分区5、10、15、20和40 cm年均地温观测数据完整的262个气象站的数据进行分析表明,5~40 cm深度范围内,多数分区年均地温每5 cm变化量的均值≤0.1℃,20~40 cm深度的变化量更小。对于单一估算点,其40 cm和50 cm年均地温的最大差距≤0.4℃,所以,在中国土壤系统分类中,可以考虑用40 cm的地温代替50 cm的地温。  相似文献   

13.
河套平原弃耕地土壤盐碱化特征   总被引:10,自引:0,他引:10  
运用经典统计和主成分分析方法,对河套平原弃耕地盐渍化土壤全盐量、pH、阴阳离子组成、碱化度(ESP)的分布特征进行了分析。结果表明:研究区土壤为中度至重度盐渍化,土壤全盐、pH、碱化度(ESP)在剖面中的变化趋势一致,呈表聚和底聚两个过程。全盐量介于2.80~6.69g kg-1之间,pH介于9.20~9.69之间,碱化度介于10.97%~33.33%之间。0~60 cm土层全盐量随土层深度增加而降低,60~120 cm土层全盐量随土层深度增加而增加。剖面中阳离子以Na++K+为主;阴离子以SO42-为主。除pH外,土壤各盐碱指标呈强烈空间变异特征;不同土层SO42-与Ca2+、Mg2+、全盐量差异达极显著水平,Cl-与K++Na+相关性随土层深度增加而减弱,pH、碱化度与CO32-达极显著水平。土壤全盐量、SO42-可作为研究区土壤盐化状况特征因子;CO32-、HCO3-、pH可作为研究区土壤碱化状况特征因子。由此可见,在改良利用过程中要以降低土壤盐度和碱度来调控离子组成,进而改善土壤结构。  相似文献   

14.
干旱半干旱区农田土壤碳垂直剖面分布特征研究   总被引:8,自引:0,他引:8  
以中国干旱半干旱区农田土壤为研究对象,通过收集自然农田和长期定位站点(178个剖面,0~100 cm土层)农田土壤碳的数据并对其进行整合,分析了农田土壤有机碳和无机碳含量的垂直剖面分布特征及其影响因素。结果表明,随土层深度增加,农田土壤有机碳呈下降趋势,表层含量高于底层;不同地区农田土壤无机碳含量变化趋势不一,随土壤深度增加整体呈现升高的趋势,但是也有一些地区呈现下降趋势。土壤剖面深度为100 cm的农田土壤有机碳和无机碳密度平均值分别为8.33和15.83 kg m-2,农田土壤无机碳储量大约是土壤有机碳的2倍。土壤深度为0~30 cm的有机碳占100 cm总有机碳含量的45%,无机碳仅占100 cm总无机碳含量的29%;土壤无机碳主要集中在30~100 cm土层,占100 cm总无机碳含量的71%,远高于有机碳在此土层占100 cm总有机碳含量的百分比(55%)。综合自然农田和长期定位站点农田土壤碳的数据,土壤容重与土壤p H是影响农田土壤有机碳和无机碳分布特征的重要因素:自然农田土壤有机碳与土壤p H(R2=0.61,p0.01)和土壤容重(R2=0.64,p0.01)呈显著负相关;长期定位站点土壤无机碳与土壤p H(R2=0.56,p0.01)和土壤容重(R2=0.63,p0.01)呈显著正相关。中国干旱半干旱区农田土壤有机碳和无机碳的分布特征与影响因素,将为陆地生态系统碳储量估算提供数据基础与理论支撑。  相似文献   

15.
[目的]探讨河西荒漠绿洲区(以甘肃省张掖市为代表)水分调控下土壤温度的基本变化特征以及土壤温度与果实品质之间的联系,为设施延后栽培技术研究提供理论依据。[方法]将设施延后栽培葡萄分为5个生育期,在各个生育期设1个土壤含水率下限为田间持水率(θf)的55%的中度水分调控处理(GS,VS,FS,ES,CS),开展了上述设定条件下的研究。[结果](1)随着土层深度的增加,设施延后栽培葡萄土壤温度均表现为5cm10cm15cm20cm25cm。且在葡萄全生育期内各个土层土壤温度变化规律均为先升高后降低的趋势,水分胁迫不仅提高了该生育阶段的土壤温度同时对其下一生育阶段的土壤温度也具有十分重要的作用。(2)果穗质量和单粒重均GS处理最高,可溶性固形物FS处理最高,总糖含量CS处理最多,可滴定酸含量CS最低。[结论]设施延后栽培葡萄土壤温度受环境影响明显,在白天土壤温度是由表层向深层传递,且水分胁迫具有增加土壤温度的作用。要提高葡萄甜度同时降低酸度,增加成熟度需在生育后期即果实膨大期以及着色成熟期适当程度的提高土壤温度。  相似文献   

16.
黄土丘陵区不同恢复年限对天然草地土壤碳库动态的影响   总被引:1,自引:0,他引:1  
[目的]揭示不同恢复年限的天然草地土壤碳库动态变化及其剖面分布特征,全面认识和理解天然草地恢复下土壤有机库、无机碳库的动态特征。[方法]采用野外调查与室内试验分析相结合的方法,以农田为对照,对黄土丘陵区不同恢复年限(11,16,22和35a)的天然草地土壤有机碳(SOC)、无机碳(SIC)、总碳(STC)的动态变化及其剖面分布特征进行了探讨。[结果](1)天然草地恢复过程中表层(0—10cm)SOC含量随植被恢复年限显著增加,下层(10—100cm)SOC含量随植被恢复年限变化不明显;0—100cm土层SOC储量呈先减少后增加趋势,但仍未达到农田SOC储量的水平。(2)天然草地0—20cm土层SIC含量呈相对脱钙现象,0—100cm土层SIC库储量约为SOC库储量的2.7~4.5倍。土壤无机碳库随植被恢复年限的增加无明显变化,但SIC的剖面分布深度发生改变。(3)土壤总碳库随恢复年限增加无明显变化,0—100cm土层SIC储量在STC库中所占比例约为75.6%~86.0%。[结论]短时间内天然草地的土壤碳汇效应并不明显,碳库增汇效应需要长期的过程。  相似文献   

17.
【目的】N2O 是重要的温室气体之一,主要来源于农田土壤。华北平原是我国的粮食主产区,秸秆还田是该地区主要的农田管理措施,明确不同秸秆还田量对小麦玉米农田周年土壤温度和含水量的影响以及与 N2O 排放之间的量化关系,对发挥秸秆还田的生态效应,明确硝化和反硝化作用机制具有重要意义。【方法】以冬小麦、夏玉米为研究对象,设置 5 种不同秸秆还田量处理:小麦、玉米秸秆均不还田 (T0);小麦秸秆 1875 kg/hm2 + 玉米秸秆 2000 kg/hm2 还田 (T1);小麦秸秆 3750 kg/hm2 + 玉米秸秆 4000 kg/hm2 还田 (T2);小麦秸秆 5625 kg/hm2 + 玉米秸秆 6000 kg/hm2 还田 (T3);小麦秸秆 7500 kg/hm2 + 玉米秸秆 8000 kg/hm2 还田 (T4)。于 2014 年 10 月~2015 年 10 月,采用静态箱–气相色谱法对农田 N2O 排放进行测定,探究不同秸秆还田量下小麦玉米农田 N2O 排放的周年变化,并量化分析土壤温度、含水量与 N2O 排放的关系。【结果】秸秆还田量显著影响 N2O 的排放,随着秸秆还田量的增加,周年内 N2O 排放总量呈增加的趋势,增加量为 1.33~3.50 kg/hm2,增加率为 32.3%~85.0%;通量增加量为 15.52~40.87 μg/(m2·h),增加率为 32.3%~85.1%。玉米季 N2O 排放通量和总量分别是小麦季的 2.42~2.62 和 1.05~1.14 倍。秸秆还田可提高 0—10 cm 土壤温度和 0—20 cm 土壤含水量,增加范围分别为 0.63~2.14℃ 和 0.6%~1.8%。相关性分析表明,各处理土壤温度和 N2O 排放通量无相关关系(P > 0.05)。T0、T1、T2 处理土壤含水量与 N2O 排放通量呈显著正相关(P < 0.05),而 T3、T4 处理与 N2O 排放通量之间不相关(P > 0.05)。【结论】随着秸秆还田量的增加,N2O 排放通量和总量均呈现增加趋势,且玉米季高于小麦季。秸秆还田显著促进 N2O 排放并可提高 0—20 cm 土壤含水量和 0—10 cm 土壤温度,周年秸秆还田量在 7750 kg/hm2 及以下时,N2O 排放通量与土壤含水量之间呈显著正相关,而与土壤温度之间不相关。  相似文献   

18.
摘要:基于公开发表文章中有关东北地区保护性耕作下大豆农田土壤温度和湿度数据,以传统耕作(CT)为对照,免耕(NT)、少耕(RT)、秸秆覆盖(SM)、免耕秸秆覆盖(NTSM)为处理,应用Meta分析方法定量评估保护性耕作措施对东北大豆农田土壤水热状况的影响程度。结果表明:与CT相比,保护性耕作总体上使东北大豆农田0-170cm土层的土壤体积含水量增加了9.2%,使浅层土壤(0-30cm)温度降低了8.2%;不同气候条件下4种保护性耕作措施均能提高土壤湿度;秸秆覆盖可以提高大豆整个生育时期土壤含水量,且在营养生长期对土壤水热的影响最大,土壤温度随秸秆覆盖量的增加而增加;保护性耕作措施降低土壤温度的幅度随着土壤黏粒减少而降低,提高土壤湿度的幅度随土壤深度增加而降低;免耕秸秆覆盖在不同土壤深度的蓄水保墒效果最明显,在0-20cm土层提高了32.9%的土壤湿度。综上,保护性耕作措施较传统耕作具有增湿降温效应,气温、降水、生育时期、秸秆覆盖量、土壤类型及土壤深度均对保护性耕作下大豆农田的土壤水热状况产生影响。  相似文献   

19.
[目的]研究包气带水分时空动态变化特征,为"四水转化"系统动态循环研究提供依据。[方法]利用土壤水分运动学中势能的观点,研究包气带水分、包气带水势随时间和深度的变化特征。[结果]季节不同,土壤水势整体分布差异明显。6—8月土壤水势最高,局部地段甚至达到饱和,12月至翌年3月土壤水势最低。地面0—50cm深度土壤含水量受季节影响非常大,土壤水势激烈变化;50cm深度以下土壤含水量基本不受季节交替影响,50—140cm土壤水势相对稳定;140cm以下只受重力势作用。[结论]降雨、灌溉、蒸发、地下水埋深等因素均能引起土壤剖面土壤水势分布发生变化,从而实现入渗型、蒸发型、蒸发—入渗型、下渗—上渗型、下渗—上渗—入渗型等土壤水分运动状态的相互转化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号