首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 640 毫秒
1.
通过标准地调查和生物量实测相结合的方法,对布设等高反坡阶后滇中云南松林生态系统碳储量特征进行估算,并分析了8 a后生态系统各层碳增量及分配格局。结果表明:布设等高反坡阶后云南松林乔木层、凋落物层、灌木层和草本层生物量分别比对照高出9.07%,9.29%,8.17%和13.24%,各层高低依次表现为乔木层(75.65 t/hm2) > 凋落物层(23.69 t/hm2) > 灌木层(4.68 t/hm2) > 草本层(1.80 t/hm2);等高反坡阶处理下云南松林生态系统碳储量比对照高出27.10%,各层碳储量由高到低依次为土壤层(132.09 t/hm2) > 乔木层(35.32 t/hm2) > 凋落物层(5.94 t/hm2) > 灌木层(2.11 t/hm2) > 草本层(0.74 t/hm2),分别占总碳储量的72.12%,22.26%,3.86%,1.31%和0.45%。等高反坡阶处理下云南松林生态系统的碳增量显著高于对照(29.68%),乔木层、灌木层、草本层、凋落物和土壤层分别高出31.76%,28.21%,27.17%,15.54%和34.92%,说明等高反坡阶可有效促进植物生长,提高植被层及土壤层碳储量积累,因此人工造林时可因地制宜适度应用一定的等高反坡阶措施,加快当地碳库及生态环境的恢复速率,提高森林生态系统的生产能力。  相似文献   

2.
通过标准地调查和生物量实测相结合的方法,对布设等高反坡阶后滇中云南松林乔木层碳含量、生物量、碳储量及分配特征进行了估算,并分析了8年后各器官碳增量及分配格局特征。结果表明:布设等高反坡阶后云南松各器官碳含量变幅为41.01%~47.35%,平均碳含量高低排列依次为干叶枝皮粗根中根细根。10~15龄的云南松林在布设等高反坡阶后地上部分总生物量比对照高32.75%,等高反坡阶显著提高了10~15龄和15~30龄地下部分生物量(30.73%和35.71%),总生物量随着龄组的增加而显著增加。等高反坡阶显著提高了10~15龄云南松林地上部分碳储量(32.79%)和15~30龄地下部分碳储量(35.60%);布设等高反坡阶8年后显著增加了10~15龄、15~30龄地上部分碳增量(53.33%和20.45%)和地下部分碳增量(53.70%和73.43%)。综上,人工造林时应对等高反坡阶予以高度关注,适度发展等高反坡阶措施,在等高反坡阶基础上因地制宜地进行人工造林,增加山地造林面积和植被碳储量,从而保护当地生态环境。  相似文献   

3.
通过标准地调查和生物量实测相结合的方法,对滇中亚高山5种典型森林华山松(HSS)、云南松(YNS)、滇油杉(DYS)、高山栎(GSL)和常绿阔叶林(CL)林下植被(灌木层、草本层和凋落物层)各组分生物量、碳氮储量及其分配格局进行了研究。结果表明:(1)在5种森林群落中,林下灌木、草本和凋落物生物量变幅为1.47~11.19t/hm2,0.01~0.63t/hm2,7.85~46.73t/hm2。(2)灌木层的碳氮储量变幅在0.77~5.94tC/hm2,10.97~92.84kgN/hm2,碳氮储量的主要营养器官分别为茎和叶;草本层为0.01~0.29tC/hm2,0.07~5.35kgN/hm2,均呈现出地上部分>地下部分;凋落物为2.15~13.03tC/hm2,42.07~320.58kgN/hm2,碳氮储量随分解程度加深各有不同。(3)5种林分林下灌草及凋落物碳储量大小顺序为:CL>YNS>DYS>HSS>GSL;氮储量为:CL>YNS>DYS>GSL>HSS。综上,常绿阔叶林和云南松林下灌草和凋落物具有较高的碳氮贮能力,滇油杉的碳氮贮潜力较大,应提高林分质量增加林分密度,加大保护管理力度,制定科学可行的森林管理措施,为林下植被与上层林木的协同发展以及今后研究林下植被对于全球气候变化的响应提供理论支撑。  相似文献   

4.
北京市松山天然油松林生态系统的碳储量   总被引:1,自引:0,他引:1  
[目的]分析北京市松山地区天然油松林生态系统碳储量,为研究区天然油松林的碳固定和碳储量管理研究提供理论依据。[方法]以北京市松山天然油松林生态系统为研对象,设置标准样地进行乔木。灌木。草本。凋落物调查,采集并分析0—100cm土层土样,根据相关方程计算出生态系统以及各个层次的碳储量。[结果]植物体含碳率变化在42.39%~49.95%,0—100cm土壤含碳率变化在0.26%~1.31%。天然油松生态系统碳储量为147.24 Mg/hm2,其中植被碳储量为57.14 Mg/hm2,占生态系统碳储量的36.7%,植被各层碳储量的顺序为乔木(54.93Mg/hm2)灌木(0.45Mg/hm2)草本(0.29Mg/hm2);土壤碳储量为66.35 Mg/hm2,占生态系统碳储量的46.30%,分别是植被碳储量的1.16倍和凋落物碳储量的2.79倍,且随着土层深度的增加而递减;凋落物碳储量为23.75 Mg/hm2,占生态系统碳储量17%。[结论]松山地区天然乔木对植被碳储量的贡献率最大,松山地区天然油松林植被含碳率表现为:乔木灌木草本凋落物。  相似文献   

5.
青冈栎混交林生物量及碳储量分布特征   总被引:1,自引:1,他引:0  
以湖南永顺43年生青冈栎混交林为研究对象,采用平均木法和样方收获法测定乔木层生物量和林下植被层生物量,采用重铬酸钾—水合加热法测定样品碳素含量,对林分各组分的生物量和碳储量分布特征进行研究。结果表明:青冈栎混交林单位面积生物量为320.03t/hm~2,各组分单位面积生物量由大到小的排列顺序为乔木层、枯落物层、灌木层和草本层。林分单位面积碳储量高达389.43t/hm~2,其中植被层和土壤层分别为249.02,140.41t/hm~2。林分内青冈栎、栲树和杉木单株平均蓄积分别为0.156 1,0.2912,0.296 0m~3,单株平均碳储量分别为103.85,99.15,97.90kg。青冈栎属于生长速度较慢但木材密度大的树种,单株平均蓄积仅有栲树和杉木的单株平均蓄积的1/2左右,但其单株平均生物量和碳储量却比栲树和杉木的单株平均生物量和碳储量要高,表明树种碳汇能力的高低并不完全取决于树种生长速度的快慢,这对今后生态公益林树种的选择提供了一个新的方向。  相似文献   

6.
选取黄土丘陵区刺槐人工林和辽东栎天然次生林2个典型森林群落为研究对象,比较分析了各组分的有机碳和全氮含量与储量及分配特征。结果表明:刺槐和辽东栎林植被层的碳含量总体上呈现沿垂直方向的递减趋势,即乔木层灌木层草本层凋落物层;不同器官部位的碳含量呈现为:叶、干枝根,草本层地上部碳含量高于地下部。氮含量变化趋势不显著。辽东栎林生态系统碳密度为165.86t/hm~2,高于刺槐林生态系统(138.93t/hm2),而两者的氮密度差异不大。两生态系统碳氮密度的各部分排序为土壤乔木层凋落物层林下植被层,土壤层(0—100cm)的碳密度占生态系统碳库总量的51.1%~53.6%,而氮密度占71.4%~84.4%,表明控制水土流失对维持研究区的生态环境及土壤固碳潜力至关重要。  相似文献   

7.
黄土高原子午岭森林碳储量与碳密度研究   总被引:2,自引:2,他引:0  
基于样地林分调查与室内分析,运用清查平均生物量法和林木相对生长模型,研究了黄土高原子午岭林区3种森林碳储量及碳密度空间分布特征。结果表明:研究区森林生态系统植被含碳率变化范围为0.331 6~0.553 2 g/g;变异系数介于2%~14%,而枯落层含碳率为0.294 8~0.335 9 g/g;3种林地平均碳密度:柴松林为238.22 t/hm2,辽东栎林为235.75 t/hm2,油松林为191.58 t/hm2,柴松林及辽东栎林碳密度约是油松林的1.24倍;从研究空间尺度上土壤层植被层枯落层,其碳密度分别为105.21,88.11,28.53 t/hm2,其中植被层各分层碳密度大小差异显著,而土壤层碳密度随着土壤深度的增加而递减;3种森林生态系统有机碳库总储碳量为31.70 Tg,其中土壤层碳储量占整个碳库的49%,是植被层和枯落层碳储量的1.3倍和3.5倍,且碳储量空间分布呈现出:土壤层乔木层枯枝落叶层灌木层草本层。  相似文献   

8.
盱眙县墨西哥柏人工林含碳率与碳储量研究   总被引:1,自引:0,他引:1  
选取盱眙县墨西哥柏人工林为研究对象,对其灌木层、草本层、枯枝落叶层、土壤层进行了碳储量研究。结果表明:灌木层枝、干、叶、根的含碳率依次48.92%,48.49%,49.74%和48.04%,器官含碳率大小表现为C > C > C > C,草本层是地上部分含碳率大于地下部分含碳率,枯枝落叶层的含碳率表现为C > C,土壤层的含碳率随着土壤深度的增加而降低,0—10 cm和10—20 cm土层之间土壤含碳率的差异性显著。墨西哥柏人工林生态系统现存碳储量67.31 t/hm2,其中灌木层1.21 t/hm2,占总碳储量的1.8%;草本层0.08 t/hm2,占总碳储量的0.12%;枯枝落叶层0.02 t/hm2,占总碳储量的0.03%;土壤层66 t/hm2,占总碳储量的98.05%,可见碳储量主要集中在土壤层中。  相似文献   

9.
对湖南永顺43年生闽楠人工林生态系统生物量、碳贮量及其空间分布进行研究,采用平均标准木法和收获法对林分生物量及林下植被与枯落物生物量进行测定与估算,同时测定植物、土壤有机碳含量。结果表明:闽楠人工林林分生物量为295.65t/hm2,生物量分布表现为乔木层(96.70%)枯落物层(2.77%)灌木层(0.46%)草本层(0.07%)。闽楠各器官的碳素含量范围为440.83~506.01g/kg,排列顺序为树叶根茎粗根树枝细根树干树皮中根;闽楠韧皮部平均碳素含量低于外表皮,初生嫩叶碳素含量比多年生老叶高;灌木层植物的碳素平均含量为454.39g/kg,草本层植物为448.66g/kg,未分解枯落物为490.23g/kg,半分解枯落物为402.32g/kg;0-60cm土壤层有机碳含量平均值为16.53g/kg。闽楠人工林生态系统总碳贮量为288.98t/hm2,其中乔木层为133.98t/hm2(46.36%),灌木层为0.62t/hm2(0.45%),草本层为0.10t/hm2(0.07%),枯落物层为3.54t/hm2(2.56%),土壤层为150.74t/hm2(52.17%);闽楠各器官的碳贮量与其生物量成正比,树干的生物量最大,其碳贮量也最高,占乔木层碳贮量的59.33%。闽楠人工林乔木层年净生产力为11.25t/hm2,年净固碳量为5.44t/hm2,年净碳素累积量为3.12t/hm2,并且以地上部分为主。研究表明,在对区域尺度森林植被碳贮量估算时,取50%或45%作为通用标准,可能会导致估算结果偏低或偏高;闽楠人工林生态系统具有较高的碳汇能力,其系统碳贮量高于我国森林生态系统平均碳贮量(258.82t/hm2)。  相似文献   

10.
[目的]分析陇东地区人工林碳密度及其影响因素,为黄土丘陵区生态环境评价提供理论依据。[方法]采用样地调查与生物量实测方法,对陇东地区油松人工林碳密度进行了估算,并分析生态因素对油松人工林生态系统碳密度的影响。[结果]油松林各器官碳含量变化范围为48.58%~53.54%,各器官碳密度按从高到低的大小顺序依次为:树干树枝树根树叶树皮果实;灌木层叶、茎、根的碳含量分别为43.93%,45.62%,42.38%;草本层地上部分和地下部分碳含量为43.04%,39.77%;枯落物层未分解和半分解层碳含量为43.79%,38.83%;植被层碳密度按从高到底的大小顺序为:乔木层草本层灌木层。土壤层(0—100cm)碳含量随着土壤深度的增加而降低,且不同土壤层碳密度存在显著差异,以50—100cm碳密度最高。油松林生态系统平均碳密度为52.86t/hm2,其空间分布排序为土壤层(75.15%)植被层(24.14%)枯落物层(0.71%)。[结论]油松人工林生态因子中,林分平均树高、平均胸径、郁闭度均与各层碳密度呈现极显著正相关性,林分枯落物未分解干质量与各层碳密度呈现显著正相关性。平均树高、平均胸径、郁闭度、枯落物未分解干质量是油松人工林生态系统碳密度的主要生态因子。  相似文献   

11.
等高反坡阶措施对滇中红壤坡耕地土壤贮水量的影响   总被引:2,自引:0,他引:2  
为探讨布设等高反坡阶后土壤水分驱动特征,揭示其水源涵养能力,以滇中昆明市北郊松华坝迤者小流域为研究区,采用野外监测与室内测试分析相结合的方法,分析了2017年5月1日-2018年4月30日期间不同土层深度(0-100 cm)土壤贮水量时空变化特征及其与其他物理性质的关系。结果表明:(1)试验期间雨季和旱季降雨量分别为528.5,41.5 mm,占试验年降雨量的92.7%,7.3%,I30(最大30分钟雨强)与降雨量的整体变化趋势一致;(2)布设等高反坡阶后,各土层平均土壤贮水量较原状坡耕地在雨季和旱季分别增加9.6%~13.5%,10.0%~23.9%;(3)布设等高反坡阶后坡耕地土壤贮水量变异系数明显减小(p<0.05),各土层深度下土壤贮水量变异系数的大小为:20 cm > 40 cm > 60 cm > 80 cm > 100 cm;(4)土壤贮水量随土层深度的增加明显减弱,布设等高反坡阶对坡耕地土壤贮水量的影响表现为40 cm > 20 cm > 60 cm > 80 cm > 100 cm;(5)等高反坡阶处理和不同土层深度交互作用对土壤贮水量的影响显著,修正模型平方和达到48 149.124。综上,等高反坡阶处理对坡耕地土壤的贮水能力具有明显的提高作用,对坡耕地地表径流拦蓄、增加水分入渗和减少土壤流失改善作用显著。  相似文献   

12.
朱浩宇  王子芳  陆畅  陈仕奇  王富华  吕盛  高明 《土壤》2021,53(2):354-360
为揭示重庆市缙云山不同植被下土壤活性有机碳及碳库分配特征,以该地区5种植被类型:阔叶林、针叶林、混交林、竹林和荒草地为研究对象,分析不同植被类型下各土壤层次中有机碳(Soil organic carbon, SOC)、微生物量碳(Microbial biomass carbon,MBC)、可溶性有机碳(Dissolved organic carbon,DOC)、易氧化有机碳(Readily oxidized organic carbon,ROC)含量及其土壤碳库的变化特征。结果表明:土壤有机碳和各活性有机碳组分含量及分配比例受到植被类型和土层深度的明显影响。土壤有机碳的平均含量在0~100 cm土层表现为竹林(16.74 g/kg)>阔叶林(12.62 g/kg)>草地(11.14 g/kg)>混交林(8.16 g/kg)>针叶林(5.98 g/kg),并随土层深度的增加而减小。竹林和阔叶林的微生物量碳和易氧化有机碳含量均明显高于混交林和针叶林,各植被在剖面上均表现出垂直递减规律,表现出明显的表聚效应。除草地,4种植被的土壤碳库管理指数随土层深度的加深而减小,均表现为表层(0~20 cm土层)最高。不同植被类型间,竹林的可溶性有机碳分配比例在各土壤层次均最小,整个土壤剖面均值仅为0.1%。由相关性分析可知,微生物量碳、易氧化有机碳、土壤总有机碳含量和土壤有机碳储量有着极其显著的相关性。因此,土壤微生物量碳和易氧化有机碳可以作为衡量亚缙云山森林不同植被土壤有机碳库变化的敏感性指标。  相似文献   

13.
宁夏森林植被及土壤碳密度分布特征   总被引:1,自引:1,他引:0  
根据宁夏回族自治区森林资源清查资料以及野外调查和室内分析的结果,对宁夏地区不同森林群落碳密度分布特征进行了研究。结果表明:1)天然林各植被层碳密度均值的大小顺序为:乔木层(57.66 Mg/hm2)细根(8.39 Mg/hm2)凋落物层(8.34 Mg/hm2)草本层(0.23 Mg/hm2)灌木层(0.20 Mg/hm2),乔木层生物量碳密度占植被层总碳密度的77.06%;2)土壤碳密度均值在170.15~354.29 Mg/hm2间变化,以罗山油松+山杨林最高,贺兰山青海云杉林最低,就土层垂直分布来讲,50~100 cm土层碳积累最多,占整个剖面土壤碳密度的40%左右;3)各天然林生态系统碳密度均值变化范围为221.63~444.77 Mg/hm2,在罗山油松+山杨林最大,六盘山华山松+少脉椴林最小;4)宁夏天然林生态系统土壤碳密度是生物量碳密度的4.09倍,由于土壤碳库稳定性高于地上植被碳库,土壤碳密度较高的针阔混交林和阔叶林具有巨大的固碳潜力。  相似文献   

14.
[目的]研究坡耕地等高反坡阶措施的蓄水保土和固碳减排效应,为改善云南山区红壤坡耕地土壤侵蚀状况提供科学依据。[方法]自然降雨条件下,通过松花坝迤者小流域1a的野外径流小区定位观测,对有、无等高反坡阶措施条件下的坡面产流产沙和土壤有机碳流失进行对比分析。[结果](1)泥沙作为土壤有机碳流失的重要载体,因其流失所致的流失量占总有机碳流失量的85%以上,最高达95.38%;(2)等高反坡阶具有显著的蓄水减流和保土减沙效应,其减流率在5.56%~53.91%,减沙率在18.84%~83.11%,产沙调控作用更优;(3)雨季前后,原状坡面小区土壤碳储量减少率达9.90%,明显高于等高反坡阶小区土壤碳储量的减少率3.99%;(4)通过相关分析发现,2个小区土壤有机碳的流失率与降雨量均未达到显著相关,但与降雨侵蚀力显著相关(p0.05)。径流、泥沙与2个小区有机碳的流失率均达到了显著正相关(p0.05)。[结论]等高反坡阶通过改变地表微地形,减少了坡耕地有机碳的输出。  相似文献   

15.
洞庭湖湿地植被系统的碳贮量及其分配   总被引:1,自引:0,他引:1  
利用生物量调查和实验数据.对洞庭湖湿地植被生态系统的碳密度、碳贮量及其分配进行研究.结果表明:乔木层植被碳密度为15.607~40.501 t/hm~2,草本层植被为5.906~21.632 t/hm~2.水生植物植被1.460~3.492 t/hm~2,平均14.954 t/hm~2比温带地区湿地植物碳密度高;未受干扰草甸土壤碳密度为260.510 t/hm~2,每年收获产品草甸是185.492 t/hm~2,林地234.513 t/hm~2,水生植物土壤为206.882 t/hm~2,低于全国湿地土壤平均值.碳贮量分配中.植被层、凋落物层和土壤层的碳贮量分别占各植被类型系统碳的总贮量的0.47%~14.69%,0.29%~1.10%和84.54%~99.53%.每年收获部分产品的草甸土壤碳密度只有未受人为干扰草甸的71.2%,原生草本植物草地改造成林地后,6年的时间,土壤的碳密度减少了10%.因此,控制人为干扰,防止湿地破碎化、保护好湿地、保证湿地的固碳潜力,是湿地管理中应该优先考虑的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号