首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing frequency of chemically contaminated groundwater, occurring as a result of improperly managed waste disposal or accidental spills, presents a need for research on the fate of chemical mixtures in the soil. The batch equilibration technique was used to measure adsorption of 14C ring-labeled atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) for a Palouse silt loam (Pachic Ultic Haploxeroll) and a Pembroke silty clay loam (Typic Paleudalf). The solution phase consisted of mixtures of methanol-water and hexane-water containing up to 33.3 % organic solvent by volume. Aqueous solubility limited atrazine concentrations to 100 μmol L?1 except for an additional isotherm determined in 33.3 methanol-water at up to 1542 μmol L?1 The Freundlich adsorption coefficient indicated that the Palouse adsorbed more atrazine than the Pembroke with K values of 4.95 and 0.54, respectively. Both soils showed a significant decrease in K as the percentage methanol increased. Adsorption isotherms from a 33. 3 methanol-water system were of the Freundlich type for atrazine concentrations of 0.25 to 1542 μmol L?1. In the hexane-water systems, K decreased as the fraction of hexane increased and the Pembroke soil adsorbed less atrazine than the Palouse soil. These results suggest that the introduction of nonaqueous solvents such as methanol and hexane decreased adsorption and increased the potential for atrazine mobility.  相似文献   

2.
A study was conducted to determine the influence of switchgrass roots on the mobility, adsorption–desorption and mineralization of atrazine in Cullen clay loam and Emporia loamy sand soils. Bromide and atrazine distribution profiles in the leachates indicated greater preferential movement in columns with roots than in columns without roots. Larger concentrations of atrazine were detected at lower depths of Emporia soil with switchgrass roots than without. Adsorption of atrazine was greater in Cullen than in Emporia soil and conformed to Freundlich isotherms. In both Cullen and Emporia soils, adsorption and desorption were not different between soil with or without switchgrass roots. After 84 days of incubation, less than 6% of the applied atrazine was mineralized in the Cullen soil and 2% in Emporia soil. Mineralization was greater in the Cullen soil than in the Emporia soil at 42, 56, 70 and 84 days of sampling. The presence of switchgrass roots did not affect the mineralization of atrazine in Emporia soil. The presence of switchgrass roots caused preferential movement of atrazine, but did not affect its adsorption and mineralization in either soil type.  相似文献   

3.
LIAO Min  XIE Xiao-Mei 《土壤圈》2007,17(1):101-108
The distribution of light fraction carbon (LF-C) in the various size classes of aggregates and its relationship to water- stable aggregates as well as the influence of cultivation on the organic components in virgin and cultivated black soils were studied by wet sieving and density separation methods. The total organic carbon (TOC) and LF-C were significantly higher (P≤ 0.05) in the virgin soils than in the cultivated soils. The LF-C in aggregates of different size classes varied from 0.9 to 2.5 g kg^-1 in the cultivated soils and from 2.5 to 7.1 g kg^-1 in the virgin soils, whereas the ratio of LF-C to TOC varied from 1.9% to 7.3% and from 5.0% to 12.2%, respectively. After being incubated under constant temperature and controlled humidity for three months, the contribution of LF-C to TOC sharply decreased to an amount (1.7%4.5%) close to the level in soils that had been cultivated for 20 to 25 years (1.3%-8.8%). As a result, the larger water-stable macro-aggregates (especially 〉 1 mm) decreased sharply, indicating that the LF-C pool in virgin soils declined quickly after cultivation, which reduced the water stability of soil aggregates.  相似文献   

4.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

5.

Purpose

Adsorption and desorption are important processes that influence the transport, transformation, and bioavailability of atrazine in soils. Equilibrium batch experiments were carried out to investigate the adsorption–desorption characteristics of atrazine. The objectives of this study were to (1) determine and quantify the main soil parameters governing atrazine adsorption and desorption phenomena; (2) find the correlativity between the identified soil parameters; and (3) investigate the universal desorption hysteresis traits.

Materials and methods

Fifteen soils with contrasting physico-chemical characteristics were collected from 11 provinces in eastern China. The equilibrium time was 24 h both for adsorption and desorption experiments. Atrazine was detected by Waters 2695/UV HPLC.

Results and discussion

Adsorption isotherms of atrazine could be well described by the Freundlich equation (r?≥?0.994, p?<?0.01). The total organic carbon (TOC) was the first independent variable that described 53.0 % of the total variability of K f, followed by the pH (9.9 %), and the clay (4.0 %) and silt (1.2 %) contents, separately; while the primary soil properties that affect desorption parameters included the TOC, pH, free Fe2O3 (Fed) and the sand content, with the biggest contribution achieved by the TOC (ranged from 48.5–78.1 %). The results showed that when the content ratio of clay to TOC (RCO) was less than 40, the atrazine adsorption was largely influenced by the organic matrix, while when the RCO was greater than 40, they were vital affected by the clay content.

Conclusions

Adsorption–desorption isotherms of atrazine in soils were nonlinear. The content of TOC, clay, and iron oxides, as well as the pH value were the key soil parameters affecting the adsorption–desorption of atrazine in soil, among which the RCO especially exhibited relevance. Additionally, the desorption hysteresis existed for atrazine retention in all 15 tested soils, and the hysteretic effect enhanced with the increasing time for desorption. This would be ascribed to the heterogeneity physical–chemical properties of these soils.  相似文献   

6.
Adsorption isotherms of metsulfuron and bensulfuron on a hexadecyltrimethylammonium (HDTMA) bromide-modified paddy soil under different ionic strengths, with divalent cation Cu^2+, or having different pH were studied to describe their adsorptive behavior, and to try to explain the adsorption process of a sulfonylurea compound with a carbamoylsulfamoyl group in the modified soil environment. All the adsorption isotherms fitted the Freundlich equation well, and the HDTMA treatment of paddy soil dramatically enhanced adsorption capacity of metsulfuron or bensulfuron. Also, an increase of ionic strength and the addition of divalent heavy metal cation Cu^2+ on the HDTMA-modified paddy soil increased the adsorption of metsulfuron or bensulfuron. Additionally, for metsulfuron and bensulfuron in the aqueous phase, adsorption capacity of the HDTMA-modified paddy soft gradually increased with decreasing pH.  相似文献   

7.
采用批量平衡实验,研究了纳米粘土矿物与原粘土矿物对除草剂阿特拉津的吸附解吸特陛。结果表明,粘土矿物对阿特拉津的吸附-解吸均能用Freundlich方程很好地拟合。随着溶液中阿特拉津浓度的增加,粘土矿物对阿特拉津的吸附量增加;粘土矿物粒径越小,吸附量越大,纳米粘土矿物的吸附量显著大于原粘土矿物。粘土矿物对阿特拉津吸附量大小顺序为:纳米SiO2)纳米蒙脱石〉凹凸棒石〉蒙脱石〉SiO2。粘土矿物对阿特拉津的解吸表现出一定的滞后效应,即粘土矿物吸附的阿特拉津越多,解吸的越少。粘土矿物对阿特拉津的解吸率大小顺序为:SiO2〉凹凸棒石〉纳米蒙脱石〉纳米SiO2〉蒙脱石。  相似文献   

8.
The adsorption-desorption equilibrium of atrazine (2-chloro, 4-ethylamino, 6-isopropyl amino-1, 3, 5 triazine) was studied by the batch equilibration method at 27 ± 1 °C on four soils of Hyderabad. Adsorption isotherms conformed to the Freundlich equation (A = KC1/n ). K increased in the same order as the organic C content of the soils. Desorption studies were conducted by repeated replacement of 5 mL of the supernatant equilibrium solutions after adsorption, with 0.01 M CaCl2. Desorption isotherms showed considerable hysteresis which was more prominent when the desorption was carried out with higher adsorbed concentration of atrazine. Desorption from the lowest level of adsorbed atrazine (3 to 5 μg g?1 soil) was close to the adsorption isotherm. The cumulative desorption after four desorption steps covering five days was significantly different at the 1% level, for different initial adsorbed concentrations of atrazine. Desorption was significantly higher at the lowest adsorbed level of atrazine. The soils differed significantly at 6% level for desorption and the amount desorbed decreased in the inverse order of organic C. Desorption isotherms also conformed to Freundlich equation but K andn values were both higher than that for adsorption and increased with increase in initially adsorbed concentration of atrazine. Desorption thus confirmed the irreversible nature of the adsorption of atrazine on these soils. The quantitative factors and reasons for desorption are discussed.  相似文献   

9.
The adsorption kinetics and adsorption parameters of metolachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA) and hydroxyatrazine (HA) were investigated in a soil profile in a maize field formed from recent alluvial deposits in a river basin in Greece. We used the batch equilibrium method modified to simulate field conditions as closely as possible for the use and practices related to soil applied pre‐emergence herbicides. Pseudo‐equilibrium times, determined by kinetic studies, were achieved after 16, 16, 24, 24 and 48 hours for metolachlor, DIA, DEA, HA and atrazine, respectively. At pseudo‐equilibrium the percentage of the adsorbed amount increased in the order of DEA (10%) < DIA (14%) < atrazine (27%) < metolachlor (43%) ≪ HA (94%) which indicates that more than 57% of all compounds except for HA are in solution and available for transport to deeper soil layers when conditions similar to those simulated in the laboratory exist in the field. Adsorption isotherms of all compounds and in most of the cases correlated well with the Freundlich model and adsorption coefficients (Kf) decreased with increased soil depth. Principal component and multiple regression analyses confirmed the importance of the soil organic carbon content on the adsorption capacity of soils for all compounds except HA in the plough layers (0–40 cm). In the subsurface soils (40–110 cm) variables such as clay content and pH were more important. For HA, the Kf values determined for the plough and subsurface soil layers were better correlated with clay content and pH. Also in the subsurface soils, the variation in organic carbon content was not correlated with the variation of Kf values. Thus calculated Koc‐f‐values misrepresent the adsorptive capacity of these soils towards the compounds studied.  相似文献   

10.
Adsorption of the chloroacetanilide herbicides acetochlor, alachlor, metolachlor, and propachlor was determined on soils and soil components, and their structural differences were used to explain their sorptivity orders. On all soils and soil humic acids, adsorption decreased in the order: metolachlor > acetochlor > propachlor > alachlor. On Ca(2+)-saturated montmorillonite, the order changed to metolachlor > acetochlor > alachlor > propachlor. FT-IR differential spectra of herbicide-clay or herbicide-humic acid-clay showed possible formation of hydrogen bonds and charge-transfer bonds between herbicides and adsorbents. The different substitutions and their spatial arrangement in the herbicide molecule were found to affect the relative sorptivity of these herbicides by influencing the reactivity of functional groups participating in these bond interactions. It was further suggested that structural characteristics of pesticides from the same class could be used to improve prediction of pesticide adsorption on soil.  相似文献   

11.
This paper presents a study on the batch adsorption of a basic dye, methylene blue (MB), from aqueous solution onto ground hazelnut shell in order to explore its potential use as a low-cost adsorbent for wastewater dye removal. A contact time of 24 h was required to reach equilibrium. Batch adsorption studies were carried out by varying initial dye concentration, initial pH value (3–9), ionic strength (0.0–0.1 mol L?1), particle size (0–200 μm) and temperature (25–55°C). The extent of the MB removal increased with increasing in the solution pH, ionic strength and temperature but decreased with increase in the particle size. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The characteristic parameters for each isotherm were determined. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by Langmuir isotherm equation. The maximum adsorption capacities for MB were 2.14?×?10?4, 2.17?×?10?4, 2.20?×?10?4 and 2.31?×?10?4 mol g?1 at temperature of 25, 35, 45 and 55°C, respectively. Adsorption heat revealed that the adsorption of MB is endothermic in nature. The results indicated that the MB strongly interacts with the hazelnut shell powder.  相似文献   

12.
几种吸附剂对阿特拉津的吸附及其 Zeta 电位特性研究   总被引:1,自引:0,他引:1  
尹敏敏  项艳  司友斌  陈涛 《土壤》2012,44(1):118-125
通过振荡吸附平衡试验,研究了蒙脱石、凹凸棒石、竹炭、木炭对阿特拉津的吸附行为,讨论了pH值、离子强度对吸附的影响,并考察了吸附剂表面的Zeta电位变化。结果表明,几种吸附剂对阿特拉津的吸附均符合Freundlich方程;竹炭、木炭的吸附能力明显高于蒙脱石和凹凸棒石。吸附剂对阿特拉津的吸附量随着悬液离子强度的增加而增加,在悬液pH一定(pH=6),离子强度为10-3mol/L NaNO3时,蒙脱石、凹凸棒石对阿特拉津的吸附量分别为538.30、609.68 mg/kg,当离子强度增加为10-2mol/L时,吸附量分别增至611.26、731.63 mg/kg;当离子强度由10-3增至10-1mol/L NaNO3时,竹炭、木炭对阿特拉津的吸附量有较多增加。当悬液pH在3~8范围时,几种吸附剂表面均带负电荷,其Zeta电位值随着pH的增加而增加,随离子强度的增加而减小。悬液离子强度一定时,随着pH的增加,吸附阿特拉津后吸附剂表面Zeta电位变化不显著。研究结果有助于从机理上解析吸附剂对有机污染物的吸附行为。  相似文献   

13.
Particulates (ashes) arising from the burning of crop residues are potentially effective adsorbents for pesticides in agricultural soils. To determine the long-term adsorptive sustainability of ashes, a wheat (Triticum aestivum L.) ash was aged under environmentally relevant conditions (in CaCl(2) solution at room temperature and pH 7) in soil extract for 1 month and in a soil (1% ash) for a period of up to 12 months. The aged ash and ash-amended soil were used to sorb diuron from water. The diuron sorption was also measured in the presence of atrazine as a competing pesticide. There was no observed microbial impact on the stability of the wheat ash in soil. All isotherms with the ash were nonlinear type-I curves, suggestive of the surface adsorption. On a unit mass basis, the ash in soil extract was 600-10000 times more effective than the soil in sorbing diuron. Adsorption of dissolved soil organic matter (DOM) during aging on the ash surfaces reduced the diuron adsorption by 50-60%. Surface competition from the atrazine adsorption also reduced the ash adsorption of diuron by 10-30%. A total of 55-67% reduction in diuron sorption by the ash-amended soil was observed. Due to its high initial adsorptivity, the ash fraction of the aged ash-amended soil contributed >50% to the total diuron sorption. Thus, the wheat ash aged in the soil remained highly effective in adsorbing diuron. As crop residues are frequently burned in the field, pesticides in agricultural soils may be highly immobilized due to the presence of ashes.  相似文献   

14.
The impact of two tillage systems, plow tillage (PT) and no-tillage (NT), on microbial activity and the fate of pesticides in the 0–5 cm soil layer were studied. The insecticides carbofuran and diazinon, and the herbicides atrazine and metolachlor were used in the study, which included the incubation and leaching of pesticides from untreated soils and soils in which microorganisms had been inhibited. The mineralization of ring14C labeled pesticides was studied. The study differentiated between biotic and abiotic processes that determine the fate of pesticides in the soil. Higher leaching rates of pesticides from PT soils are explaned by the relative importance of each of these processes. In NT soils, higher microbial populations and activity were associated with higher mineralization rates of atrazine, diazinon and carbofuran. Enhanced transformation rates played an important role in minimizing the leaching of metolachlor and carbofuran from NT soils. The role of abiotic adsorption/retention was important in minimizing the leaching of metolachlor, carbofuran and atrazine from NT soils. The role of fungi and bacteria in the biodegradation process was studied by selective inhibition techniques. Synergistic effects between fungi and bacteria in the degradation of atrazine and diazinon were observed. Carbofuran was also degraded in the soils where fungi were selectively inhibited. Possible mechanisms for enhanced biodegradation and decreased mobility of these pesticides in the upper layer of NT soils are discussed.  相似文献   

15.
The volatile and soil loss profiles of six agricultural pesticides were measured for 20 days following treatment to freshly tilled soil at the Beltsville Agricultural Research Center. The volatile fluxes were determined using the Theoretical Profile Shape (TPS) method. Polyurethane foam plugs were used to collect the gas-phase levels of the pesticides at the TPS-defined critical height above a treated field. Surface-soil (0-8 cm) samples were collected on each day of air sampling. The order of the volatile flux losses was trifluralin > alpha-endosulfan > chlorpyrifos > metolachlor > atrazine > beta-endosulfan. The magnitude of the losses ranged from 14.1% of nominal applied amounts of trifluralin to 2.5% of beta-endosulfan. The daily loss profiles were typical of those observed by others for volatile flux of pesticides from moist soil. Even though heavy rains occurred from the first to third day after treatment, the majority of the losses took place within 4 days of treatment, that is, 59% of the total applied atrazine and metolachlor and >78% of the other pesticides. Soil losses generally followed pseudo-first-order kinetics; however, leaching due to heavy rainfall caused significant errors in these results. The portion of soil losses that were accounted for by the volatile fluxes was ordered as follows: alpha-endosulfan, 34.5%; trifluralin, 26.5%; chlorpyrifos, 23.3%; beta-endosulfan, 14.5%; metolachlor, 12.4%; and atrazine, 7.5%.  相似文献   

16.
暗棕壤吸附铜离子特征及其影响因素研究   总被引:1,自引:0,他引:1  
应用平衡吸附法,研究了不同pH、离子强度、温度、Cu~(2 )浓度和接触时间条件下,暗棕壤对Cu~(2 )的吸附作用,并利用热力学和动力学方程对实验结果进行了拟合。结果表明:(1)随pH提高,Cu~(2 )的吸附率增加,pH 8时的吸附率约为91%。(2)随体系离子强度增加,Cu~(2 )的吸附量先下降后增加。(3)随溶液中Cu~(2 )浓度增加,Cu~(2 )在暗棕壤上的吸附量也增加,并且在低浓度时增加比较迅速。吸附等温线可用Frendlich,Langmiur和Temkin方程很好的描述,其中又以Langmiur方程拟合程度最好。根据Langmiur方程中平衡常数(k_L)得到的热力学参数指出,反应是自发的、吸热的,但增温却没有改变Cu~(2 )在暗棕壤表面的混乱度。(4)随接触时间延长,暗棕壤对Cu~(2 )的吸附量也增大,具体表现为吸附开始的快速反应阶段和经过一段时间后的慢速反应阶段。双常数能更好地拟合暗棕壤对Cu~(2 )的吸附动力学曲线,根据一级动力学方程的反应速率常数(k_D),计算出了Cu~(2 )吸附的活化能和活化热力学参数,指出温度升高有利于提高反应的速率。  相似文献   

17.
This study was carried out to investigate the sorption properties of man‐made soil developed from sewage sludge, municipal wastes, brick and mortar debris, harbour sludge, sand fills, fly ash, and wastes from coking plants and coal mines. The composition of organic matter in the samples was analysed, and the sorption isotherms of four reference chemicals (nitrobenzene, atrazine, 2,4‐D, pentachlorophenol) were determined. Fly ash, which contains up to 89% of its carbon as Black Carbon, showed a strong affinity to all four chemicals. For the other waste materials, a strong correlation between the logarithm of the Freundlich adsorption constant, Kf, and the logarithm of organic carbon, Co, was established (r = 0.85–0.96). This holds for the non‐ionic nitrobenzene and also, within a certain pH range depending on the pKa of the compound, for the three ionizable organic compounds (atrazine: pH > 4; 2,4‐D: pH > 5; PCP: pH > 6). At pH near the pKa value the sorption is sensitive to pH. There were no statistically significant differences between the waste materials and the natural soils in the relations between logKf and logCo for either ionic or non‐ionic chemicals. This result suggests that the method devised for estimating the sorption of organic chemicals in natural soils based on their content of organic carbon is equally valuable for the waste materials, with the exception of fly ash which contains a large amount of Black Carbon.  相似文献   

18.
The adsorption and desorption of dimepiperate, S-(,-dimethylbenzyl)-1-piperidinecarbothioate, on three soils of various physical and chemical properties was studied. Adsorption isotherms conformed to Freundlich equation. The k f values increased with increasing organic carbon content of the soils. To confirm the effect of organic matter, the adsorption of the herbicide was studied after removal of organic matter by peroxidation. This soil treatment caused a sequential loss of adsorptive capacity. Desorption isotherms also conformed to Freundlich equation, but K des values were higher than those for adsorption and increased with increase in concentration of initially adsorbed dimepiperate. Hysteresis was indicated by the decrease in slope of desorption compared to adsorption isotherms. Hysteresis decreased with increasing methanol content in the extracting solution. The factors involved are discussed.  相似文献   

19.

Purpose

In a 6-year study, we investigated the effectiveness of blind inlets as a conservation practice in reducing pesticide losses compared to tile risers from two closed farmed depressional areas (potholes) in the US Midwest under a 4-year cropping rotation.

Materials and methods

In two adjacent potholes within the same farm and having similar soils, a conventional tile riser and blind inlet were installed. Each draining practice could be operated independent of each other in order to drain and monitor each depression with either practice. Sampling events (runoff events) were collected from the potholes from 2008 to 2013 using autosamplers. The samples were analyzed for atrazine, metolachlor, 2,4-D, glyphosate, and deethylatrazine.

Results and discussion

The results of this study demonstrated that the blind inlet reduced analyzed pesticide losses; however, the level of reduction was compound dependent: atrazine (57 %), 2,4-D (58 %), metolachlor (53 %), and glyphosate (11 %).

Conclusions

Results from this study corroborate previous research findings that blind inlets are an effective conservation practice to reduce discharge and pollutants, including pesticides from farmed pothole surface runoff in the US Midwest.
  相似文献   

20.
采用批平衡实验,研究绿麦隆在单一及复合污染体系中的吸附-解吸行为。结果表明,无论是单一体系还是复合体系,吸附等温线均可用Freundlich模型进行良好的拟合。随着阿特拉津浓度的增加,土壤对绿麦隆的吸附作用降低,表明绿麦隆和阿特拉津之间存在竞争吸附,这可能与土壤的有机质类型和绿麦隆、阿特拉津的性质、结构有关。解吸实验表明,随着阿特拉津的浓度增加,绿麦隆的解吸作用增加。吸附过程的拟合指数n值大于解吸过程的对应值,即绿麦隆在不同体系中的解吸作用均存在一定的滞后性。应用Freundlich解吸等温线参数对吸附-解吸等温线的滞后作用进行量化,CT、(CT+0.5AT)、(CT+1AT)和(CT+2AT)处理解吸等温线的滞后系数ω分别为165.200,146.132,94.534和85.945,即随阿特拉津浓度增加,绿麦隆解吸等温线的滞后性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号