首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Problems of frequent drought stress, low soil organic carbon (SOC) concentration, low aggregation, susceptibility to compaction, salinization and accelerated soil erosion in dry regions are accentuated by removal of crop residues, mechanical methods of seedbed preparation, summer clean fallowing and overgrazing, and excessive irrigation. The attendant soil degradation and desertification lead to depletion of SOC, decline in biomass production, eutrophication/pollution of waters and emission of greenhouse gases. Adoption of conservation agriculture, based on the use of crop residue mulch and no till farming, can conserve water, reduce soil erosion, improve soil structure, enhance SOC concentration, and reduce the rate of enrichment of atmospheric CO2. The rate of SOC sequestration with conversion to conservation agriculture, elimination of summer fallowing and growing forages/cover crops may be 100 to 200 kg ha−1 y−1 in coarse‐textured soils of semiarid regions and 150 to 300 kg ha−1 y−1 in heavy‐textured soils of the subhumid regions. The potential of soil C sequestration in central Asia is 10 to 22 Tg C y−1 (16±8 Tg C y−1) for about 50 years, and it represents 20 per cent of the CO2 emissions by fossil fuel combustion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Accelerated soil erosion can impact upon agronomic productivity by reducing topsoil depth (TSD), decreasing plant available water capacity and creating nutrient imbalance in soil and within plant. Research information on soil‐specific cause – effect relationship is needed to develop management strategies for restoring productivity of eroded soils. Therefore, two field experiments were established on Alfisols in central Ohio to quantify erosion‐induced changes in soil properties and assess their effects on corn growth and yield. Experiment 1 involved studying the effects of past erosion on soil properties and corn yield on field runoff plots where soil was severely eroded and comparing it with that on adjacent slightly eroded soil. In addition, soil properties and corn grain yield in runoff plots were compared on side‐slopes with that on toe‐slopes or depositional sites. Experiment 2 involved relating corn growth and yield to topsoil depth on a sloping land. With recommended rates of fertilizer application, corn grain yield did not differ among erosional phases. Fertilizer application masked the adverse effects of erosion on corn yield. Corn grain yield on depositional sites was about 50 per cent more than that on side‐slope position. Corn plants on the side‐slope positions exhibited symptoms of nutrient deficiency, and the ear leaves contained significantly lower concentrations of P and Mg and higher concentrations of Mn and K than those grown on depositional sites. Corn grain yield in experiment 2 was positively correlated with the TSD. Soil in the depositional site contained significantly more sand and silt and less clay than that on the side‐slope position. There were also differences in soil properties among erosional phases. The soil organic carbon (SOC) content was 19\7 g kg−1 in slightly eroded compared with 15\1 g kg−1 in severely eroded sites. Aggregate stability and the mean weight diameter (MWD) were also significantly more in slightly eroded than severely eroded soils. Adverse effects of severe erosion on soil quality were related to reduction in soil water retention, and decrease in soil concentration of N and P, and increase in those of K, Ca and Mg. Severe erosion increased leaf nutrient contents of K, Mn and Fe and decreased those of Ca and Mg. Corn grain yield was positively correlated with aggregation, silt and soil N contents. It was also negatively correlated with leaf content of Fe. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Land management in agricultural lands has important effects on soil organic carbon (SOC) dynamics. These effects are particularly relevant in the Mediterranean region, where soils are fragile and prone to erosion. Increasing interest of modelling to simulate SOC dynamics and the significance of soil erosion on SOC redistribution have been linked to the development of some recent models. In this study, the SPEROS‐C model was implemented in a 1.6‐ha cereal field for a 150‐year period covering 100 years of minimum tillage by animal traction, 35 years of conventional tillage followed by 15 years of reduced tillage by chisel to evaluate the effects of changes in land management on SOC stocks and lateral carbon fluxes in a Mediterranean agroecosystem. The spatial patterns of measured and simulated SOC stocks were in good agreement, and their spatial variability appeared to be closely linked to soil redistribution. Changes in the magnitude of lateral SOC fluxes differed between land management showing that during the conventional tillage period the carbon losses is slightly higher (0.06 g C m−2 yr−1) compared to the period of reduced till using chisel (0.04 g C m−2 yr−1). Although the results showed that the SPEROS‐C model is a potential tool to evaluate erosion induced carbon fluxes and assess the relative contribution of different land management on SOC stocks in Mediterranean agroecosystems, the model was not able to fully represent the observed SOC stocks. Further research (e.g. input parameters) and model development will be needed to achieve more accurate results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Under semiarid climatic conditions, intensive tillage increases soil organic matter losses, reduces soil quality, and contributes to climate change due to increased CO2 emissions. There is a need for an agricultural management increasing soil organic matter. This paper presents the organic carbon (OC) and nitrogen (N) stocks, C:N ratio and stratification ratios (SRs) of these properties for olive groves soils under long‐term organic farming (OF), and conventional tillage (CT) in Los Pedroches valley, southern Spain. The results show that OF increased C and N stocks. The soil organic carbon (SOC) stock was 73·6 Mg ha−1 in OF and 54·4 Mg ha−1 in CT; and the total nitrogen (TN) stock was 7·1 Mg ha−1 and 5·8 Mg ha−1 for OF and CT, respectively. In the surface horizon (A: 0–16·9 cm in OF and Ap: 0–21·8 cm in CT) and Bw horizon (16·9–49·6 cm in OF and 21·8–56 cm in CT), SOC and TN concentrations and C:N ratios were higher in OF than in CT. Soil properties stratification in depth, expressed as a ratio, indicates the soil quality under different soil management systems. The SR of SOC ranged from 2·2 to 3·1 in OF and from 2·1 to 2·2 in CT. However, only SR2 (defined by Ap‐A/C) showed significant differences between CT and OF. The SR of TN showed similar trends to that of the SR of SOC. Organic farming contributes to a better soil quality and to increased carbon sequestration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Managing soil carbon requires accurate estimates of soil organic carbon (SOC) stocks and its dynamics, at scales able to capture the influence of local factors on the carbon pool. This paper develops a spatially explicit methodology to quantify SOC stocks in two contrasting regions of Southern Spain: Sierra Norte de Sevilla (SN) and Cabo de Gata (CG). Also, it examines the relationship between SOC stocks and local environmental factors. Results showed that mean SOC stocks were 4·3 kg m−2 in SN and 3·0 kg m−2 in CG. Differences in SOC in both sites were not significant, suggesting that factors other than climate have a greater influence on SOC stocks. A correlation matrix revealed that SOC has the highest positive correlation with clay content and soil depth. Based on the land use, the largest SOC stocks were found in grassland soils (4·4 kg m−2 in CG and 5·0 kg m−2 in SN) and extensive crops (3·0 kg m−2 in CG and 5·0 kg m−2 in SN), and the smallest under shrubs (2·8 kg m−2 in CG and 3·2 kg m−2 in SN) and forests soils (4·2 kg m−2 in SN). This SOC distribution is explained by the greatest soil depth under agricultural land uses, a common situation across the Mediterranean, where the deepest soils have been cultivated and natural vegetation mostly remains along the marginal sites. Accordingly, strategies to manage SOC stocks in southern Spain will have to acknowledge its high pedodiversity and long history of land use, refusing the adoption of standard global strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The industrial emission of carbon (C) in China in 2000 was about 1 Pg yr−1, which may surpass that of the United States (1ċ84 Pg C) by 2020. China's large land area, similar in size to that of the United States, comprises 124 Mha of cropland, 400 Mha of grazing land and 134 Mha of forestland. Terrestrial C pool of China comprises about 35–60 Pg in the forest and 120–186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Total annual loss by erosion is estimated at 5ċ5 Pg of soil and 15ċ9 Tg of soil organic carbon (SOC). Erosion‐induced emission of C into the atmosphere may be 32–64 Tg yr−1. The SOC pool progressively declined from the 1930s to 1980s in soils of northern China and slightly increased in those of southern China because of change in land use. Management practices that lead to depletion of the SOC stock are cultivation of upland soils, negative nutrient balance in cropland, residue removal, and soil degradation by accelerated soil erosion and salinization and the like. Agricultural practices that enhance the SOC stock include conversion of upland to rice paddies, integrated nutrient management based on liberal use of biosolids and compost, crop rotations that return large quantities of biomass, and conservation‐effective systems. Adoption of recommended management practices can increase SOC concentration in puddled soil, red soil, loess soils, and salt‐affected soils. In addition, soil restoration has a potential to sequester SOC. Total potential of soil C sequestration in China is 105–198 Tg C yr−1 of SOC and 7–138 Tg C yr−1 for soil inorganic carbon (SIC). The accumulative potential of soil C sequestration of 11 Pg at an average rate of 224 Tg yr−1 may be realized by 2050. Soil C sequestration potential can offset about 20 per cent of the annual industrial emissions in China. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Increase in atmospheric concentration of CO2 from 285 parts per million by volume (ppmv) in 1850 to 370 ppm in 2000 is attributed to emissions of 270 ± 30 Pg carbon (C) from fossil fuel combustion and 136 ± 55 Pg C by land‐use change. Present levels of anthropogenic emissions involve 6·3 Pg C by fossil fuel emissions and 1·8 Pg C by land‐use change. Out of the historic loss of terrestrial C pool of 136 ± 55 Pg, 78 ± 12 Pg is due to depletion of soil organic carbon (SOC) pool comprising 26 ± 9 Pg due to accelerated soil erosion. A large proportion of the historic SOC lost can be resequestered by enhancing the SOC pool through converting to an appropriate land use and adopting recommended management practices (RMPs). The strategy is to return biomass to the soil in excess of the mineralization capacity through restoration of degraded/desertified soils and intensification of agricultural and forestry lands. Technological options for agricultural intensification include conservation tillage and residue mulching, integrated nutrient management, crop rotations involving cover crops, practices which enhance the efficiency of water, plant nutrients and energy use, improved pasture and tree species, controlled grazing, and judicious use of inptus. The potential of SOC sequestration is estimated at 1–2 Pg C yr−1 for the world, 0·3–0·6 Pg C yr−1 for Asia, 0·2–0·5 Pg C yr−1 for Africa and 0·1–0·3 Pg C yr−1 for North and Central America and South America, 0·1–0·3 Pg C yr−1 for Europe and 0·1–0·2 Pg C yr−1 for Oceania. Soil C sequestration is a win–win strategy; it enhances productivity, improves environment moderation capacity, and mitigates global warming. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Restoration of degraded soils is a development strategy to reduce desertification, soil erosion and environmental degradation, and alleviate chronic food shortages with great potential in sub‐Saharan Africa (SSA). Further, it has the potential to provide terrestrial sinks of carbon (C) and reduce the rate of enrichment of atmospheric CO2. Soil organic carbon (SOC) contents decrease by 0 to 63 per cent following deforestation. There exists a high potential for increasing SOC through establishment of natural or improved fallow systems (agroforestry) with attainable rates of C sequestration in the range of 0·1 to 5·3 Mg C ha−1 yr−1. Biomass burning significantly reduces SOC in the upper few centimeters of soil, but has little impact below 10 to 20 cm depth. The timing of burning is also important, and periods with large amounts of biomass available generally have the largest losses of SOC. In cultivated areas, the addition of manure in combination with crop residues and no‐till show similar rates of attainable C sequestration (0 to 0·36 Mg C ha−1 yr−1). Attainable rates of SOC sequestration on permanent cropland in SSA under improved cultivation systems (e.g. no‐till) range from 0·2 to 1·5 Tg C yr−1, while attainable rates under fallow systems are 0·4 to 18·5 Tg C yr−1. Fallow systems generally have the highest potential for SOC sequestration in SSA with rates up to 28·5 Tg C yr−1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Large areas in the Upper Tana river catchment, Kenya, have been over‐exploited, resulting in soil erosion, nutrient depletion and loss of soil organic matter (SOM). This study focuses on sections of the catchment earmarked as being most promising for implementing Green Water Credits, an incentive mechanism to help farmers invest in land and soil management activities that affect all fresh water resources at source. Such management practices can also help restore SOM levels towards their natural level. Opportunities to increase soil organic carbon (SOC) stocks, for two broadly defined land use types (croplands and plantation crops, with moderate input levels), are calculated using a simple empirical model, using three scenarios for the proportion of suitable land that may be treated with these practices (low = 40 per cent, medium = 60 per cent, high = 80 per cent). For the medium scenario, corresponding to implementation on ~348 000 ha in the basin, the eco‐technologically possible SOC gains are estimated at 4·8 to 9·3 × 106 tonnes (Mg) CO2 over the next 20 years. Assuming a conservative price of US$10 per tonne CO2‐equivalent on the carbon offset market, this would correspond to ~US$48–93 million over a 20‐year period of sustained green water management. This would imply a projected (potential) payment of some US$7–13 ha−1 to farmers annually; this sum would be in addition to incentives that are being put in place for implementing green water management practices and also in addition to the benefits that farmers would realize from the impact on production of these practices themselves. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Soil organic matter (SOM) changes affect the CO2 atmospheric levels and is a key factor on soil fertility and soil erodibility. Fire affects ecosystems and the soil properties due to heating and post‐fire soil erosion and degradation processes. In order to understand fire effects on soil organic carbon (SOC) balance research was undertaken on a fire‐prone ecosystem: the Mediterranean maquia . The spatial distribution of SOC was measured in a Burnt site 6 months after a wildfire and in a Control site. Samples were collected at two different depths (0–3 and 3–10 cm) and SOC was determined. The results show that 41·8 per cent of the SOC stock was lost. This is due to the removal of the burnt material by surface wash. No significant differences in SOC content were found for the subsurface samples between burnt and control plots. Those results show that ashes and charcoal are transported by runoff downslope and are subsequently deposited in the valley bottom and this is the key process that contributes the burial of SOC after a forest fire. SOC redistribution by water erosion is accelerated after forest fires and contribute to the degradation of soils located at the upper part of the hillslopes but causes the enrichment with SOM of the soils located at the valley bottom. Buried SOC in the bottoms valley terraces will contribute to the sequestration of carbon for longer. Conservation of abandoned terraces is a key policy to avoid land degradation and climate change. Copyright © 2010 John Wiley & Sons Ltd.  相似文献   

12.
Soil organic carbon (SOC) is one of the important measures of soil fertility and sustainability in arable lands. With continuous CO2 flux measurements, this study assessed the SOC decomposition and its environmental controls at both half‐hourly and season‐long scales in a single‐crop rice (Oryza sativa L.) paddy during three fallow periods between 2004 and 2007. Measurements were made on a gray lowland soil sited in eastern Japan using the eddy covariance method. Ecosystem respiration was strongly affected by soil water content measured at 0–0·1 m depth. At 0·5 m3 m− 3 or more of soil water content, the baseline of ecosystem respiration decreased by 50% compared with that at 0·2 m3 m− 3 . The effect was quantified at half‐hourly scale using an empirical multiple regression model, together with the soil surface temperature and the time after residue incorporation. At season‐long scale, net biome production, which is equivalent to the change in the SOC pool during the fallow period, was estimated from the flux and ancillary data at 150 g C m− 2 in 2004–2005, 70 g m− 2 in 2005–2006, and 270 g C m− 2 in 2006–2007. Apparently, as much as 46 to 79% of the soil organic matter incorporated (crop residues, ratoon, and stable manure) was decomposed during the fallow period. Precipitation, or associated soil water content, was important for the carbon balance of the field at season‐long scale because of its large interannual variability and relatively low permeability of the paddy soil. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Many techniques such as the acid hydrolysis – incubation (AHI) method have been developed with the aim of elucidating the inherent complexity of soil organic carbon (SOC). While the utility of the AHI method has been demonstrated, there is no standardized protocol developed for conducting the long-term incubation component of the method. In the current study we evaluated the effects of chamber venting and mechanical headspace mixing on soil CO2 flux rates and the resultant size and mean residence time of three operationally defined pools of SOC obtained via the AHI method. Continuous chamber venting resulted in an estimate of the readily mineralized carbon pool that was 2.3 times larger and turned over 2.9 times slower than the same pool estimated using periodically vented chambers. These differences were primarily attributed to the suppression of CO2 flux in periodically vented chambers as a result of high internal CO2 concentrations, and a concomitantly reduced diffusivity gradient. Prior to venting the periodically-vented chambers, CO2 flux rates averaged 2.3 μg C (g soil)−1 d−1, while CO2 flux rates following venting averaged 222.6 μg C (g soil)−1 d−1. We did not detect internal stratification of CO2 suggesting that mechanical headspace mixing is unnecessary in incubation chambers ranging from 1 to 2 L. A standardized protocol is called for that isolates SOC fractions that are useful in hypothesis testing, while simultaneously seeking to minimize laboratory artifacts.  相似文献   

14.
Soil organic carbon (SOC) pools are important for maintaining soil productivity and reducing the net CO2 loading of the atmosphere. An 18‐year old long‐term field experiment involving pearl millet‐cluster bean‐castor sequence was conducted on an Entisol in western India to examine the effects of chemical fertilizers and manuring on carbon pools in relation to crop productivity and C sequestration. The data showed that even the addition of 33.5 Mg ha−1 C inputs through crop residues as well as farm yard manure could not compensate the SOC depletion by oxidation and resulted in the net loss of 4.4 Mg C ha−1 in 18 years. The loss of SOC stock in the control was 12 Mg C ha−1. Conjunctive use of chemical fertilizers along with farm yard manure produced higher agronomic yields and reduced the rate of SOC depletion. The higher average seed yields of pearl millet (809 kg ha−1), cluster bean (576), and castor (827) over six cropping seasons were obtained through integrated use of fertilizers and manure. For every Mg increase in profile SOC stock, there was an overall increase of 0.46 Mg of crop yield, comprising increase in individual yield of pearl millet (0.17 Mg ha−1 y−1 Mg−1 SOC), cluster bean (0.14) and castor (0.15). The magnitude of SOC build up was proportional to the C inputs. Carbon pools were significantly correlated with SOC, which increased with application of organic amendments. Threshold C input of 3.3 Mg C ha−1 y−1 was needed to maintain the SOC stock even at the low antecedent level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Pyrogenic carbon (C) is produced by incomplete combustion of fuels including organic matter (OM). Certain ranges in the combustion continuum are termed ‘black carbon' (BC). Because of its assumed persistence, surface soils in large parts of the world contain BC with up to 80% of surface soil organic C (SOC) stocks and up to 32% of subsoil SOC in agricultural soils consisting of BC. High SOC stocks and high levels of soil fertility in some ancient soils containing charcoal (e.g., terra preta de Índio) have recently been used as strategies for soil applications of biochar, an engineered BC material similar to charcoal but with the purposeful use as a soil conditioner (1) to mitigate increases in atmospheric carbon dioxide (CO2) by SOC sequestration and (2) to enhance soil fertility. However, effects of biochar on soils and crop productivity cannot be generalized as they are biochar‐, plant‐ and site‐specific. For example, the largest potential increases in crop yields were reported in areas with highly weathered soils, such as those characterizing much of the humid tropics. Soils of high inherent fertility, characterizing much of the world's important agricultural areas, appear to be less likely to benefit from biochar. It has been hypothesized that both liming and aggregating/moistening effects of biochar improved crop productivity. Meta‐analyses of biochar effects on SOC sequestration have not yet been reported. To effectively mitigate climate change by SOC sequestration, a net removal of C and storage in soil relative to atmospheric CO2 must occur and persist for several hundred years to a few millennia. At deeper soil depths, SOC is characterized by long turnover times, enhanced stabilization, and less vulnerability to loss by decomposition and erosion. In fact, some studies have reported preferential long‐term accumulation of BC at deeper depths. Thus, it is hypothesized that surface applied biochar‐C (1) must be translocated to subsoil layers and (2) result in deepening of SOC distribution for a notable contribution to climate change mitigation. Detailed studies are needed to understand how surface‐applied biochar can move to deeper soil depths, and how its application affects organic C input to deeper soil depths. Based on this knowledge, biochar systems for climate change mitigation through SOC sequestration can be designed. It is critically important to identify mechanisms underlying the sometimes observed negative effects of biochar application on biomass, yield and SOC as biochar may persist in soils for long periods of time as well as the impacts on downstream environments and the net climate impact when biochar particles become airborne.  相似文献   

16.
Annual horticultural systems rely on frequent and intensive tillage to prepare beds, manage weeds and control insects. But this practice reduces soil organic carbon (SOC) through accelerated CO2 emission. Crop residue incorporation could counteract this loss. We investigated whether vegetable systems could be made more resilient by including a high‐residue grain crop such as sweet corn (Zea mays L. var. rugosa), in the rotation through the use of conventional (no residue, no soil sieving) and organic (residue incorporated and soil sieved) soil management scenarios. We evaluated short‐term emission of CO2‐C and soil C content in incubated Chromosol and Vertosol soils (Australian Classification) with and without sieving (simulated tillage) or the incorporation of ground sweet corn residue. Residue treatment emitted 2.3 times more CO2‐C compared to the no‐residue treatment, and furthermore, sieved soil emitted 1.5 times more CO2‐C than the unsieved across the two soil types. The residue incorporation had a greater effect on CO2‐C flux than simulated tillage, suggesting that C availability and form can be more important than physical disturbance in cropping soils. The organic scenario (with residue and sieved) emitted more CO2‐C, but had 13% more SOC compared with the conventional scenario (without residue and unsieved), indicating that organic systems may retain more SOC than a conventional system. The SOC lost by soil disturbance was more than offset by the incorporation of residue in the laboratory conditions. Therefore, the possible SOC loss by tillage for weed control under organic management may be offset by organic residue input.  相似文献   

17.
Agricultural soils are considered to have great potential for carbon sequestration through land‐use change. In this paper, we compiled data from the literatures and studied the change in soil organic carbon (SOC) following the ‘Grain‐for‐Green’ Programme (GGP, i.e., conversion from farmland to plantation, secondary forests and grasslands) in China. The results showed that SOC stocks accumulated at an average rate of 36·67 g m−2 y−1 in the top 20 cm with large variation. The current SOC storage could be estimated using the initial SOC stock and year since land use transformation (Adjusted R2 = 0·805, p = 0·000). After land use change, SOC stocks decreased during the initial 4–5 years, followed by an increase after above ground vegetation restoration. Annual average precipitation and initial SOC stocks had a significant effect (p < 0·05) on the rate of change in SOC, while no significant effects were observed between plantation and natural regeneration (p > 0·05). The ongoing ‘Grain‐for‐Green’ project might make significant contribution to China's carbon sequestration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Long‐term monitoring is needed for direct assessment of soil organic carbon (SOC), soil, and nutrient loss by water erosion on a watershed scale. However, labor and capital requirements preclude implementation of such monitoring at many locations representing principal soils and ecoregions. These considerations warrant the development of diagnostic models to assess erosional SOC loss from more readily obtained data. The same factors affect transport of SOC and mineral soil fraction, suggesting that given the gain or loss of soil minerals, it may be possible to estimate the SOC flux from the data on erosion and deposition. One possible approach to parameterization is the use of the revised universal soil loss equation (RUSLE) to predict soil loss and this multiplied by the per cent of SOC in the near‐surface soil and an enrichment factor to obtain SOC loss. The data obtained from two watersheds in Ohio indicate that a power law relationship between soil loss and SOC loss may be more appropriate. When measured SOC loss from individual events over a 12‐year period was plotted against measured soil loss the data were logarithmically linear (R2=0·75) with a slope (or exponent in the power law) slightly less than would be expected for a RUSLE type model. The stable aggregate size distribution in runoff from a plot scale may be used to estimate the fate of size pools of SOC by comparing size distributions in the runoff plot scale and river watershed scales. Based upon this comparison, a minimum of 73 per cent of material from runoff plots is deposited on the landscape and the most stable carbon pool is lost from watershed soils to aquatic ecosystems and atmospheric carbon dioxide. Implicit in these models is the supposition that water stable soil aggregates and primary particles can be viewed as a tracer for SOC. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Changes in soil organic carbon (SOC) storage in agricultural land are an important part of the Land Use, Land-Use Change and Forestry component of national greenhouse gas emission inventories. Furthermore, as climate mitigation strategies and incentives for carbon farming are being developed, accurate estimates of SOC stocks are essential to verify any management-induced changes in SOC. Based on agricultural mineral soils in the Danish soil-monitoring network, we analysed management effects on SOC stocks using data from the two most recent surveys (2009 and 2019). Between 2009 and 2019, the average increase in SOC stock was 1.2 Mg C ha−1 for 0–50 cm despite a loss of 1.2 Mg C ha−1 from the topsoil (0–25 cm), stressing the importance of including deeper soil layers in soil-monitoring networks. Comparing all four national surveys (1986, 1997, 2009, 2019), the mean SOC stock of mineral soils in Denmark appears stable. The change in SOC stock between 2009 and 2019 was analysed in detail in relation to management practices as reported by farmers. We found that the effects of single management factors were difficult to isolate from co-varying factors including soil parameters and that the use of farm management data to explain changes in SOC stocks observed in soil-monitoring networks appears limited. Uncertainty in SOC stock estimates also arises from low sampling frequency and statistical challenges related to regression to the mean. However, repeated stock measurements at decadal intervals still represent a benchmark for the overall development in regional and national SOC storage, as affected by actual farm management.  相似文献   

20.
Like straw, biochar incorporation can influence soil microorganisms and enzyme activities and soil carbon(C) responses; however,few studies have compared the various effects of straw and biochar and the underlying mechanisms. An experiment was performed to study the changes in soil respiration(SR) and soil organic C(SOC) fluxes in response to the incorporation of three kinds of straw(reed, smooth cordgrass, and rice) and their pyrolyzed products(biochars) at Chongming Island, China. In addition, the microbial activity and community structure of some amended soils were also analyzed to clarify the mechanisms of these responses. The results showed that all biochar incorporation(BC) induced lower SR than the corresponding unpyrolyzed straw incorporation(ST), and the average SR in the soils following BC and ST during the experimental periods was 21.69 and 65.32 μmol CO_2 m~(-2)s~(-1), respectively.Furthermore, the average SOC content was 16.97 g kg~(-1) following BC, which was higher than that(13.71 g kg~(-1)) following ST,indicating that compared to ST, BC was a low-C strategy, even after accounting for the C loss during biochar production. Among the BC treatments, reed-BC induced the lowest SR(17.04 μmol CO_2 m~(-2)s~(-1)), whereas smooth cordgrass-BC induced the highest SR(27.02 μmol CO_2 m~(-2)s~(-1)). Furthermore, in contrast with ST, BC significantly increased the abundance of some bacteria with poorer mineralization or better humification ability, which led to lower SR. The lower easily oxidizable C(EOC) and higher total C contents of biochars induced lower SR and higher SOC in the soil following BC compared to that following ST. Among the BC treatments,the higher total nitrogen content of rice biochar led to significantly higher soil microbial biomass, and the lower EOC content of reed biochar led to lower soil microbial activity and SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号