首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elymus repens (L.) Gould and Agrostis gigantea Roth. raised from rhizomes both responded to reduced light intensity by increased stem length, while the number of aerial shoots was reduced. The weight of the aerial parts was not influenced by a 50% reduction of the daylight intensity, but a further reduction of light caused a significant decrease in weight. The production of new rhizomes was more influenced by shading than were the aerial shoots. The consequence was an increase in the shoot/rhizome ratio. The food reserve per bud measured as inter-node weight in E. repens and A. gigantea was reduced only with intensive shading, and the vitality of the rhizomes appeared independent of light intensity. Intensive shading in early as compared to late summer caused a reduction in the number and weight of aerial shoots, but not in the weight of new rhizomes. Light intensities equal to those found in a spring wheat crop allowed more E. repens growth than light intensities equal to those in a spring oat crop. E. repens raised from seeds and grown at light intensities equal to those found in a cereal crop, showed insignificant rhizome production.  相似文献   

2.
Summary. Tracer studies using single drops of solutions containing 3–amino-1,2,4–triazole-5–14C (aminotriazole-14C) or 2,2–dichloropropionic acid-2–14C (datapon-14C) revealed that in couch plants (Agropyron repens (L.) Beauv.) growing under field conditions in the autumn and at the stage where the aerial shoots were 40–50 cm long, both compounds moved in both symplast and apoplast. Dalapon was less mobile in the symplast than aminotriazole and only negligible amounts of dalapon were translocated to the rhizomes. The nodes of the treated shoots appeared to act as barriers to translocation, a phenomenon more pronounced for dalapon than for aminotriazole.
Application to a basal green leaf led to a more uniform distribution of the compounds within plants and rhizomes than when the application was made to the youngest fully-expanded leaf.
In couch plants with aerial shoots 10–15 cm long treated in the stubble, the distribution of both aminotriazole and dalapon was mainly restricted to the treated shoots. Even 15 days after application only trace amounts of radioactivity could be found in the rhizomes and untreated shoots.  相似文献   

3.
D. COUPLAND 《Weed Research》1983,23(6):347-355
The effects of light, température and humidity on the performance and translocation of glyphosate in Elymus repens (L.) Gould (=Agropyron repens L. (Beauv.)), during the period of 48 h after treatment, were studied in controlled-environment cabinets. Increases in the levels of all three factors resulted in increases in herbicide performance. In general, these differences were statistically significant at all treatment periods except the longest when almost full control was achieved. The results highlight the important influence of environmental factors on herbicide performance during the short-term, post-spraying period. The application of 14C-labelled glyphosate to the adaxial leaf-sheath surface resulted in very rapid uptake and was used as a method of treating plants to study herbicide translocation under different environmental conditions. Increased light levels and temperatures enhanced basipetal translocation to the crowns and rhizomes but increased humidity had no significant effect with this form of application.  相似文献   

4.
Experiments were conducted in a growth cabinet to investigate the absorption and translocation of 14C-3, 6-dichloropicolinic acid by Cirsium arvense (L.) Scop. (Canada thistle, creeping thistle), a sensitive species. Applications were made, either to the middle four leaves of 12-cm-tall vegetative plants grown under low (40%) and/or high (>95%) relative humidity (r.h.), or to four upper or lower leaves of 30-cm-tall flowering plants grown under low r.h. Following application to vegetative plants, absorption and translocation of 14C-3,6-dichloropicolinic acid was rapid and was approximately doubled by high r.h. High r.h. increased the amount of radioactivity retained by the treated leaves or translocated to the shoots but did not affect greatly the amount retained in the roots. The herbicide was highly mobile, with over half of that absorbed, translocated out of the treated leaves after two days. The apex accumulated most of the radioactivity, while approximately 8% was recovered from the roots. The absorption and translocation patterns were similar to those reported in the literature for picloram in C. arvense. Absorption of 3,6-dichloropicolinic acid was greater in vegetative than in flowering C. arvense plants, and placement of herbicide on lower leaves tended to decrease the amount of radioactivity recovered from shoot apex and increase the amount recovered from the roots. Approximately 15% of the applied radioactivity could not be recovered from treated plants by 2 days after treatment.  相似文献   

5.
Post-emergence applications of glyphosate [N-(phosphonomethyl)glycine] have been shown not to eradicate purple nutsedge (Cyperus rotundus L.) in the field. It was not known if this was due to failure to control emerged plants or if dormant tubers produced new plants after application. Studies with individual plants were conducted in screenhouse facilities to determine the effects of glyphosate rate, time for translocation, area of foliage treated, and shade on the sprouting ability of tubers attached to treated plants. Rates of 1.5–2.0 kg/ha glyphosate inhibited tuber sprouting; 72 h were required for complete translocation at 1.0 kg/ha whereas 36 h were sufficient at 2.0 kg/ha. Treating less than all of the foliage reduced foliar control and increased tuber sprouting. Shading treated plants reduced control of the foliage but did not affect glyphosate translocation to the tubers. These studies showed that glyphosate kills C. rotundus foliage and the tubers attached to treated plants. Therefore, regrowth after glyphosate application under field conditions is due to dormant tubers which sprout after treatment.  相似文献   

6.
The pattern and extent of 14C-glyphosate [N-(phosphonomethyl)glycine] translocation from the treated leaf and metabolism of 14C-glyphosate were studied in field bindweed (Convolvulus arvensis L.), hedge bindweed (Convolvulus sepium L.). Canada thistle [Cirsium arvense (L.) Scop.] tall morning glory [lpomoea purpurea (L.) Roth.] and wild buckwheat (Polygonum convolvulus L.). 14C was translocated throughout the plants within 3 days with accumulation in the meristematic tips of the roots and shoots evident. Cross and longitudinal sections of stems and roots showed that the 14C was localized in the phloem. Field bindweed translocated 3–5% of the applied 14C from the treated leaf, hedge bindweed 21.6%, Canada thistle 7.8%, tall morningglory 6.5%, and wild buckwheat 5%. Field bindweed, Canada thistle, and tall morningglory metabolized the parent glyphosate to aminomethylphosphonic acid to a limited extent. This metabolite made up less than 15% of the total 14C. Of the total 14C applied to excised leaves, 50% had disappeared within 25 days.  相似文献   

7.
The metabolism of [14C]asulam (methyl 4-aminophenylsulphonylcarbamate), [14C] aminotriazole (1H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail). Following application of the test herbicides (4mg?0.3 °Ci herbicide/shoot) to the shoots of 2-year-old pot-grown plants, the total recovery of 14C-label after 1 week and 8 weeks was high for all three herbicides (>80-0% of applied radioactivity). Asulam was persistent (>69-7% of recovered radioactivity) in both shoots and rhizomes. Sulphanilamide, a hydrolysis product of asulam, accounted for the remainder of the recovered radioactivity. Aminotriazole showed evidence of conjugation in shoots and rhizomes. The principal 14C-labelled component in shoots was composed of high proportions of aminotriazole (>76-3%) together with the metabolites: X (ninhydrin positive), β-(3-amino-1,2,4-triazolyl-1-)α-alanine, Y (diazotization positive) and various unidentified compounds. Rhizomes generally contained lower proportions of intact aminotriazole (>59.4%) together with the metabolites X,Y and unidentified compounds. The proportion of aminotriazole did not decrease with time in shoots or rhizomes; however, the ratio of metabolite X: Y moved in favour of Y as the interval after treatment increased. Glyphosate was extensively metabolised in shoots and rhizomes to yield aminomethylphosphonic acid (AMPA) and various unidentified compounds. Differential metabolism appears to be one of the factors which may govern the persistence and toxicity of the test herbicides in E. arvense.  相似文献   

8.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

9.
2-Chloroethylphosphonic acid applied to foliage or soil released dormant buds from apical dominance in aerial shoots and rhizomes of Agropyron repens. The aerial shoots had scale-like leaves and shortened internodes with adventitious roots at the nodes. The treated plants had a dwarf appearance and had increased peroxidase activity.  相似文献   

10.
在人工气候室培养空心莲子草,植株经草甘膦与乙烯利混合处理后,测定对植株的抑制作用和草甘膦的吸收与传导量。结果表明,加入乙烯利(100mg·L~(-1))后草甘膦(300mg·L~(-1))对地下根茎抑制率比对照提高了13.6个百分点。植株经乙烯利喷雾处理后,基芽、地下茎和根系中~(14)C-草甘膦含量分别是对照的3.56、1.75和2.35倍。放射性成像图显示,植株地下茎与根系中~(14)C-草甘膦传导量明显高于对照。  相似文献   

11.
Various control strategies for Achillea millefolium L. (yarrow) were investigated in a dense stand of the weed at Lincoln College in 1977–1978. In early spring plots were either rotary cultivated or left undisturbed. In late spring, plots of both previous treatments were either left undisturbed, rotary cultivated or sprayed with glyphosate at 1·5 kg ha?1. The whole experiment was rotary cultivated twice 1 week later and sown with Hordeum vulgure L. cv. Zephyr (barley) at 144 kg seed ha?1. MCPA + dicamba at 0·9+0·15 kg ha?1 was applied to half of each plot when the second node was detectable (Zadok 32). Rotary cultivation and glyphosate both substantially reduced the regrowth of A. millefolium but glyphosate reduced regrowth by a greater proportion when applied to undisturbed plants than when applied to plants regenerating after cultivation. Both gave a more than 95% reduction compared to the control (rotary cultivation only at sowing time) in the amount of A. millefolium present in the barley stubble in the autumn. MCPA + dicamba caused seedling mortality but did not affect the numbers of primary shoots from rhizome fragments. The grain yield of the barley increased from 2·91 t ha?1 when A. millefolium was not controlled to 4·23 t ha?1 with good control. The barley yield appeared to be restricted by competition from regenerating A. millefolium and by a nitrogen deficiency induced in some regimes by nitrogen immobilization in decaying rhizomes.  相似文献   

12.
The uptake, movement and metabolism of fluroxypyr* is compared in two contrasting weed species, Stellaria media (susceptible) and Viola arvensis (moderately resistant). Similar rates of uptake occurred in both species, with a rapid cuticular uptake of 50% of that applied within 4 h. Total uptake by the underlying leaf tissue reached 66.6% and 70.8% in S. media and V. arvensis after 7 days. In translocation studies, in which 14C-fluroxypyr was applied to previously sprayed plants, 5.1% of applied 14C-activity was translocated from the treated leaves of S. media after 1 day, which increased to 42.2% after 7 days, recovered mainly from the stem tissue. In V. arvensis translocation was similar after 24 h however, after 7 days over 40% of applied 14C-activity remained in the treated leaves and only 9.7% was translocated, mainly to the developing leaves and apical tissue. 14C-activity extracted from the cuticle was the methylheptyl ester of fluroxypyr in both species. In the treated leaves and apical tissue, 14C-activity was the free acid of fluroxypyr and polar conjugates with a significantly greater proportion of the acid in S. media. It is concluded that the resistance or V. arvensis is partially due to reduced translocation and greater conjugation than in the susceptible S. media.  相似文献   

13.
Glyphosate has been associated with control failures for Spermacoce verticillata in some Brazilian States. The objective of this work was to evaluate and determine the possible causes of this and propose alternative herbicides to use. Glyphosate was applied at three plant stages of development (2–4 leaves, 4–6 leaves and full bloom) where foliar absorption and translocation of glyphosate to various plants parts and time were analysed using the 14C technique. Data were submitted to nonlinear regressions and analysis of variance, where means were compared by a Tukey test at 5% probability. Plant control by the application of different herbicides (19) in the same three stages of development of weed was evaluated. Twenty‐one days after herbicide application, control was visually evaluated and data analysed and means were compared. Due to absorption and/or translocation problems, S. verticillata plants were not controlled by glyphosate. Plants with 4–6 leaves showed lower absorption and translocation of the herbicide to the leaf/root regions compared with plants at the beginning of their development. Plants at full bloom showed lower translocation of the herbicide to the root. In addition to the application of glyphosate at early stages of development, the application of paraquat, flumioxazin and mixtures of glyphosate with flumioxazin or cloransulam is recommended. Late applications could result in poor control, principally if glyphosate is used. Therefore, early applications are strongly recommended for control of this species.  相似文献   

14.
Glyphosate at 2 kg/ha was more effective in reducing regrowth of purple nutsedge (Cyperus rotundus L.) scapes at 90% than at 50% relative humidity (r.h.), and more effective at ?2 bars than at ?11 bars of plant water potential. Regrowth of treated plants subjected to water potentials of ?1 to ?8 bars was reduced 54–60% while at ?11 bars growth inhibition was only 34%. A time interval of as little as 8 h between application and excision was sufficient to give 47% reduction in regrowth at 90% r.h. None of the treated plants, except those clipped immediately after application, produced new shoots from the basal bulb, while all the untreated control plants produced one or more new shoots. Experiments using 14C-glyphosate substantiated these results. Three times more 14C-label was translocated into the underground parts of nutsedge at 90% than at 50% r.h. Twice as much translocated at ?2 bars than at ?11 bars of water potential.  相似文献   

15.
BACKGROUND: In a large cropping area of northern Argentina, Sorghum halepense (Johnsongrass) has evolved towards glyphosate resistance. This study aimed to determine the molecular and biochemical basis conferring glyphosate resistance in this species. Experiments were conducted to assess target EPSPS gene sequences and 14C‐glyphosate leaf absorption and translocation to meristematic tissues. RESULTS: Individuals of all resistant (R) accessions exhibited significantly less glyphosate translocation to root (11% versus 29%) and stem (9% versus 26%) meristems when compared with susceptible (S) plants. A notably higher proportion of the applied glyphosate remained in the treated leaves of R plants (63%) than in the treated leaves of S plants (27%). In addition, individuals of S. halepense accession R2 consistently showed lower glyphosate absorption rates in both adaxial (10–20%) and abaxial (20–25%) leaf surfaces compared with S plants. No glyphosate resistance endowing mutations in the EPSPS gene at Pro‐101–106 residues were found in any of the evaluated R accessions. CONCLUSION: The results of the present investigation indicate that reduced glyphosate translocation to meristems is the primary mechanism endowing glyphosate resistance in S. halepense from cropping fields in Argentina. To a lesser extent, reduced glyphosate leaf uptake has also been shown to be involved in glyphosate‐resistant S. halepense . Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Weed populations with resistance to glyphosate have evolved over the last 7 years, since the discovery of the first glyphosate‐resistant populations of Lolium rigidum in Australia. Four populations of L. rigidum from cropping, horticultural and viticultural areas in New South Wales and South Australia were tested for resistance to glyphosate by dose–response experiments. All populations required considerably more glyphosate to achieve 50% control compared with a known susceptible population, indicating they were resistant to glyphosate. Translocation of glyphosate within these resistant populations was examined by following the movement of radiolabelled glyphosate applied to a mature leaf. All resistant plants translocated significantly more herbicide to the tip of the treated leaf than did susceptible plants. Susceptible plants translocated twice as much herbicide to the stem meristematic portion of the plant compared with resistant plants. These different translocation patterns suggest an association between glyphosate resistance in L. rigidum and the ability of glyphosate to accumulate in the shoot meristem.  相似文献   

17.
Summary. Small sprigs of Cynodon dactylon (L.) Pers., were planted and grown without competition from weeds and crops for 2 1/2 years. The plant spread by means of above-ground creeping stolons and subterranean rhizomes which could also emerge as aerial shoots, producing in their turn new stolons and rhizomes. Initially there was linear extension of stolons and rhizomes, following which gaps in the sod were filled by stolon branching and new shoots. There was no preferential direction of stolon elongation and established sods developed an approximately circular shape and expanded concentrically. The rate of increase in sod area was similar in both years of observation but radial extension was smaller in the second year than in young plants. The mean sod area was 25 m2 after 2½ years of growth, and mean monthly area increment was 0·9 m2. Growth almost stopped in the cold season and exceeded 2 m2 per month in the summer. The plants had extended up to 3·9 m from the plant centre after 2 1/2 years. The number of flowering culms per sod, produced only in the warm season, was directly proportional to sod area; seeds were infertile in the Newe Ya'ar area. After 2½ years of growth about 70% of the rhizome dry weight was present in the upper 20 cm of soil. Few rhizomes penetrated deeper than 40 cm. More than 60% of the rhizomes were present within 1 m radius of the plant centre and 90% were present within 2 m radius. Croissance spatiale de Cynodon dactylon (L.) Pers.  相似文献   

18.
Glyphosate is one of the most commonly used broad‐spectrum herbicides over the last 40 years. Due to the widespread adoption of glyphosate‐resistant (GR) crop technology, especially corn, cotton and soybean, several weed species have evolved resistance to this herbicide. Research was conducted to confirm and characterize the magnitude and mechanism of glyphosate resistance in two GR common ragweed ( A mbrosia artemisiifolia L.) biotypes from Mississippi, USA. A glyphosate‐susceptible (GS) biotype was included for comparison. The effective glyphosate dose to reduce the growth of the treated plants by 50% for the GR1, GR2 and GS biotypes was 0.58, 0.46 and 0.11 kg ae ha?1, respectively, indicating that the level of resistance was five and fourfold that of the GS biotype for GR1 and GR2, respectively. Studies using 14 C‐glyphosate have not indicated any difference in its absorption between the biotypes, but the GR1 and GR2 biotypes translocated more 14 C‐glyphosate, compared to the GS biotype. This difference in translocation within resistant biotypes is unique. There was no amino acid substitution at codon 106 that was detected by the 5‐enolpyruvylshikimate‐3‐phosphate synthase gene sequence analysis of the resistant and susceptible biotypes. Therefore, the mechanism of resistance to glyphosate in common ragweed biotypes from Mississippi is not related to a target site mutation or reduced absorption and/or translocation of glyphosate.  相似文献   

19.
Glyphosate is commonly used in a variety of weed control scenarios and plants respond biochemically by continuing to attempt to push carbon through the shikimate pathway. The result is an accumulation of shikimate in sensitive plants in the days immediately after application. This research determined shikimate accumulation dynamics in nine problematic plant species from 0 to 6 days after treatment (DAT). Ambrosia artemisiifolia, Trifolium repens and Conyza canadensis showed rising concentrations through 6 DAT to >4000 mg L?1. Chenopodium album, Xanthium strumarium and Urochloa platyphylla showed concentrations levelling off to a constant of about 2000 mg L?1. Ambrosia trifida, Amaranthus palmeri and Polygonum pensylvanicum generally showed lower levels of shikimate accumulation and concentrations were decreasing after 3 DAT. No apparent relationships were evident between shikimate accumulation pattern and plant growth rate or speed of glyphosate activity. There also appeared to be no pattern in the shikimate accumulation trends that would allow for an informed decision as to which of these species would be most likely to develop glyphosate resistance. Shikimate concentrations were in agreement between field and glasshouse conditions for C. canadensis, but did not agree with those from A. palmeri.  相似文献   

20.
Resistance to glyphosate and paraquat has evolved in some populations of Conyza spp. from California, USA. This study evaluated whether herbicide absorption and translocation were involved in the mechanism of resistance to both herbicides. Three lines of each species were used: glyphosate‐paraquat‐susceptible (GPS), glyphosate‐resistant (GR) and glyphosate‐paraquat‐resistant (GPR). Radiolabelled herbicide was applied to a fully expanded leaf, and absorption and movement out of the treated leaf were monitored for up to 24 h for paraquat and 72 h for glyphosate. Plants treated with paraquat were incubated in darkness for the first 16 h and then subjected to light conditions. More glyphosate was absorbed in C. bonariensis (52.9–58.3%) compared with C. canadensis (28.5–37.6%), but no differences in absorption were observed among lines within a species. However, in both species, the GR and GPR lines translocated less glyphosate out of the treated leaf when compared with their respective GPS lines. Paraquat absorption was similar among lines and across species (71.3–77.6%). Only a fraction of paraquat was translocated in the GPR lines (3% or less) when compared with their respective GPS or GR lines (20% or more) in both species. Taken together, these results indicate that reduced translocation is involved in the mechanism of resistance to glyphosate and paraquat in C. bonariensis and C. canadensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号