首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Carbon isotope discrimination (Δ) has been proposed as physiological criterion to select C3 crops for yield and water use efficiency. The relationships between carbon isotope discrimination (Δ), water use efficiency for grain and biomass production (WUEG and WUEB, respectively) and plant and leaf traits were examined in 20 Iranian wheat genotypes including einkorn wheat (Triticum monococcum L. subsp. monococcum) accessions, durum wheat (T. turgidum L. subsp. durum (Desf.) Husn.) landraces and bread wheat (T. aestivum L. subsp. aestivum) landraces and improved cultivars, grown in pots under well-watered conditions. Carbon isotope discrimination was higher in diploid than in hexaploid and tetraploid wheats and was negatively associated with grain yield across species as well as within bread wheat. It was also positively correlated to stomatal frequency. The highest WUEG and grain yield were noted in bread wheat and the lowest in einkorn wheat. Einkorn and bread wheat had higher WUEB and biomass than durum wheat. WUEG and WUEB were significantly negatively associated to Δ across species as well as within bread and durum wheat. The variation for WUEG was mainly driven by the variation for harvest index across species and by the variation for Δ within species. The quantity of water extracted by the crop, that was closely correlated to root mass, poorly influenced WUEG. Environmental conditions and genetic variation for water use efficiency related traits appear to highly determine the relationships between WUEG and its different components (water consumed, transpiration efficiency and carbon partitioning).  相似文献   

2.
Improved nitrogen use efficiency would be beneficial to agroecosystem sustainability in the northern Great Plains of the USA. The most common rotation in the northern Great Plains is fallow–spring wheat. Tillage during fallow periods controls weeds, which otherwise would use substantial amounts of water and available nitrogen, decreasing the efficiency of fallow. Chemical fallow and zero tillage systems improve soil water conservation, and may improve nitrogen availability to subsequent crops. We conducted a field trial from 1998 through 2003 comparing nitrogen uptake and nitrogen use efficiency of crops in nine rotations under two tillage systems, conventional and no-till. All rotations included spring wheat, two rotations included field pea, while lentil, chickpea, yellow mustard, sunflower, and safflower were present in single rotations with wheat. Growing season precipitation was below average in 3 of 4 years, resulting in substantial drought stress to crops not following fallow. In general, rotation had a greater influence on spring wheat nitrogen accumulation and use efficiency than did tillage system. Spring wheat following fallow had substantially higher N accumulation in seed and biomass, N harvest index, and superior nitrogen use efficiency than wheat following pea, lentil, chickpea, yellow mustard, or wheat. Preplant nitrate-N varied widely among years and rotations, but overall, conventional tillage resulted in 9 kg ha−1 more nitrate-N (0–60 cm) for spring wheat than did zero tillage. However, zero tillage spring wheat averaged 11 kg ha−1 more N in biomass than wheat in conventional tillage. Nitrogen accumulation in pea seed, 45 kg ha−1, was superior to that of all alternate crops and spring wheat, 17 and 23 kg ha−1, respectively. Chickpea, lentil, yellow mustard, safflower, and sunflower did not perform well and were not adapted to this region during periods of below average precipitation. During periods of drought, field pea and wheat following fallow had greater nitrogen use efficiency than recropped wheat or other pulse and oilseed crops.  相似文献   

3.
Low organic matter, poor fertility and erosion are common features of rain‐fed Alfisols in southern India. Build‐up of organic matter is crucial to maintain sustainable production on these soils. The possibility of on‐farm generation of legume biomass [horsegram; Macrotyloma uniflorum (Lam.) Verdc.] by using off‐season rainfall was examined in two field experiments involving sorghum and sunflower from 1994 to 2003. The effects of this incorporation were assessed on crop yields and soil properties for 10 years together with fertilizer application. Horsegram biomass ranging from 3.03–4.28 t ha?1 year?1 (fresh weight) was produced and incorporated in situ under different levels of fertilizer application. Annual incorporation improved the soil properties and fertility status of the soil, which resulted in improved yields of test crops. With biomass incorporation, mean organic carbon content improved by 24% over fallow. Microbial biomass carbon improved by 28% at site I. Long‐term biomass incorporation and fertilizer application resulted in the build‐up of soil nutrients compared with the fallow plots. Application of N and P alone resulted in a negative balance of soil K. A time‐scale analysis of yields showed that incorporation together with fertilizer application maintained a stable yield trend over a 10‐year period in sorghum, whereas fertilizer application alone showed a declining trend. At the end of 10 years of incorporation, the increase in grain yield because of incorporation was 28 and 18%, respectively, in sorghum and sunflower over fallow when no fertilizers were applied to rainy season crops. The incorporation effect was even larger in plots receiving fertilizer. The growing and incorporation of a post‐rainy season legume crop is a low‐cost simple practice that even small and marginal farmers can adopt in semi‐arid regions of the country. Widespread adoption of this practice, at least in alternate years, can restore the productivity of degraded soils and improve crop yields.  相似文献   

4.
Abstract

The large variation in phosphorus acquisition efficiency of different crops provides opportunities for screening crop species that perform well on low phosphorus (P) soil. To explain the differences in P efficiency of winter maize (Zea mays L.), wheat (Triticum aestivum L.), and chickpea (Cicer arietinum L.), a green house pot experiment was conducted by using P‐deficient Typic ustochrept loamy sand soil (0.5 M NaHCO3‐extractable P 4.9 mg kg?1, pH 7.5, and organic carbon 2.7 g kg?1) treated with 0, 30, and 60 mg P kg?1 soil. Under P deficiency conditions, winter maize produced 76% of its maximum shoot dry weight (SDW) with 0.2% P in shoot, whereas chickpea and wheat produced about 30% of their maximum SDW with more than 0.25% P in shoot. Root length (RL) of winter maize, wheat, and chickpea were 83, 48, and 19% of their maximum RL, respectively. Considering relative shoot yield as a measure of efficiency, winter maize was more P efficient than wheat and chickpea. Winter maize had lower RL/SDW ratio than that of wheat, but it was more P efficient because it could maintain 2.2 times higher P influx even under P deficiency conditions. In addition, winter maize had low internal P requirement and 3.3 times higher shoot demand (i.e., higher amount of shoot produced per cm of root per second). Even though chickpea had 1.2 times higher P influx than winter maize, it was less P efficient because of few roots (i.e., less RL per unit SDW). Nutrient uptake model (NST 3.0) calculations satisfactorily predicted P influxes by all the three crops under sufficient P supply conditions (CLi 48 µM), and the calculated values of P influx were 81–99% of the measured values. However, in no‐P treatment (CLi 3.9 µM), under prediction of measured P influx indicated the importance of root exudates and/or mycorrhizae that increase P solubility in the rhizosphere. Sensitivity analysis showed that in low P soils, the initial soil solution P concentration (CLi) was the most sensitive factor controlling P influx in all the three crops.  相似文献   

5.
Sustainable agricultural practices are needed to improve food security and support livelihoods in West Africa, where soil nutrient deficiencies and rainfed production systems prevail. The objective of this study was to assess the productivity and nitrogen (N) and phosphorus (P) use efficiencies of three dominant crops (maize, sorghum, and cotton) under different soil management strategies in the dry savanna of northern Benin. Data were collected for each crop in experiments with (1) an un‐amended soil as control, (2) a low use of external inputs, (3) an integrated soil–crop management practice, and (4) a high mineral fertilizer use, as treatments. Data were collected through researcher‐managed and farmer‐managed on‐farm trials in 2014 and 2015, and analyzed using linear robust mixed effects model and Pearson's correlation. Above‐ground biomass accumulation did not differ significantly among the control, integrated soil–crop management practice, and high mineral fertilizer use up to 30, 50, and 60 d after planting for maize, cotton, and sorghum, respectively. Thereafter, the differences in growth were substantial for each crop with highest biomass monitored with high mineral fertilizer use and lowest with the control. Biomass and economic yields at harvest were highest under high mineral fertilizer use and integrated soil–crop management practice, although the magnitude was crop‐specific. With the integrated soil–crop management practice and high mineral fertilizer use, N and P uptake by all crops was higher than for the un‐amended soil conditions. Inter‐seasonal changes in N uptake were higher for sorghum and cotton, but lower for maize. The highest agronomic efficiency and apparent recovery of N and P as well as positive N and P partial balances were obtained with the integrated soil–crop management practice for all three crops tested. The integrated soil–crop management strategy gave the highest yields and significantly improved N and P use efficiencies. The findings can contribute to formulating site and crop‐specific recommendations for sustainable agricultural practices in the Dry Savanna zone of West Africa.  相似文献   

6.
ABSTRACT

In order to understand how soil microbial biomass was influenced by incorporated residues of summer cover crops and by water regimes, soil microbial biomass carbon (C) and nitrogen (N) were investigated in tomato field plots in which three leguminous and a non-leguminous cover crop had been grown and incorporated into the soil. The cover crops were sunn hemp (Crotalaria juncea L., cv ‘Tropic Sun’), cowpea (Vigna unguiculata L. Walp, cv ‘Iron clay’), velvetbean (Mucuna deeringiana (Bort) Merr.), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf) vs. a fallow (bare soil). The tomato crop was irrigated at four different rates, i.e., irrigation initiated only when the water tension had reached ?5, ?10, ?20, or ?30 kPa, respectively. The results showed that sorghum sudangrass, cowpea, sunn hemp, and velvetbean increased microbial biomass C by 68.9%, 89.8%, 116.8%, and 137.7%, and microbial N by 58.3%, 100.0%, 297.3%, and 261.3%, respectively. A legume cover crop, cowpea, had no statistically significant greater effect on soil microbial C and N than the non-legume cover crop, sorghum sudangrass. The tropical legumes, velvetbean and sunn hemp, increased the microbial biomass N markedly. However, the various irrigation rates did not cause significant changes in either microbial N or microbial C. Soil microbial biomass was strongly related to the N concentration and/or the inverse of the C:N ratio of the cover crops and in the soil. Tomato plant biomass and tomato fruit yields correlated well with the level of soil microbial N and inversely with the soil C:N ratio. These results suggest that cover crops increase soil microbiological biomass through the decomposition of organic C. Legumes are more effective than non-legumes, because they contain larger quantities of N and lower C:N ratios than non-legumes.  相似文献   

7.
The millenia‐old existence of traditional, surface‐irrigated Omani mountain oases implies a remarkable sustainability of such systems in a hyperarid environment. This study was conducted in the mountain oasis of Balad Seet, situated in the Al‐Jabal‐al‐Akhdar mountains of northern Oman, to investigate the water‐use efficiency (WUE) of these oases and how farmers regulate it. In 2005, gas exchange of single leaves of 9–16 plants was measured for the most important perennial field crop alfalfa in both February and August, for the typical winter crop oat in February, and the dominating summer crop sorghum in August. The measurements were conducted five times a day in subplots irrigated the evening before and in the surrounding control plots, where plants had been withheld from irrigation for 14–16 d. Water deficit at the end of the irrigation interval reduced the stomatal conductance (gs) strongly in summer alfalfa, oat, and sorghum, but only slightly in winter alfalfa. In oat, the reduction of net photosynthetic rate (PN) at the end of the irrigation cycle was caused mainly by stomatal closure, in sorghum by nonstomatal factors and in summer alfalfa by both, whereas PN in winter alfalfa remained unaffected. The ratio of net photosynthetic rate to stomatal conductance (PN/gs), the “intrinsic water‐use efficiency”, increased in all investigated crops in response to drought because of a stronger reduction of gs than of PN. This increase was small in winter alfalfa, but much stronger in oat, sorghum, and summer alfalfa. The data indicate that alfalfa maintains a relatively high CO2 assimilation rate year‐round, contributing to a relatively high annual dry‐matter production. The decrease of the light intensity in the late afternoon caused by the shading effect of the surrounding mountains diminishes the crop evapotranspiration in the oasis.  相似文献   

8.
Warm-season annual grasses may be suitable as forage crops in integrated weed management systems with reduced herbicide use. A 2-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three warm-season grasses, and seed production by associated weeds. Tillage systems were zero tillage and conventional tillage with a field cultivator. The N fertilization methods were urea broadcast or banded near seed rows at planting. Warm-season grasses seeded were foxtail (Setaria italica L.) and proso (Panicum mileaceum L.) millets, and sorghum–sudangrass (Sorghum bicolor (L.) Moench × Sorghum sudenense Stapf.). Density of early emerging weeds was similar among treatments, averaging 51 m?2. Millets exhibited higher weed density and weed biomass than sorghum–sudangrass. At harvest, sorghum–sudangrass produced significantly greater biomass and N accumulation than either millet. Water use (157 mm) and WUE (25.1 kg mm-1 ha?1) of total biomass did not vary among treatments or grass entries. Weed seed production by redroot pigweed and green foxtail was respectively 93 and 73% less in sorghum–sudangrass than proso millet. Warm-season grasses offer an excellent fit in semiarid cropping systems.  相似文献   

9.
Enhancing crop water‐use efficiency (WUE) is a major research objective in water‐scarce agroecosystems. Potassium (K) enhances WUE and plays a crucial role in mitigating plant stress. Here, effects of K supply and PEG‐induced water deficit on WUE of spring wheat (Triticum aestivum L. var. Sonett), grown in nutrient solution, were studied. Plants were treated with three levels of K supply (0.1, 1, 4 mM K+) and two levels of PEG (0, 25%). WUE was determined at leaf level (WUEL), at whole‐plant level (WUEP), and via carbon isotope ratio (δ13C). Effects of assimilation and stomatal conductance on WUEL were evaluated and compared with effects of biomass production and whole‐plant transpiration (EP) on WUEP. Adequate K supply enhanced WUEP up to 30% and by additional 20% under PEG stress, but had no effect on WUEL. EP was lower with adequate K supply, but this effect may be attributed to canopy microclimate. Shoot δ13C responded linearly to time‐integrated WUEL in adequately supplied plants, but not in K‐deficient plants, indicating negative effects of K deficiency on mesophyll CO2 diffusion. It is concluded that leaf‐scale evaluations of WUE are not reliable in predicting whole‐plant WUE of crops such as spring wheat suffering K deficiency.  相似文献   

10.
Nitrogen balances, i.e. the difference between N 2 fixation inputs and N in harvested products (outputs), and rotational benefits of chickpea ( Cicer arietinum) on soil organic fertility and wheat ( Triticum aestivum) yields were quantified for rain-fed systems in the northern Punjab, Pakistan. The experiments were conducted during 1995–2000 at three sites. The four treatments were continuous wheat (0 N), continuous wheat (+N), chickpea-wheat (0 N) and chickpea-wheat (+N). The +N fertiliser rate was 100 kg N ha -1 applied to the wheat. Grain yields of the wheat with 0 N varied in the range 1.0–3.0 t ha -1, compared with 2.0–3.2 t ha -1 for the N-fertilised wheat. Chickpea grain yields were in the range 0.6–2.0 t ha -1. Chickpea N 2 fixation was assessed using the natural 15N abundance method. Percentage of chickpea N derived from N 2 fixation (%Ndfa) estimates were 58% (Mandra), 65% (Taxila) and 86% (Islamabad). The overall mean %Ndfa was 78%. Crop N fixed by the chickpea varied between sites (87–186 kg N ha -1) and essentially reflected crop biomass. The overall mean N balance for chickpea (crop N fixed minus N removed in grain and above-ground residues) was +28 kg N ha -1. Wheat grain yields responded to chickpea (19–73% increase for the three sites), to fertiliser N (99–136% increase) and to the combination of chickpea and fertiliser N (106–145% increase). Chickpea in the rotation increased soil organic C by 30% and soil N by 38%, relative to the continuous wheat with 0 N. These experiments indicated that chickpea could have a positive N balance, even when shoot residues were removed, and confirmed the rotational benefits of chickpea for improving soil organic fertility and yield of a following wheat crop.  相似文献   

11.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

12.
Abstract

Field experiments were conducted to compare plant residue decomposition and nitrogen (N) dynamics in an alley cropping system (AC) and an annual legume‐based cropping system (NA) in the Piedmont region of Georgia, USA. The hedgerows of the alley cropping system consisted of Albizia julibrissin (albizia) established in January 1990. Hedges were four meters apart with a spacing within rows of one‐half meter. A rotation beginning with Mucuna deeringiana (velvet bean) followed by a winter annual crop of Trifolium incarnatum L. (crimson clover), a summer crop of Sorghum bicolor (L.) Moench (grain sorghum) and a winter crop of Triticum aestivum L. (wheat) was established in the alley cropping system and a control annual cropping system. All crops were grown using no‐tillage systems. Plant residue decomposition and N dynamics were measured using litterbag technologies on crimson clover, albizia, and grain sorghum. Soil and plant total N, decay rate constants (k) for dry matter, soil potentially mineralizable N, and nitrification rates were determined. Decay rate constants for N were best correlated with the lignin content of the plant residues. No residue quality parameter was significantly correlated with decay rate for dry matter. There was no significant difference between AC and NA systems in soil inorganic N and potentially mineralizable N; however, nitrification rates were greater in the AC. Grain sorghum N uptake and biomass production were not different for AC and NA. This was thought to be due to large inputs of organic N prior to the start of the experiment.  相似文献   

13.
The objective of this study was to determine drought tolerance characteristics of dryland wheat genotypes based on leaf gas exchange and water-use efficiency in order to identify promising genotypes for drought tolerance breeding. Physiological responses of ten genetically diverse wheat genotypes were studied under non-stressed (NS) and water stressed (WS) conditions using a 2?×?10 factorial experiment replicated 3 times. A highly significant water condition?×?genotype interaction (P?<?0.001) was observed for photosynthetic rate (A), ratio of photosynthetic rate and internal CO2 concentration (A/Ci), ratio of internal and atmospheric CO2 (Ci/Ca), intrinsic (WUEi) and instantaneous (WUEinst) water-use efficiencies suggesting genotypic variability among wheat genotypes under both test conditions. Principal component analysis (PCA) identified three principal components (PC’s) under both test conditions accounting for 84% and 89% of total variation, respectively. Bi-plot analysis identified G339 and G344 as drought tolerant genotypes with higher values of A, T, gs, A/Ci, WUEi and WUEinst under WS condition. The current study detected significant genetic variation for drought tolerance among the tested wheat genotypes using physiological parameters. Genotypes G339 and G344 were identified to be drought tolerant with efficient A, T, gs, A/Ci and water-use under water stressed condition.  相似文献   

14.
ABSTRACT

Cover crops improve the recovery and recycling of nitrogen and impart weed suppression in crop production. A two-year study with six weekly plantings of cover crops including non-winterkilled species (hairy vetch, Vicia villosa L.; winter rye Secale cereale L.) and winterkilled species (oat, Avena sativa L.; forage radish, Raphanus sativus L.) were assessed for effects on growth of forage rape (Brassica napus L.) and weed suppression. Early planting of cover crops gave the highest biomass and highest nitrogen accumulation. Delaying planting from early-September to mid-October suppressed cover-crop biomass by about 40%. Forage radish produced more biomass in the fall than other cover crops but was winter killed. Spring biomass was highest with rye or vetch. All cover crops suppressed weeds, but suppression was greatest under rye or hairy vetch. Hairy vetch accumulated the largest nitrogen content. Forage rape plants yielded more biomass after a cover crop than after no-cover crop.  相似文献   

15.
Conservation tillage practices great role in improving productivity of water. This study hypothesis that tied-ridging and riding tillage could enhance the yield and water use efficiency. Hence, a field experiment was carried out to investigate their potentiality in improving the water use efficiencies for different crops (cotton, groundnut, sorghum and wheat) compared to basin (control) during two excessive seasons. The experiments were organized in a spilt-plot experimental design. The water use efficacies (WUEs) were examined in term of technical, economical and hydraulic water use efficiencies for the both conservation tillage under irrigated conditions. The results indicated that both the conservation tillage techniques showed positive effect (P?≤?.05) on the WUEs. The tied-ridging gave the highest values of WUEs than ridging for all crops. Moreover, tied-ridging increased the average values of water use efficiency by 75%, 48%, 17% and 85% for cotton, sorghum, groundnut and wheat, respectively, compared to that of control treatment, which significantly differed from the ridging treatment. Accordingly, conservation tillage improved WUE and the capability of soil to keep moisture which is reflected in high crops production. This suggests that there is substantial scope for improving irrigation water use efficiency of crops by adoption of conservation tillage.  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) have the capability to improve crop yields by increasing plant nutrient supply. A pot experiment was conducted under natural conditions to determine the response of AMF inoculation on the growth of maize (Zea mays L.), sorghum (Sorghum bicolor L.), millet (Pennisetum glaucum L.), mash bean (Vigna mungo L.), and mung bean (Vigna radiata. L.) crops during 2008. The experiment was conducted as a completely randomized design in three replications using phosphorus (P)–deficient soil. Three plants were grown in 10 kg soil up to the stage of maximum growth for 70 days. Spores of AMF were isolated from rhizosphere of freshly growing wheat and berseem crops and mixed with sterilized soil with fine particles. Crops were inoculated in the presence of indigenous mycorrhiza with the inoculum containing 20 g sterilized soil mixed with 40–50 AMF spores. Inoculation with AMF improved yield and nutrient uptake by different crops significantly over uninoculated crops. Inoculated millet crop showed 20% increase in shoot dry matter and 21% in root dry matter when compared with other inoculated crops. Increases of 67% in plant nitrogen (N) and iron (Fe) were observed in millet, 166% in plant P uptake was observed in mash beans, 186% in zinc (Zn) was measured in maize, and 208% in copper (Cu) and 48% in manganese (Mn) were noted in sorghum crops. Maximum root infection intensity of 35% by AMF and their soil spore density were observed in millet crop followed by 32% in mash beans. Results suggest that inoculation of AMF may play a role in improving crop production and the varied response of different crops to fungi signifies the importance of evaluating the compatibility of the fungi and plant host species.  相似文献   

17.
Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton–sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton–wheat (Triticum aestivum L.) double cropped (T3), cotton–chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton–wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07–0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15–0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45–0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton–sorghum or continuous cotton.  相似文献   

18.

Background

Wastewater from sewage treatment plants contains high levels of nutrients, which can be used for plant nutrition. Classical wastewater treatment plants use complex microbial consortia of autotrophic and heterotrophic microorganisms for biological wastewater treatment. Certain autotrophic microalgae (e.g., species of the genera Chlorella, Scenedesmus, and Pediastrum) accumulate nutrients from wastewater very effectively.

Aims

We investigated the potential of microalgae biomass obtained from a prototype wastewater treatment plant as a source of nutrients for crops, focusing on nitrogen.

Methods

We provided wheat plants with different levels of algae biomass equivalent to 60, 120, and 180 kg N per hectare or with mineral fertilizer (N, P, and K) equivalent to the amounts contained in the algal biomass. Physiological and phenotypic traits were measured during growth, including vegetation indices, photosynthetic performance, growth, and nitrogen use efficiency (NUE). In addition, the adundances of Bacteria, Archaea and fungi and genes of ammonium oxidizing Bacteria and Archaea were determined in the rhizosphere of differently fertilized plants.

Results

Microalgal application at fertilizer levels of 120 and 180 kg N ha–1 showed significantly improved physiological performance, growth, yield and nutrient uptake compared to the unfertilized control. Nevertheless, their yields and NUE were lower than with the application of equal amounts of mineral fertilization, while the adundance of rhizosphere microbes and ammonia-oxidizing microorganisms were not significantly affected.

Conclusions

Microalgae from wastewater treatments form a suitable source of organic fertilizer for wheat plants with only moderate reductions in N use efficiency compared to mineral fertilizer.  相似文献   

19.
The long-term probability of soil moisture stress in rainfed crops was mapped at 0.5° resolution over the Krishna River basin in southern India (258,948 km2). Measurements of actual evapotranspiration (Ea) from 90 lysimeter experiments at four locations in the basin were used to calibrate a non-linear regression model that predicted the combined crop coefficient (KcKs) as a function of the ratio of seasonal precipitation (P) to potential evapotranspiration (Ep). Crops included sorghum, pulses (mung bean, chickpea, soybean, pigeonpea) and oilseeds (safflower and sunflower). Ep was calculated with the Penman–Monteith equation using net radiation derived from two methods: (1) a surface radiation budget calculated from satellite imagery (EpSRB) and (2) empirical equations that use data from meteorological stations (EpGBE). The model of Ks as a function P/Ep was combined with a gridded time series of precipitation (0.5° resolution, 1901–2000) and maps of EpSRB to define the probability distributions of P, P/Ep and Ks for sorghum at each 0.5° cell over the basin. Sorghum, a C4 crop, had higher Ea and Ks values than the C3 plants (oilseeds, pulses) when precipitation was low (P < 1 mm d−1) but lower maximum Ea rates (3.3–4.5 mm d−1) compared with C3 crops (oilseeds and pulses, 4.3–4.9 mm d−1). The crop coefficient under adequate soil moisture (Kc) was higher than the FAO-56 crop coefficients by up to 56% for oilseeds and pulses. The seasonal soil moisture coefficient (Ks) for sorghum ranged from 1.0 under high rainfall (July–October) to 0.45 in dry seasons (November–March), showing strong soil moisture controls on Ea. EpSRB calculated at the lysimeter stations was 4–20% lower than EpGBE, with the largest difference in the dry season. Kc derived from EpSRB was only slightly (2–4%) higher than Kc derived from EpSRB, because the maximum Ea occurred during the monsoon when the differences between EpSRB and EpGBE were small. Approximately 20% of the basin area was expected to experience mild or greater soil moisture stress (Ks < 0.80) during the monsoon cropping season 1 year in every 2 years, while 70% of the basin experienced mild or greater stress 1 year in 10. The maps of soil moisture stress provide the basis for estimating the probability of drought and the benefits of supplemental irrigation.  相似文献   

20.
本试验在西北沿黄有效磷含量较低的灌耕灰钙土上研究了田间施磷水平对单作和间作玉米、鹰嘴豆的根际酸性磷酸酶活性、产量和土地资源利用效率的影响。结果表明,在不施磷(P0)和施磷量为40kg·hm-2(P40)时,玉米/鹰嘴豆间作系统的生物学产量或经济产量的土地当量比(LER)均小于1,间作系统未表现出土地资源利用的优势,主要原因是鹰嘴豆产量降低;当施磷量为80kg·hm-2(P80)时,LER1,间作系统表现出土地资源利用优势。P0、P40和P80处理间作玉米产量分别比相应单作增产3%、12%和19%;间作鹰嘴豆产量P0和P40处理显著低于单作。从玉米出苗到鹰嘴豆收获的间作作物共生期内,间作玉米相对于鹰嘴豆具有较强的水分和养分等资源的竞争力(Amc0),从鹰嘴豆生长动态曲线可以看出,P0、P40处理这种竞争在共生期明显,P80处理竞争不明显。各施磷水平下,间作玉米的收获指数高于单作,而间作鹰嘴豆的收获指数低于单作。鹰嘴豆通过分泌酸性磷酸酶促进玉米对有机磷利用的种间互惠作用未体现,两次取样中,不施磷时,间作鹰嘴豆根际土壤的酸性磷酸酶活性低于单作。基于本研究,西北沿黄灌耕灰钙土施磷量为0和40kg·hm-2时,玉米/鹰嘴豆间作系统无明显的间作优势,磷肥量为80kg·hm-2时表现出较为明显的间作优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号