首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. L. Xu    S. B. Yu    L. J. Luo    D. B. Zhong    H. W. Mei  Z. K. Li 《Plant Breeding》2004,123(1):43-50
The genetic mechanism underlying the relationship between three traits of the primary sink size ‐ spikelet number per panicle (SNP), panicle number per plant (PN), and 1000‐grain weight (GWT), and their 10 component traits in rice was dissected in 292 F13 recombinant inbred lines using a complete linkage map. A total of 43 genomic regions on 12 rice chromosomes were found to contain quantitative trait loci (QTLs) affecting the sink size traits, which revealed several important aspects of the genetic basis of sink capacity in rice. First, QTLs for SNP, PN and GWT were largely independent. Secondly, most QTLs affecting SNP and GWT showed close characteristics in both genomic locations and directions of effects to QTLs for their components, suggesting that pleiotropy, rather than linkage, was the primary genetic basis of the correlated panicle and grain traits. Thirdly, some QTLs affecting component traits did not contribute to SNP or GWT. In these cases, two or more QTLs with opposite effects on their component traits were detected, which could be due to either linkage or pleiotropy. Fourthly, some QTLs had large effects on panicle number (QPn4), panicle branching and length (QPbn3a, QPbn3b and QPb14), grain length and volume (QG13, QG15 and QGv2), and grain shape (QGs1 and QGs7), which were consistently detected in the related rice mapping populations and in different environments, providing good candidates and useful information for marker‐aided improvement of sink size and yield potential of rice.  相似文献   

2.
P. Wu  G. Zhang  N. Huang 《Euphytica》1996,89(3):349-354
Summary Segregation of plant height (PH), tiller number (TN), panicle number (PN), average panicle length per plant (PL), average primary branch number per panicle per plant (PBN) and 1000 grain weight (1000G) were specific in an F2 population derived from a cross of Palawan, a tall Javanica variety, and IR42, an Indica semidwarf variety. One hundred and four informative RFLP markers covering all 12 chromosomes were used for detecting putative QTLs controlling the traits. Orthogonal contrasts and interval mapping analysis were used for the analysis. QTL detected for PH on the region of chromosome 1, where semidwarfing gene sd-1 locus is located, seems to be a multiple allelic locus. An additional QTL for PH was identified on chromosome 2. Two QTLs for TN were detected on chromosomes 4 and 12. The QTL on chromosome 4 seemed also to govern the variation in PN. Four QTLs were found for the other traits, two of them for PL were located on chromosomes 6 and 2, one for PBN on chromosome 6 and the other for 1000G on chromosome 1. Additive gene actions were found to be predominant, except one QTL for PH and one QTL for PL, but partial or incomplete dominance also existed for the QTLs detected.  相似文献   

3.
为发掘水稻穗部性状有利等位变异,构建了以籼稻保持系II-32B为遗传背景的A7444染色体片段置换系群体;利用QTL Ici Mapping 4.1软件对该群体7个穗部性状进行了QTL定位。结果 2年共检测到26个QTL。2年均检测到的13个QTL中,控制一次枝梗数的4个QTL位于第1、第6、第8和第9染色体,平均贡献率分别为15.16%、13.10%、29.74%和11.21%,平均加性效应分别为-1.40、1.01、1.11和0.77。控制二次枝梗数的2个QTL位于第6和第8染色体,平均贡献率分别为10.97%和21.39%,平均加性效应分别为5.45和6.36。控制每穗总粒数的3个QTL位于第2、第6和第8染色体,平均贡献率分别为8.65%、12.52%和31.22%,平均加性效应分别为-18.61、22.23和31.87。控制每穗实粒数的1个QTL位于第8染色体,平均贡献率为28.06%,平均加性效应30.85。控制千粒重的2个QTL位于第2染色体,平均贡献率分别为44.65%和17.51%,平均加性效应分别为2.88和-2.51。控制粒宽的1个QTL位于第10染色体,平均贡献率为21.96%,平均加性效应为0.11。第2、第6和第8染色体分别存在同时控制二次枝梗数、每穗总粒数和每穗实粒数QTL的区段。qSBN6和qSBN8所在区间与Hd1和DTH8的相同,但分别存在16处和1处碱基差异,推测为Hd1和DTH8的不同等位基因。qSBN2为新检测到的控制二次枝梗数位点。研究结果为实施分子标记聚合育种提供了有用信息。  相似文献   

4.
影响水稻穗部性状及籽粒碾磨品质的QTL及其环境互作分析   总被引:2,自引:0,他引:2  
利用优质恢复系测258为轮回亲本与粳型糯稻新品系IR75862杂交创制的BC1F7回交导入系群体,在广西南宁和海南三亚定位了产量相关性状(二次枝梗数、穗总粒数、穗实粒数、粒重和穗重)、粒型(粒长、宽、厚)和碾磨品质(糙米率、精米率和整精米率)的主效QTL并剖析其环境互作效应。双亲在穗实粒数、千粒重、粒长和粒宽及整精米率等性状上存在显著差异。各产量相关性状间呈极显著正相关,而与千粒重和粒长呈极显著负相关。多数产量及粒型相关性状与3种碾磨品质相关不显著。在南宁和三亚环境下检测到影响产量相关性状、粒型及碾磨品质的主效QTL共计57个,包括二次枝梗数的6个,穗实粒数4个,穗总粒数、粒重和穗重各5个,粒长9个,粒宽7个,粒厚1个,糙米率4个,精米率5个和整精米率6个,分布在除第11染色体外的所有染色体上。多数影响枝梗数、穗粒数和粒重的QTL成簇分布,而且与影响BR、MR和HR的QTL分布在不同染色体区域。在第2、第3、第4、第5和第6染色体上鉴定出影响穗粒数、粒重、粒型及碾磨品质的重要QTL,这些QTL在以往不同遗传背景和环境下被多次检测到。在第8染色体RM152~RM310区间鉴定到1个影响粒长和粒宽的新的QTL,能同步增加粒宽和粒长。鉴定出的这些稳定表达的QTL具有标记辅助选择育种的应用价值。整精米率是受环境影响最大的性状,其QTL的环境互作效应明显。对QTL的环境互作效应特点及其在品种标记辅助改良中的作用进行了深入探讨。  相似文献   

5.
Temperature and photoperiod fluctuate rapidly in different seasons of the year, and analyzing their effects on rice yield components is crucial for adaptation of rice under various climatic conditions. To study the effects of seasonal changes on yield components, 168 recombinant inbred lines derived from a cross between two Oryza sativa L. indica varieties, Zhenshan 97 and Zhongzao 18 were grown for phenotype collection, in three different seasons, within a year. The results implied that temperatures across the three seasons played a crucial role in determining the trait effects. Spikelets per panicle (SPP), panicle length (PL) and plant height (PH) traits increased with high temperatures in middle season. Genetic analysis detected major quantitative trait loci (QTLs) qSPP10, qPL10 and qPH10 for SPP, PL and PH in the interval between markers RM1375 and RM3229 on chromosome 10, in all the three seasons. Two-way ANOVA showed that genotype by environment and QTL by environment interactions for these traits were highly significant (P < 0.0001). The region with a cluster of QTLs detected in all three seasons could be the preferred target to breeders in developing rice varieties that can be accustomed to different seasonal changes.  相似文献   

6.
QTL analysis for panicle characteristics in temperate japonica rice   总被引:7,自引:0,他引:7  
To understand the genetic background of panicle characteristics in temperate japonica rice (Oryza sativa L.), we genetically analyzed DH lines derived from a cross between two temperate japonica rice cultivars, ‘Akihikari’ and ‘Koshihikari’,in 1996 and 1997. Four traits of panicle characteristics, number of primary branches per panicle (NPB), number of secondary branches per panicle (NSB), average number of spikelets on one primary branch (NSP)and average number of spikelets on one secondary branch (NSS), in 212 DH lines were measured, and the interval mapping of QTLs for these traits was carried out using169 DNA markers with an LOD threshold of2.5. Five, three and one putative QTLs for NPB, NSB and NSS were identified,respectively, and no QTLs relating to NSP appeared. The percentages in total phenotypic variation explained by all putative QTLs for NPB were 35.5%: and43.8% in 1996 and 1997, respectively. All putative QTLs for NSB accounted for 35.5%and 27.5% of total phenotypic variation in1996 and 1997, respectively. The QTLs identified in this study will be useful intemperate japonica rice breeding for improved spikelet yield. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Improvement of rice grain yield (YD) is an important goal in rice breeding. YD is determined by its related traits such as spikelet fertility (SF), 1,000-grain weight (TGW), and the number of spikelets per panicle (SPP). We previously mapped quantitative trait loci (QTLs) for SPP and TGW using the recombinant inbred lines (RILs) derived from the crosses between Minghui 63 and Teqing. In this study, four QTLs for SF and four QTLs for YD were detected in the RILs. Comparison of the locations of QTLs for these three yield-related traits identified one QTL cluster in the interval between RM3400 and RM3646 on chromosome 3. The QTL cluster contained three QTLs, SPP3a, SF3 and TGW3a, but no YD QTL was located there. To validate the QTL cluster, a BC4F2 population was obtained, in which SPP3a, SF3 and TGW3a were simultaneously mapped to the same region. SPP3a, SF3 and TGW3a explained 36.3, 29.5 and 59.0 % of phenotype variance with additive effect of 16.4 spikelets, 6 % SF and 1.8 g grain weight, respectively. In the BC4F2 population, though the region has opposite effects on TGW and SPP/SF, a YD QTL YD3 identified in this cluster region can increase 4.6 g grains per plant, which suggests this QTL cluster is a yield-enhancing QTL cluster and can be targeted to improve rice yield by marker aided selection.  相似文献   

8.
Panicle length (PL), an important yield‐related trait, strongly affects yield components, such as grain number, grain density and rice quality. More than 200 panicle length quantitative trait loci (PL QTLs) are identified, but only a small number are applied in rice breeding. In this study, we performed QTL analysis for PL using 42 single‐segment substitution lines (SSSLs) derived from nine donors in the genetic background of HJX74. Fourteen QTLs and five heterosis QTLs (HQTLs) for PL were recognised. Three QTLs and four HQTLs acted positively, and the other eleven QTLs and one HQTL acted negatively. By scanning the single heterozygous background region of the F2 population with large‐genetic‐effect SSSLs, we mapped PL loci qPL6‐2 and qPL7‐1 to different locations on chromosomes 6 and 7, respectively, in three consecutive years of independent trials. The genetic effects of these QTLs were further assessed. qPL6‐2 demonstrated the most positive additive effect (QTL), whereas qPL7‐1 achieved the most positive dominant effect (HQTL) for PL. These results indicated that the pyramiding of PL QTLs might increase grain yield and facilitate the application of the beneficial allele in hybrid rice breeding.  相似文献   

9.
Spike density (SD), an important spike morphological trait associated with wheat yield, is the spikelet number per spike (SNS) divided by spike length (SL). In this study, phenotypic data from eight environments were collected and a recombinant inbred line population (RIL) constructed by the wheat line 20828 and the cultivar 'Chuannong16' and a Wheat55K SNP array-based constructed genetic linkage map were used to identify SD quantitative trait locus (QTL). Correlation between SD and other agronomic traits was calculated. Genes associated with plant growth and development for major loci were predicted. The results showed that 24 QTLs associated with SD were detected in eight environments. Among them, three major QTL, namely QSd.sicau-5B.2, QSd.sicau-2D.3 and QSd.sicau-4B.1, explained up to 35.62%, 14.21% and 11.23% of phenotypic variation, respectively. The positive alleles of them were all derived from 'Chuannong16'. The significant relationships between SD and other agronomic traits were detected and discussed. Taken together, the stably expressed SD QTL under different environments identified in this study provided theoretical guidance for further fine mapping and germplasm improvement.  相似文献   

10.
We constructed a high‐resolution physical map for the qSPP7 QTL for spikelets per panicle (SPP) on rice chromosome 7 across a 28.6‐kb region containing four predicted genes. Using a series of BC7F4 near‐isogenic lines (NILs) derived from a cross between the Korean japonica cultivar ‘Hwaseongbyeo’ and Oryza minuta (IRGC Acc. No. 101144), three QTLs for the number of SPP, grains per panicle and primary branches were identified in the cluster (P ≤ 0.01). All three QTLs were additive, and alleles from the O. minuta parent were beneficial in the ‘Hwaseongbyeo’ background. qSPP7 was mapped to a 28.6‐kb region between the two simple sequence repeat (SSR) markers RM4952 and RM21605. The additive effect of the O. minuta allele at qSPP7 was 23 SPP, and 43.6% of the phenotypic variance was explained by the segregation of the SSR marker RM4952. Colocalization of the three QTLs suggested that this locus was associated with panicle structure and had pleiotropic effects. The NIL populations and molecular markers are useful for cloning qspp7.  相似文献   

11.
Total spikelet number per panicle (TSN) is one of the most important traits associated with rice yield potential. This trait was assessed in a set of 334 chromosomal segment introgression lines (ILs: BC3-derived lines), developed from new plant type (NPT) varieties as donor parents and having the genetic background of an indica-type rice variety IR64. Among the 334 ILs, five lines which had different donor parents and showed significantly higher TSN than IR64 were used for genetic analysis. Quantitative trait locus (QTL) analysis was conducted using F2 populations derived from crosses between IR64 and these ILs. As a result, a QTL for high TSN (one from each NPT donor variety) was detected on common region of the long arm of chromosome 4. The effect of the QTL was confirmed by an increase in TSN of five near-isogenic lines (NILs) developed in the present study. The variation in TSN was found among these NILs, attributing to the panicle architecture in the numbers of primary, secondary and tertiary branches. The NILs for TSN and the SSR markers linked to the TSN QTLs are expected to be useful materials for research and breeding to enhance the yield potential of rice varieties.  相似文献   

12.
M. Murai    H. B. KC  N. Gima  C. Jung 《Plant Breeding》2003,122(5):410-415
Norin‐PL8 (‘PL8’) is an extremely cool‐tolerant line of rice in Japan that contains genes for cool tolerance originating from a javanica landrace. It was investigated to see whether the dwarfing gene d18‐k (kotaketamanishiki dwarf) exerts its pleiotropic effect on enhancing the cool tolerance at the booting stage in the genetic background of PL8. The d18‐k isogenic line of the recurrent parent PL8 (D8), PL8, and two commercial cultivars ‘Hayayuki’ and ‘Kirara 397’ were used. For each line/cultivar, the 12°C‐5‐day treatment was conducted at various times during the booting stage. In addition to spikelet fertility, the ratio (%) of the fertilized‐spikelet number of each treated panicle to the varietal mean of fertilized‐spikelet number per panicle in the control (FS‐T/C) was adopted to estimate cool temperature damage. For FS‐T/C, the lines‐cultivars ranked in the order of D8 > PL8 > ‘Hayayuki’ > ‘Kirara 397’, reflecting their cool tolerances. D8 exceeded PL8 in both pollen grain number per anther in the control and as an indicator of pollen fertility after the treatment, as a result of the effects of d18‐k. Consequently, d18‐k can be used to develop super‐highly cool‐tolerant cultivars for cool‐weather areas.  相似文献   

13.
The introgression lines (ILs) of the wild tomato species Solanum pennellii have been widely used to identify genes related to yield, texture, disease resistance and stress tolerance. In addition to flavour, fruit firmness is an important evaluation index and essential trait indicating tomato fruit quality. Quantitative trait loci (QTL) for fruit firmness have been identified through hand squeezing and pericarp puncturing. However, these techniques hardly reveal the force value of the whole fruit suffering from rupture or deformation. In this study, S. pennellii ILs were used to identify QTLs related to fruit firmness through flat‐plate compression. Nine QTLs for enhancing and sixteen QTLs for decreasing fruit firmness were successfully identified. Compared with that of ‘M82’, the amount of QTLs that enhance fruit firmness increased by 8.76% to 21.00%, and the amount of QTLs that reduce fruit firmness decreased by ?8.27% to ?30.80%. The QTL Crf12a and Crf‐R‐7b is the strongest and weakest QTL, respectively, while they are very stable in all independent biological trials. Six QTLs should be further confirmed through open‐field trials.  相似文献   

14.
S.-J. Lee    C.-S. Oh    J.-P. Suh    S. R. McCouch  S.-N. Ahn 《Plant Breeding》2005,124(3):209-219
Asian cultivated rice was domesticated from the wild rice, Oryza rufipogon and throughout the domestication process, a wide range of morphological and physiological changes altered the ancestral form. This study was conducted to identify the genetic basis of changes associated with the domestication process. An recombinant Inbred line (RIL) population consisting of 120 lines was developed from a cross between the Juponica cultivar.‘Hwayeongbyeo’and a presumed wild progenitor. O. rufipogon Griff. Acc.01944. The population was genotyped with 124 simple sequence length repeat (SSR) markers, providing an average interval size of 15 cM, and also evaluated for 20 traits related to domestication and agricultural performance. A total of 63 quantitative trait locus (QTLs) and one locus associated with qualitative variation for pericarp coloration were identified using single point and composite interval analysis. The number of QTLs per trait ranged from one to seven. Phenotypic variation associated with each QTL ranged from 3.7 to 40.4%. with an average of 15.3%. The results indicated that most domestication‐related traits clustered in chromosomal blocks, and the positions of many of these clusters were consistent with those reported in previous studies and with skewed segregation ratios in these BC1,F7 RILs. For 13 (20.6%) of the QTLs identified in this study. the O. rufipogan ‐derived allele contributed a desirable agronomic effect despite the overall undesirable characteristics of the wild phenotype. Favourable alleles from O. rufipogan were detected for panicle length, spikelets per panicle, days to heading and leaf discoloration associated with cold stress. When compared with previous studies involving interspecific crosses, it can be concluded that O. rufipogon is useful as a source of valuable alleles for rice improvement and that many of the introgressed regions contain genes that have a favourable impact on phenotype in different genetic backgrounds and different environments.  相似文献   

15.
To improve salt tolerance of two elite rice varieties, Ce258 and Zhongguangxiang1 (ZGX1), two sets of introgression lines (ILs) each comprising 200 BC1F10 lines derived from a common donor, IR75862, and two recipient parents, Ce258 and ZGX1, were used for mapping of QTLs for four salt tolerance‐related traits at the seedling stage. Although the three parents were susceptible to salt, the two IL populations showed transgressive segregations for salt tolerance with 12 and 8 salt tolerance ILs in the Ce258‐ILs and ZGX1‐ILs. Eighteen main‐effect QTLs were identified for the four traits in the two IL populations, and the IR75862 alleles at most loci showed increased and decreased salt tolerance in the ZGX1 and Ce258 backgrounds, suggesting overwhelming genetic background effects on QTL detection for salt tolerance. The qDSS11 simultaneously detected in the two backgrounds was validated in a F2 population derived from a salt tolerance line and ZGX1. Our results indicated that salt tolerance‐enhancing allele could be identified in the elite susceptible breeding lines and that introgression of the favourable alleles could facilitate the development of superior lines with greater salt tolerance levels.  相似文献   

16.
17.
Total spikelet number per panicle (TSN) is thought to be one of the most important agronomic traits associated with grain production in rice (Oryza sativa L.). We previously reported the development of 334 introgression lines (ILs) with variations in agronomic traits in the genetic background of indica rice variety IR64. Among these, an IL derived from high-yielding rice variety Hoshiaoba showed significantly higher TSN than IR64. We therefore have conducted a quantitative trait locus (QTL) analysis for TSN in an F2 population of IL × IR64 to ascertain the genetic basis for the high TSN of the IL. The analysis revealed the presence of a QTL for TSN on chromosome 7, where several QTLs for grain number have been previously reported. We developed a near-isogenic line (NIL) for this QTL by using DNA marker-assisted selection and characterized its effect. The NIL showed significantly higher TSN than IR64. These results suggest that the QTL and the NIL will be useful materials in breeding programs aimed at increasing TSN.  相似文献   

18.
王雷仁  梁康迳 《种子》2001,(3):27-29
对IRRI25个新株型稻品种的每穗颖花数与10个茎秆性状进行相关和通径分析,结果表明:每穗颖花数与第1、2、4节间、长、茎粗、秆型指数和着粒密度呈显著或极显著的相关关系,且这些性状对每穗颖花数的通径系数也较大,在育种上,要提高每穗颖花数需要增加第1、2节间长度、茎粗、秆型指数,缩短第4、5节间长度。  相似文献   

19.
粳稻杂种优势遗传基础剖析   总被引:2,自引:1,他引:1  
为了解控制粳稻产量相关性状及其中亲优势的基因作用类型, 利用秀堡RIL群体及其2个回交(BCF1)群体对株高、生育期、单株有效穗数、穗长、每穗颖花数、结实率、一次枝梗数和二次枝梗数8个性状及其中亲杂种优势进行QTL定位。共检测到58个显著的主效QTL (M-QTL), 单个M-QTL的贡献率变幅为3.3%~41.9%。77.6%的M-QTL表现为加性效应, 15.5%的M-QTL表现为部分或完全显性效应, 6.9%的M-QTL表现为超显性效应。共检测到90对显著的双基因上位性QTL(E-QTL)。在RIL群体中检测到44对E-QTL, 单对E-QTL的贡献率变幅为1.7%~8.0%, 平均3.7%。在XSBCF1群体中检测到27对E-QTL, 其中利用BCF1表型值检测到16对E-QTL, 单对E-QTL的贡献率变幅为12.7%~78.5%, 平均29.2%; 利用中亲优势值检测到11对E-QTL, 单对E-QTL的贡献率变幅为15.0%~71.8%, 平均40.1%。在CBBCF1群体中检测到19对E-QTL, 其中利用BCF1表型值检测到12对E-QTL, 单对E-QTL的贡献率变幅为2.7%~64.4%, 平均30.1%; 利用中亲优势值检测到9对E-QTL, 单对E-QTL的贡献率变幅为21.7%~64.1%, 平均40.0%。在CBBCF1群体中, 利用BCF1表型值和中亲优势值都检测到的E-QTL有2对。上述结果表明上位性效应是粳稻秀堡组合杂种优势的主要遗传基础。  相似文献   

20.
Additive effects (A) and additive‐by‐environment interactions (A×E) for five rice yield components were analysed using 20 SSSLs under mixed linear model methodology. Thirty‐one QTLs were detected. Different yield components have different QTL‐by‐environment (Q×E) interaction patterns. No A×E interaction effects were detected for the four QTLs for panicle number (PN). Four QTLs detected for spikelets per panicle (SPP) had A×E interactions. Five of seven QTLs detected for grains per panicle (GPP), two of 10 QTLs detected for 1000‐grains weight (GWT) and three of six QTLs detected for seed set ratio (SSR) showed significant A×E interaction. Most of these QTLs were distributed in clusters across the genome. The complexity of linkage and pleiotropy of these QTLs plus environmental effect may result in the diversity of the yield phenotype in the SSSLs. Only S19 exhibited a significant increase in yield with a predicted gain by 281.58 kg ha?1. The results may be useful to design a better breeding strategy that takes advantage of QTL‐by‐environment interaction effects in each of the SSSLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号