首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
C. A. McCartney  D. J. Somers    O. Lukow    N. Ames    J. Noll    S. Cloutier    D. G. Humphreys    B. D. McCallum 《Plant Breeding》2006,125(6):565-575
Wheat grain quality is a complex group of traits of tremendous importance to wheat producers, end‐users and breeders. Quantitative trait locus (QTL) analysis studied the genetics of milling, mixograph, farinograph, baking, starch and noodle colour traits in the spring wheat population RL4452/‘AC Domain’. Forty‐seven traits were measured on the population and 99 QTLs were detected over 18 chromosomes for 41 quality traits. Forty‐four of these QTLs mapped to three major QTL clusters on chromosomes 1B, 4D, and 7D. Fourteen QTLs mapped near Glu‐B1, 20 QTLs mapped near a major plant height QTL on chromosome 4D, and 10 QTLs mapped near a major time to maturity QTL on chromosome 7D. Large QTLs were detected for grain and flour protein content, farinograph absorption, mixograph parameters, and dietary fibre on chromosome 2BS. QTLs for yellow alkaline noodle colour parameter L* mapped to chromosomes 5B and 5D, while the largest QTL for the b* parameter mapped to 7AL.  相似文献   

2.
Grain protein content (GPC) and gluten quality are the most important factors determining the end-use quality of wheat for pasta-making. Both GPC and gluten quality are considered to be polygenic traits influenced by environmental factors and other agricultural practices. Two related F8:9 recombinant inbred line (RIL) populations were generated to localise genetic factors controlling seven quality traits: GPC, wet gluten content (WGC), flour whiteness (FW), kernel hardness (KH), water absorption (Abs), dough development time (DDT) and dough stability time (DST). These lines were derived by crossing Weimai 8 and Jimai 20 (WJ) and by crossing Weimai 8 and Yannong 19 (WY). In total, WJ comprised 485 lines, while WY comprised 229 lines. Data on these seven quality traits were collected from each line in five different environments. Up to 85 putative QTLs for the seven traits were detected in WJ and 65 putative QTLs were detected in WY. Of these QTLs, 31 QTLs (36.47%) were detected in at least two trials in WJ, while 24 QTLs (36.92%) were detected in at least two trials in WY. Three QTLs from WJ and 25 from WY accounted for more than 10% of the phenotypic variance. The total 150 QTLs were spread throughout all 21 wheat chromosomes. Of these, at least thirteen pairwise were common to both populations, accounting for 20.00 and 15.29% of the total QTLs in WJ and WY, respectively. A major QTL for GPC, accounting for 53.04% of the phenotypic variation, was detected on chromosome 5A. A major QTL for WGC also shared this interval, explained more than 36% of the phenotypic variation, and was significant in two environments. Though co-located QTLs were common, every trait had its unique control mechanism, even for two closely related traits. Due to the different sizes of the two line populations, we also assessed the effects of population size on the efficiency and precision of QTL detection. In sum, this study will enhance our understanding of the genetic basis of these seven pivotal quality traits and facilitate the breeding of improved wheat varieties.  相似文献   

3.
Summary A doubled haploid (DH) wheat population derived from the cross Wangshuibai/Alondra‘s’ was developed through chromosome doubling of haploids generated by anther culture of hybrids. Fusarium head blight (FHB) was evaluated for three years from 2001 to 2003 in Jianyang, Fujian Province, China, where epidemics of FHB have been consistently severe. After 307 pairs of simple sequence repeat (SSR) primers were screened, 110 pairs were polymorphic between Wangshuibai and Alondra`s’, and used to construct a genetic linkage map for detection of quantitative trait loci (QTLs). A stable QTL for low FHB severity was detected on chromosomes 3B over all three years, and QTLs on chromosomes 5B, 2D, and 7A were detected over two years. Additional QTLs on chromosomes 3A, 3D, 4B, 5A, 5D, 6B and 7B showed marginal significance in only one year. Six QTLs were detected when phenotypic data from three years were combined. In addition, significant additive-by-additive epistasis was detected for a QTL on 6A although its additive effect was not significant. Additive effects (A) and additive-by-additive epistasis (AA) explained a major portion of the phenotypic variation (76.5%) for FHB response. Xgwm533-3B and Xgwm335-5B were the closest markers to QTLs, and have potential to be used as selectable markers for marker-assisted selection (MAS) in wheat breeding programs.  相似文献   

4.
Grain size is a main component of rice appearance quality. In this study, we performed the SSR mapping of quantitative trait loci (QTLs) controlling grain size (grain length and breadth) and shape (length/breadth ratio) using an F2 population of a cross between two Iranian cultivars, Domsephid and Gerdeh, comprising of 192 individuals. A linkage map with 88 markers was constructed, which covered 1367.9 cM of the rice genome with an average distance of 18 cM between markers. Interval mapping procedure was used to identify the QTLs controlling three grain traits, and QTLs detected were further confirmed using composite interval mapping. A total of 11 intervals carrying 18 QTLs for three traits were identifed, that included five QTLs for grain length, seven QTLs for grain breadth, and six QTLs for grain shape. A major QTL for grain length was detected on chromosome 3, that explained 19.3% of the phenotypic variation. Two major QTLs for grain breadth were mapped on chromosomes 3 and 8, which explained 34.1% and 20% of the phenotypic variation, respectively. Another two major QTLs were identified for grain shape on chromosomes 3 and 8, which accounted for 27.1% and 20.5% of the phenotypic variance, respectively. The two QTLs that were mapped for grain shape coincided with the major QTLs detected for grain length and grain breadth. Intrestingly, gs2 QTL specific to grain shape was detected on chromosome 2 that explained 15% of the phenotypic variation.  相似文献   

5.
Terminal heat stress has the potential negative impact on wheat production across the world, especially in South Asia. Under the threat of terminal heat stress, wheat genotypes with stay green trait would suffer from high temperature stress during their long grain filling duration (GFD). The genotypes with short GFD would be advantageous. To identify quantitative trait loci (QTL) for heat tolerance, a RIL population of K 7903 (heat tolerant) and RAJ 4014 (heat sensitive) wheat genotypes was investigated under timely and late‐sown conditions. Heat susceptibility index of GFD, yield components and traits under late‐sown condition were used as phenotypic data for QTL identification. Stable QTLs associated with these traits were identified on chromosomes 1B, 2B, 3B, 5A and 6B. The LOD value ranged from 2.9 to 5.0 and the corresponding phenotyping variation explained ranged from 12.0–22%. QTL for heat susceptibility index for the grain filling duration were colocalized with QTL for productive tillers under late sown and GFD under late‐sown condition on chromosomes 1B and 5A, respectively. These genomic regions could be exploited for molecular wheat breeding programmes targeting heat tolerance.  相似文献   

6.
小麦GMP含量发育动态的QTL定位   总被引:5,自引:2,他引:3  
利用小麦京771和Pm97034杂交后代重组自交系(RIL)群体,对小麦谷蛋白大聚合体(GMP)含量发育动态进行了QTL定位研究。结果表明,在籽粒灌浆的5个不同时期,共检测到8个条件QTL和10个非条件QTL,但没有一个QTL能在测定的5个时期都有效应。花后12 d,控制GMP形成的基因就已经有了一定的表达量,条件QTL能解释6.21%的表型变异,该基因位于1A染色体上。花后17 d,在1D染色体上测到了1个新表达的条件QTL位点,单独能解释14.14%的表型变异。花后22 d,控制GMP形成的基因的表达比较活跃,非条件分析检测到3个QTL位点,条件分析检测到2个QTL位点,这5个QTL位点分别位于1B、5B、6B和7B染色体上,其效应值都比较低,2个条件QTL共同能解释12.67%的净表型变异。花后27 d,在2D和3B染色体上各检测到2个条件和非条件QTL位点,加性效应值比较大。条件QTL能解释16.37%的表型变异,非条件QTL能解释23.94%的变异。花后32 d,仍有2个新的基因位点在表达,但此时QTL的净表达量已经开始下降,条件QTL仅能解释11.43%的表型变异。  相似文献   

7.
Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in Australia and elsewhere. In order to identify molecular markers associated with partial seedling resistance to this disease, bulked segregant analysis and quantitative trait loci (QTL) mapping approaches were undertaken using a population of 145 doubled haploid lines constructed from ‘2‐49’ (partially resistant) × ‘Janz’ (susceptible) parents. Phenotypic data indicated that the trait is quantitatively inherited. The largest QTLs were located on chromosomes 1D and 1A, and explained 21% and 9% of the phenotypic variance, respectively. Using the best markers associated with five QTLs identified by composite interval mapping, the combined effect of the QTLs explained 40.6% of the phenotypic variance. All resistance alleles were inherited from ‘2‐49’ with the exception of a QTL on 2B, which was inherited from ‘Janz’. A minor QTL on 4B was loosely linked (19.8 cM) to the Rht1 locus in repulsion. None of the QTLs identified in this study were located in the same region as resistance QTLs identified in other populations segregating for Fusarium head blight, caused by Fusarium graminearum.  相似文献   

8.
Y. Xu  S. Li  L. Li  X. Zhang  H. Xu  D. An 《Plant Breeding》2013,132(3):276-283
Quantitative trait loci (QTLs) for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat were identified. A set of 131 recombinant inbred lines derived from cross Chuan 35050 × Shannong 483 were evaluated under salt stress and normal conditions. Wide variation was found for all studied traits. A total of 18 additive and 16 epistatic QTLs were detected, among which five and 11 were with significant QTL × treatment effects. Ten QTL clusters were identified, and each may represent a single gene or closely linked genes. The locus controlling shoot K+/Na+ concentration ratio and shoot Na+ concentration on chromosome 5A may be identical to Nax2. The interval Xgwm6‐Xgwm538 on chromosome 4B for total dry weight was also identified in a previous study, both near the marker Xgwm6. The marker Xgwm6 may be useful for marker‐assisted selection. Six pairs of homoeologous QTLs were detected, showing synteny among the A, B and D genomes. These results facilitate understanding the mechanisms and the genetic basis of salt tolerance in wheat.  相似文献   

9.
利用永久F2群体定位小麦株高的QTL   总被引:3,自引:0,他引:3  
王岩  李卓坤  田纪春 《作物学报》2009,35(6):1038-1043
为研究小麦株高的遗传机制,利用DH群体构建了一套包含168个杂交组合的小麦永久F2群体, 并于2007年种植于山东泰安和山东聊城。构建了一套覆盖小麦21条染色体的遗传连锁图谱并利用该图谱的324个SSR标记对小麦株高进行QTL定位研究,使用基于混合线性模型的QTLNetwork 2.0软件进行QTL分析。在永久F2群体中定位了7个株高QTL,包括4个加性QTL,一个显性QTL,一对上位性QTL,共解释株高变异的20%,其中位于4D染色体的qPh4D,具有最大的遗传效应,贡献率为7.5%;位于2D 染色体显性效应位点qPh2D,可解释1.6%的表型变异;位于5B~6D染色体上位效应位点,可解释1.7%的表型变异。还发现加性效应、显性效应和上位效应对小麦株高的遗传起重要作用,并且基因与环境具有互作效应,结果表明利用永久F2群体进行QTL定位研究的方法有助于分子标记辅助育种。  相似文献   

10.
Gonzalez-Hernandez  J.L.  Elias  E.M.  Kianian  S.F. 《Euphytica》2004,139(3):217-225
Grain protein concentration (GPC) is an important quality factor in durum wheat [Triticum turgidum (L.) var. durum]. Due to the strong environmental influence on GPC, molecular markers linked to quantitative trait loci (QTL) affecting GPC have the potential to be valuable in wheat breeding programs. Various quantitative traits in a population of 133 recombinant inbred chromosome lines were studied in replicated trials at three locations in North Dakota. Segregation for GPC, 1000-kernel weight, gluten strength, heading date, and plant height was observed. By relating phenotypic data to a linkage map obtained from the same population, three QTL affecting GPC, and one affecting yield were identified. The genotypic coefficients of determination for both traits were high.  相似文献   

11.
Hong Zhang  Fa Cui  Honggang Wang 《Euphytica》2014,196(3):313-330
In order to detect quantitative trait loci (QTLs) for drought tolerance in wheat during seed germination conditional and unconditional QTL analyses of eight seedling traits were conducted under two water regimes using three related F9 recombinant inbred line populations with a common female parent. A total of 87 QTLs for the eight seedlings traits and 34 specific QTLs related to drought tolerance were detected. Seventy-one of these QTLs were major QTLs with contributions to phenotypic variance of >10 %. Of the 34 QTLs related to drought tolerance only eight were also detected by unconditional analysis of seedling traits under osmotic stress conditions indicating that most of the QTLs related to drought tolerance could not be detected by unconditional QTL analysis. Therefore, conditional QTL analysis of stress-tolerance traits such as drought tolerance was feasible and effective. Of 11 important QTL clusters located on chromosomes 1BL, 1D, 2A, 2B, 2D, 4A, 6B, and 7B, nine were detected in multiple populations and eight were detected by both unconditional and conditional analyses.  相似文献   

12.
The gene pool of Aegilops tauschii, the D-genome donor of common wheat (Triticum aestivum L.), can be easily accessed in wheat breeding, but remains largely unexplored. In our previous studies, many synthetic hexaploid wheat lines were produced through interspecific crosses between the tetraploid wheat cultivar Langdon and various A. tauschii accessions. The synthetic hexaploid wheat lines showed wide variation in many characteristics. To elucidate the genetic basis of variation in flowering-related traits, we analyzed quantitative trait loci (QTL) affecting time to heading, flowering and maturity, and the grain-filling period using four different F2 populations of synthetic hexaploid wheat lines. In total, 10 QTLs located on six D-genome chromosomes (all except 4D) were detected for the analyzed traits. The QTL on 1DL controlling heading time appeared to correspond to a flowering time QTL, previously considered to be an ortholog of Eps-A m 1 which is related to the narrow-sense earliness in einkorn wheat. The 5D QTL for heading time might be a novel locus associated with wheat flowering, while the 2DS QTL appears to be an allelic variant of the photoperiod response locus Ppd-D1. Some of the identified QTLs seemed to be novel loci regulating wheat flowering and maturation, including a QTL controlling the grain filling period on chromosome 3D. The exercise demonstrates that synthetic wheat lines can be useful for the identification of new, agriculturally important loci that can be transferred to, and used for the modification of flowering and grain maturation in hexaploid wheat.  相似文献   

13.
Dry matter accumulation (DMA) and photosynthetic capacity are important traits that influence biological yield and ultimate grain yield in wheat. In this study, quantitative trait loci (QTLs) analyses for DMA of stem, leaves, total plant and photosynthesis traits (Fv/Fm) at the jointing and anthesis stages were studied, using a set of 168 doubled haploid lines (DHLs) derived from the cross Huapei 3 (HP3)/Yumai 57 (YM57). QTL analyses were performed using QTL-Network 2.0 software based on the mixed linear model approach. A total of 18 additive QTLs and 12 pairs of epistatic QTLs were distributed on 16 of the 21 chromosomes. Most of the additive QTLs associated with DMA co-located in the same or adjacent chromosome intervals with QTLs for grain yield and related traits. A major locus Qculmc.sau-5D.1 (14.2%) close to the molecular marker Xwmc215 detected at the jointing stage was shared by QTLs for heading date and vernalization sensitivity, indicating tight linkages or pleiotropisms. One pair of epistatic QTLs, Qleavesc.sau-4A and Qleavesc.sau- 6B, explained 13.11% of the phenotypic variation at anthesis. All QTL × environment interactions were detected at the jointing stage, showing the importance of the jointing stage in determining the final outcome of plant development.  相似文献   

14.
Pre-harvest sprouting (PHS) in spring wheat (Triticum aestivum L.) is a major downgrading factors for grain producers and can significantly reduce end-use quality. PHS resistance is a complex trait influenced by genotype, environment and plant morphological factors. A population of 185 doubled haploid (DH) lines from the spring wheat cross ‘RL4452/AC Domain’ were used as the mapping population to detect quantitative trait loci (QTLs) associated with three PHS traits, germination index (GI), sprouting index (SI) and falling number (FN). Six major QTLs linked with PHS traits were mapped on bread wheat chromosomes 3A, 3D, 4A (2 loci), 4B and 7D. ‘AC Domain’ alleles contributed to PHS resistance on 3A, 4A (locus-2) and 4B, and ‘RL4452’ alleles contributed resistance on 3D, 4A (locus-1) and 7D. QTLs detected on chromosome 4B controlling FN (QFN.crc-4B), GI (QGI.crc-4B) and SI (QSI.crc-4B) were coincident, and explained the largest amount of phenotypic variation in FN (22%), GI (67%) and SI (26%), respectively.  相似文献   

15.
X. K. Zhang    L. Liu    Z. H. He    D. J. Sun    X. Y. He    Z. H. Xu    P. P. Zhang    F. Chen    X. C. Xia 《Plant Breeding》2008,127(2):109-115
Wheat quality properties are genetically determined by the compositions of high and low molecular weight glutenin subunits, grain hardness, polyphenol oxidase (PPO) activity and starch viscosity. Two multiplex PCR assays were developed and validated using 70 cultivars and advanced lines from Chinese autumn‐sown wheat regions. Multiplex PCR I includes molecular markers for genes/loci ω‐secalin, Glu‐B1‐2a (By8), Glu‐D1‐1d (Dx5), Glu‐A3d, Glu‐B3 (for non‐1B·1R type) and Pinb‐D1b targeting improved gluten parameters and pan bread quality. Multiplex PCR II comprises markers for genes/loci Ppo‐A1, Ppo‐D1 and Wx‐B1b targeting improved noodle quality. The results were consistent with those achieved by SDS‐PAGE and RP‐HPLC, indicating that the two multiplex assays were highly effective, with good repeatability and low costs enabling their use in wheat breeding programmes. In total, nine alleles (subunits) at locus Glu‐B1, four at Glu‐D1 and five at Glu‐A3 locus were identified, and the alleles (subunits) Glu‐B1b (7 + 8), Glu‐B1c (7 + 9), Glu‐D1a (2 + 12), Glu‐D1d (5 + 10), Glu‐A3a, Glu‐A3c and Glu‐A3d were most frequently present in the cultivars and lines tested. The 1B·1R translocation was present in 28 (40.0%) lines, whereas the Wx‐B1 null allele for better noodle quality was present in only seven (10.0%) cultivars and advanced lines, and 37 (52.9%) lines had Pinb‐D1b associated with hard grains. The allele Ppo‐A1b on chromosome 2AL associated with lower PPO activity was present in 38 (54.3%) genotypes, whereas the less effective allele Ppo‐D1a on chromosome 2DL, also associated with low PPO activity was present in 45 (64.3%) of genotypes. These two multiplex PCR assays should be effective in marker assisted selection targeting improved pan bread‐making and noodle qualities.  相似文献   

16.
Quantitative trait loci (QTLs) influencing textural properties (hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, and resilience)of wheat for Chinese northern-style steamed bread were studied using a doubled haploid (DH) population containing 168 lines derived from a cross between elite Chinese wheat cultivars Huapei 3 and Yumai 57 (Triticum aestivum L.). The DH population and parents were grown in 2007 and 2008 in Tai’an and 2008 in Suzhou. QTL analyses were performed using the software QTL Network version 2.0 and IciMapping v2.2 based on the mixed linear model. Thirty nine putative QTLs were detected on 14 chromosomes: viz. 1A, 2A, 3A, 4A, 6A, 1B, 2B, 3B, 5B, 6B, 7B, 5D, 6D, and 7D, and single QTLs explained 3.91–35.17% of the phenotypic variation. Eight pairs of QTLs with epistatic effects and/or epistasis × environment (AAE) effects were detected for adhesiveness, resilience, hardness, and cohesiveness on chromosomes 2A, 1B and 3D. Several co-located QTLs with additive effects were detected on chromosomes 2B, 5D, 6A, 3A, 3B and 6D. Two clusters of three QTLs for steamed bread textural properties (chewiness, gumminess, and hardness) and for adhesiveness, cohesiveness and resilience were detected on chromosome 2B. Two co-located QTLs with epistatic effects were detected on chromosomes 1B and 3A. Both additive effects and epistatic effects were important for Chinese steamed bread textural properties, which were also subject to environmental modifications. The information obtained in this study will be useful for manipulating QTLs determining Chinese steamed bread textural properties by molecular marker-assisted selection.  相似文献   

17.
利用“永久F2”群体进行小麦幼苗根系性状QTL分析   总被引:5,自引:1,他引:4  
为了研究小麦苗期根系性状的遗传,以小麦品种花培3号和豫麦57的杂交DH群体组配了一套含168个杂交组合的“永久F2”群体。利用WinRHIZO根系分析系统测定四叶一心期小麦水培幼苗根系总长度、直径、表面积、体积、根尖数、最大根长、茎叶干重、根干重及根茎干重比9个性状。采用复合区间作图法分析幼苗根系8个性状的QTL,定位了7个加性效应QTL和12对上位性互作QTL,包括加性效应、显性效应,加加互作、加显互作和显显互作,分布在1A、1D、2A、2B、2D、3A、3B、5D、6D和7D染色体上,单个QTL可解释0.01%~11.91%的遗传变异。在染色体2D上XWMC41至XBARC349.2区间检测到同时控制总根长和根干重的一个QTL。上位性对苗期根系生长发育有重要作用。试验结果表明,苗期根系性状的遗传机制较复杂, 因此在育种中要综合考虑根系各性状之间的关系,保证根系协调统一、发达健壮。  相似文献   

18.
Leaf‐related traits (leaf length, leaf width, leaf area and leaf angle) are very important for the yield of maize (Zea mays L) due to their influence on plant type. Therefore, it is necessary to identify quantitative trait loci (QTLs) for leaf‐related traits. In this report, 221 doubled haploid lines (DHLs) of an IBM Syn10 DH population were provided for QTL mapping. In total, 54 QTLs were detected for leaf‐related traits in single environments using a high‐density genetic linkage map. Among them, only eight common QTLs were identified across two or three environments, and the common QTLs for the four traits explained 4.38%–19.99% of the phenotypic variation. qLL‐2‐1 (bin 2.09), qLW‐2‐2 (bin 2.09), qLW‐6‐3 (bin 6.07) and qLA‐5‐2 (bin 2.09) were detected in previous studies, and qLL‐1‐1, qLAr‐1‐1, qLAr‐2‐1 and qLA‐7‐1 may be new QTLs. Notably, qLW‐6‐3 and qLA‐5‐2 were found to be major QTLs explaining 19.99% and 10.96% of the phenotypic variation, respectively. Interestingly, we found three pairs of QTLs (qLW‐2‐2 and qLAr‐2‐1, qLW‐8‐1 and qLL‐8‐2, qLL‐3‐3 and qLAr‐3‐3) that control different traits and that were located on the same chromosome or in a nearby location. Moreover, nine pairs of loci with epistatic effects were identified for the four traits. These results may provide the foundation for QTL fine mapping and for an understanding of the genetic basis of variation in leaf‐related traits.  相似文献   

19.
Rice protein content (RPC) and rice fatcontent (RFC) are two important componentsof rice nutritional quality. In order toexamine the genetic basis of these traits,a doubled haploid (DH) population and anRFLP linkage map consisting of 232 markerloci were used to search QTLs for thetraits with the computer programQTLMapper1.0. This program is based onmixed linear models and allows simultaneousmapping of both main-effect and digenicepistastic QTLs in a DH population. RPC andRFC were evaluated based on a dry weightbasis of head rice by the Kjeldahl andSoxhlet methods respectively. A total offive main-effect QTLs for RPC wereresolved. The five QTLs collectivelyexplained 74% of the phenotypic variationwith LOD=15.2. Among these QTLs, the majorQTL qRPC-5 with the largest effectwas mapped in the interval of RG435-RG172aon chromosome 5. It accounted for 35% ofthe phenotypic variation with a LOD of16.7. At this locus the allele from theparent `Gui 630' increased RPC by 1.32%.The second QTL qRPC-7 was mapped inthe interval ZG34B-G20 on chromosome 7. Itexplained 23% of the phenotypic variancewith a LOD of 6.1. Its positive alleles,also from the parent `Gui 630', increasedRPC by 1.05%. As for the remaining threeQTLs, their additive effects wererelatively small and their positive alleleswere all inherited from the parent `02428'.Three QTLs for RFC were mapped onchromosome 1, 2 and 5 respectively. Theycollectively explained 44% of thephenotypic variation. Among these loci,QTLs qRFC-2 and qRFC-5 withlarger effects individually accounted for24% and 26% of the phenotypic variancerespectively. At QTL qRFC-2 thepositive allele came from the parent `Gui630', while at QTL qRFC-5 thepositive allele from the parent `02428'.The fact that both parents possess thepositive alleles at the QTLs for the twotraits provides an appropriate explanationfor the large transgressive segregationobserved in the DH lines. Furthermore, onlyone pair of epistatic loci explaining only5.1% of the phenotypic variance wasdetected for RPC, whereas seven pairs ofepistatic loci were resolved for RFC. Thetotal absolute effects of these RFCinteractions amounted to 0.97% which ismuch larger than that (0.42%) of the threemain-effect QTLs for the trait. Alongwith the observation that RPC showed a highheritability (78%), these resultsdemonstrate that RPC in the DH populationcould be mainly controlled by relativelyfew QTLs with large main-effects. As forRFC, epistatic interactions might be aneven more important component of thegenetic basis and the segregation of the DHlines could be largely explained by a fewmain-effect QTLs and many epistatic loci.In addition, a highly negative correlation(r = –0.45) between RPC and RFC inthe DH population was observed. Thiscorrelation could be largely explained bythe linkage of qRPC-5 and qRFC-5 with the directions of effectsopposite and the co-locations of the twoepistatic loci for RFC respectively withtwo different main-effect QTLs for RPC. Theinformation reported in the present papermay be useful for improving ricenutritional quality by means ofmarker-assisted selection.  相似文献   

20.
不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析   总被引:2,自引:0,他引:2  
小麦胚芽鞘和胚根在不同渗透溶液下的长度变化是鉴评小麦幼苗抗逆性的重要指标。以小麦花培3号×豫麦57的DH株系衍生的含168个组合的永久F2 (immortalized F2, IF2)群体为材料,在蒸馏水(正常条件)以及10%、20%和30%聚乙二醇(PEG-6000)模拟水分胁迫处理下,进行胚芽鞘长和胚根长度的数量性状基因(QTL)定位分析。利用完备区间作图法,共检测到影响胚芽鞘和胚根长度的23个QTL,单个QTL对表型的贡献率为4.93%~35.37%。位于4B染色体区间Xcfd39.2–Xcfd22.2上影响胚芽鞘长度的位点QCl4B,具有最大的遗传效应,贡献率为35.37%;在3D染色体Xcfd223–Xbarc323区段,正常条件和20% PEG-6000处理下同时检测到影响胚芽鞘长度的QTL,QCl3D-a,其贡献率分别为7.83%和11.74%。另外,在10% PEG-6000处理下,3D染色体上的相近区域还定位出了影响胚芽鞘长度的QCl3D-b位点;在染色体1A和染色体5A1上各检测出与胚根长度有关的2个和3个不同的QTL;在6D染色体Xswes679.1–Xcfa2129和Xwmc412.1–Xcfd49区间分别检测到2个影响胚芽鞘长度和胚根长度的QTL。这些主效QTL可用于胚芽鞘和根系的分子标记辅助选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号