首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myostatin (MSTN) is a negative regulator during muscle differentiation, whereas insulin‐like growth factors (IGFs) are essential for muscle development. MSTN and IGFs act oppositely during myogenesis, but there is little information on the mutual relationship of MSTN and IGFs. The present study was conducted to examine whether MSTN affects IGF expression during early myogenesis in cattle. IGF‐1 mRNA was similarly expressed in M. longissimus thoracis of double‐muscled (DM) and normal (NM) Japanese shorthorn cattle. IGF‐2 mRNA expression was consistently higher in the normal and regenerating muscle of DM cattle than those of NM cattle. When myoblasts were isolated from regenerating M. longissimus thoracis, IGF‐2 mRNA expression showed a significant increase in differentiating DM derived myoblasts (DM‐myoblasts) as compared with differentiating NM derived myoblasts (NM‐myoblasts). An addition of recombinant mouse myostatin (rMSTN) to myoblast cultures attenuated IGF‐2 mRNA expression and decreased myotube formation, but did not effect IGF‐1 mRNA expression. An activin‐like kinase (ALK) inhibitor, SB431542, mediates MSTN action, suppressed the translocation of Smad2/3 into the nucleus in DM‐myoblasts, and restored the attenuated IGF‐2 mRNA expression and the decreased myotube formation induced by rMSTN in myoblast cultures. The findings indicate that MSTN may negatively regulate myoblast differentiation by suppressing IGF‐2 expression via ALK‐Smad signaling.  相似文献   

2.
Satellite cells attached to skeletal muscle fibers play a crucial role in skeletal muscle regeneration. During regeneration, the satellite cells proliferate, migrate to the damaged region, and fuse to each other. Although it is important to determine the cellular mechanisms controlling myoblast behavior, their regulators are not well understood. In this study, we evaluated the roles of Fbxw7 in primary myoblasts and determined its potential as a therapeutic target for muscle disease. We originally found that Fbxw7β, one of the E3 ubiquitin ligase Fbxw7 subtypes, negatively regulates differentiation, proliferation and migration of myoblasts and satellite cells on muscle fiber. However, these phenomena were not observed in myoblasts expressing a dominant‐negative, F‐box deleted Fbxw7β, mutant. Our results suggest that myoblast differentiation potential and muscle regeneration can be regulated by Fbxw7β.  相似文献   

3.
Myogenesis is precisely proceeded by myogenic regulatory factors. Myogenic stem cells are activated, proliferated and fused into a multinuclear myofiber. Pax7, paired box 7, one of the earliest markers during myogenesis. It has been reported that Pax7 regulates the muscle marker genes, Myf5 and MyoD toward differentiation. The possible roles of Pax7 in myogenic cells have been well researched. However, it has not yet been clarified if Pax7 itself is able to induce myogenic fate in nonmyogenic lineage cells. In this study, we performed experiments using stably expressed Pax7 in 3T3‐L1 preadipocytes to elucidate if Pax7 inhibits adipogenesis. We found that Pax7 represses adipogenic markers and prevents differentiation. These cells showed decreased expression of PDGFRα, PPARγ and Fabp4 and inhibited forming lipid droplets.  相似文献   

4.
To clarify muscle type‐specific effect of myostatin on myogenic regulatory factors (MRFs), we examined mRNA expression of MRFs in five skeletal muscles of normal (NM) and myostatin‐deficient double‐muscled (DM) adult Japanese Shorthorn cattle by quantitative reverse‐transcribed PCR. Among the four MRFs, namely, Myf5, MyoD, myogenin, and MRF4, MyoD expression was different among the muscles of the DM cattle (P < 0.01) but not of the NM cattle. Meanwhile, MyoD expression was significantly elevated only in masseter (MS) muscle in the DM cattle due to the myostatin deficiency (P < 0.05). Myf5 and MRF4 expression in semitendinosus (ST) was higher in the DM than in the NM cattle (P < 0.05). According to analysis of myosin heavy chain (MyHC) isoform expression, more MyHC‐2x and ‐2a and less ‐slow isoforms were expressed in the longissimus and ST muscles compared to the MS muscle in both cattle (P < 0.05), but no significant difference in MyHC expression was observed between the NM and DM cattle. Taken together, myostatin has influences on Myf5 and MRF4 expression in faster‐type muscles and on MyoD expression in slower‐type muscles, suggesting a possible muscle type‐specific effect of myostatin in skeletal muscle growth and maintenance.  相似文献   

5.
In this study, inner cell mass (ICM) cells were isolated from in vitro produced buffalo blastocysts and were cultured on mitomycin‐C treated buffalo foetal fibroblast feeder layer for producing embryonic stem (ES) cells. Among different sources (hatched vs expanded blastocysts) or methods (enzymatic vs mechanical), mechanical isolation of ICM from hatched blastocysts resulted in the highest primary colony formation rate and the maximum passage number up to which ES cells survived. Putative ES cells expressed alkaline phosphatase and exhibited a normal karyotype up to passage 7. Putative ES cells and embryos at 2‐ to 4‐cell, 8‐ to 16‐cell, morula and blastocyst stages strongly expressed stage‐specific embryonic antigen (SSEA)‐4 but lacked expressions of SSEA‐1 and SSEA‐3. Putative ES cells also expressed tumour rejection antigen (TRA)‐1‐60, TRA‐1‐81 and Oct4. Whereas in all early embryonic stages, TRA‐1‐60 was observed only in the periplasmic space, and TRA‐1‐81 expression was observed as small spots at a few places inside the embryos, both these markers were expressed by ICM. Oct4 expression, which was observed at all the embryonic stages and also in the trophectoderm, was the strongest in the ICM. Buffalo putative ES cells possess a unique pluripotency‐related surface antigen phenotype, which resembles that of the ICM.  相似文献   

6.
7.
The aims of this study were (i) to determine whether amniotic fluid‐derived stem cells (amniotic fluid‐derived stem; AFS cells) could be isolated from pigs at intermediate and late gestational ages, and (ii) to determine if these AFS cells could be differentiated in vitro into neural lineages following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Amniotic fluid‐derived stem cells were isolated from embryonic day 60 and day 110 porcine amniotic fluid respectively, and transfected with EGFP gene using lipofection. The transfected AFS cells were induced to differentiate into cells of neuronal lineages. Markers associated with undifferentiated AFS cells and their neural derivatives were tested by polymerase chain reaction. The results demonstrated that porcine AFS cells could be isolated at intermediate and late gestational ages and that transfected AFS expressed EGFP and could be induced to differentiate in vitro. Undifferentiated AFS cells expressed POU5F1, THY1 and SOX2, while following differentiation cells expressed markers for astrocytes (GFAP), oligodendrocytes (GALC) and neurons (NF, ENOS and MAP2).  相似文献   

8.
Cell‐cell fusion has been a great technology to generate valuable hybrid cells and organisms such as hybridomas. In this study, skeletal muscle myoblasts were utilized to establish a novel method for autonomous xenogenic cell fusion. Myoblasts are mononuclear myogenic precursor cells and fuse mutually to form multinuclear myotubes. We generated murine myoblasts (mMBs) expressing green fluorescent protein (GFP) termed mMB‐GFP, and the chick myoblasts (chMBs) expressing Discosoma red fluorescent protein (DsRed) termed chMB‐DsRed. mMB‐GFP and chMB‐DsRed were cocultured and induced to differentiate. After 24 h, the multinuclear myotubes expressing both GFP and DsRed were observed, indicating that mMBs and chMBs interspecifically fuse. These GFP+/DsRed+ hybrid myotubes were able to survive and grew to hyper‐multinucleated mature form. We also found that undifferentiated mMB‐GFP efficiently fuse to the chMB‐DsRed‐derived myotubes. This is the first evidence for the autonomous xenogenic fusion of mammalian and avian cells. Myoblast‐based fusogenic technique will open up an alternative direction to create novel hybrid products.  相似文献   

9.
In obese humans, mesenchymal stem cells differentiate to become ectopic fat cells in muscles. These ectopic fat cells inhibit the contraction of vascular smooth muscles. Stem cells have been recently identified in the human oviduct, a structure important in reproduction. We therefore investigated the number of Oil Red O (ORO)‐positive cells in the oviducts of control Japanese Black cows (n = 6; body condition score [BCS], 3.0 on a 5‐point scale) compared to those with diet‐induced obesity (n = 5; BCS, 4.0). We stained the ampulla and isthmus collected on the second day after ovulation with ORO and then counted the positive cells in each layer in 10 cross‐sections of the ampulla or isthmus. The obese group (23.4 ± 3.4 in the 10 sections) had larger numbers of ORO‐positive cells in the longitudinal muscularis of the isthmus (P < 0.05) than did the control group (15.0 ± 2.4). ORO‐positive cells were also observed in all other layers of the isthmus and ampulla; however, the number of cells in these layers did not differ significantly between obese cows and controls. Whether this observed increase in ORO‐positive cells in the oviducts of obese cows affects their reproduction warrants further study.  相似文献   

10.
To assess both quantitative and qualitative differences between the slow‐ and fast‐type muscles, masseter (slow) and semitendinosus (fast) from four Holstein cows were analyzed by two‐dimensional difference gel electrophoresis (2D DIGE) and mass spectrometry. The proteome analysis identified 27 spots as 20 proteins in the whole protein fraction extracted with 8 mol/L urea solution, and 16 spots were identified as 11 proteins in the water‐soluble protein fraction. Two slow‐type myofibrillar proteins (myosin light chain‐1 slow‐b and myosin light chain‐2 slow), and aconitase‐2 mitochondria were present at higher levels in the masseter muscle (P < 0.05). Four fast‐type myofibrillar proteins (myosin light chain‐1 fast, myosin light chain‐2 fast, myosin light chain‐3 fast and tropomyosin‐1), and three enzymes of glycolytic pathway (enolase‐3, aldolase‐A and triosephosphate isomerase), were present at higher levels in the semitendinosus muscle (P < 0.05). Our proteome analysis showed that the composition of sarcoplasmic proteins as well as myofibrillar proteins was clearly different between slow‐ and fast‐type muscles.  相似文献   

11.
试验旨在分离绵羊骨骼肌卫星细胞(skeletal muscle satellite cells,SMSCs),建立绵羊SMSCs体外分离、培养及鉴定体系,为后续研究提供种子细胞。以新生健康绵羊为试验动物,采用胶原酶Ⅳ和胰酶两步酶消化法和差速贴壁法分离并纯化SMSCs。用RT-PCR和免疫荧光法鉴定SMSCs标记基因配对盒基因7(paired box 7,Pax7)、结蛋白(Desmin)和生肌调节因子1(myogenic regulatory factors 1,MyoD1)的表达情况;用血清撤离法诱导SMSCs向成肌细胞方向分化,成肌诱导后观察肌管的形成,免疫荧光法检测成肌分化特异性标志肌球蛋白重链(myosin heavy chain,MHC)的表达。RT-PCR结果显示,扩增条带与预期相符,所分离细胞表达SMSCs标记基因Pax7、DesminMyoD1;免疫荧光鉴定结果显示,所分离细胞表达SMSCs标记蛋白Pax7、Desmin和MyoD1;成肌诱导后镜下可见细胞相互融合形成多核的肌管,并表达成肌特异性标志MHC。本试验分离了绵羊SMSCs,建立了适用于绵羊SMSCs的体外培养体系,并成功进行了成肌诱导分化,为今后研究绵羊骨骼肌生长发育机制提供了试验材料和技术支撑。  相似文献   

12.
Stem cells have been isolated from ovaries, and their ability to differentiate into oocytes in vitro has been demonstrated for mice and human, but not for bovine species. The aims of this study were to isolate germline stem cells from bovine ovaries and to evaluate the effects of bone morphogenetic proteins (BMPs) 2 and 4, and follicular fluid on the differentiation of these stem cells into oocyte‐like structures. The ovarian stem cells were isolated and cultured in α‐MEM+ supplemented with BMP2, BMP4 or follicular fluid. On days 0 and 14, cells were evaluated for their morphological appearance, viability, expression of alkaline phosphatase and for markers of germ cell formation (VASA and DAZL) and oocyte development (GDF9, ZPA and SCP3) by qPCR. Levels of mRNA were analysed using ANOVA and Bonferroni test (p < .05). The results showed that at day 0, ovarian stem cells expressed specific markers of pluripotency (OCT4, SOX). In addition, these cells were positive for alkaline phosphatase, which is a marker commonly used to identify primordial germ cells (PGCs). After the period of differentiation, cells had morphological features that resemble PGCs and oocyte‐like cells (OLCs). An increase, ranging from five to 14 times, in the expression of VASA was observed in cells cultured in medium supplemented with BMPs and follicular fluid, while the increase in DAZL expression ranged from four to six times. In addition, OLCs had an increase in expression of mRNAs for GDF9, ZPA and SCP3 that ranged from two to eight times. In conclusion, OLCs can be differentiated in vitro from ovarian stem cells and BMPs and follicular fluid are effective in stimulating the expression of mRNAs for germ cell and oocyte markers.  相似文献   

13.
Satellite cells are a heterogeneous population of myogenic precursors responsible for muscle growth and repair in mammals. The objectives of the experiment were to examine the growth rates and degree of heterogeneity within bovine satellite cells (BSC) isolated from young and adult animals. The BSC were harvested from the semimembranosus of young (4.3 ± 0.5 d) and adult (estimated 24 to 27 mo) cattle and cultured en masse. Young animal BSC re-enter the cell cycle sooner and reach maximal 5-ethynyl-2'-deoxyuridine (EdU) incorporation earlier (P < 0.05) than adult contemporaries. Adult BSC contain fewer (P < 0.05) MyoD and myogenin immunopositive nuclei than BSC isolated from young animals after 3, 4, and 5 d in culture. These results indicate that BSC from young animals activate, proliferate, and differentiate sooner than isolates from adult animals. Lineage heterogeneity within BSC was examined using antibodies specific for Pax7 and Myf5, lineage markers of satellite cells, and myoblasts. Immunocytochemistry revealed the majority of Pax7-expressing BSC also express Myf5; a minor population (~5%) fails to exhibit Myf5 immunoreactivity. The percentage of Pax7:Myf5 BSC from young animals decreases sooner (P < 0.05) in culture than adult BSC, indicating a more rapid rate of muscle fiber formation. A subpopulation immunopositive for Myf5 only was identified in both ages of BSC isolates. The growth kinetics and heterogeneity of young BSC was further evaluated by clonal analysis. Single cell clones were established and analyzed after 10 d. Colonies segregated into 2 groups based upon population doubling time. Immunostaining of the slow-growing colonies (population doubling time ≥ 3 d) revealed that a portion exhibited asymmetric distribution of the lineage markers Pax7 and Myf5, similar to self-renewable mouse muscle stem cells. In summary, these results offer insight into the heterogeneity of BSC and provide evidence for subtle differences between rodent and bovine myogenic precursors.  相似文献   

14.
This study examined the molecular mechanisms of methionine pathways in meat‐type chickens where birds were provided with a diet deficient in methionine from 3 to 5 weeks of age. The birds on the deficient diet were then provided with a diet supplemented with either D,L‐methionine or D,L‐HMTBA from 5 to 7 weeks. The diet of the control birds was supplemented with L‐methionine from hatch till 7 weeks of age. We studied the mRNA expression of methionine adenosyltransferase 1, alpha, methionine adenosyltransferase 1, beta, 5‐methyltetrahydrofolate‐homocysteine methyltransferase, 5‐methyltetrahydrofolate‐homocysteine methyltransferase reductase, betaine‐homocysteine S‐methyltransferase, glycine N‐methyltransferase, S‐adenosyl‐L‐homocysteine hydrolase and cystathionine beta synthase genes in the liver, duodenum, Pectoralis (P.) major and the gastrocnemius muscle at 5 and 7 weeks. Feeding a diet deficient in dietary methionine affected body composition. Birds that were fed a methionine‐deficient diet expressed genes that indicated that remethylation occurred via the one‐carbon pathway in the liver and duodenum; however, in the P. major and the gastrocnemius muscles, gene expression levels suggested that homocysteine received methyl from both folate and betaine for remethylation. Birds who were switched from a methionine deficiency diet to one supplemented with either D,L‐methionine or D,L‐HMTBA showed a downregulation of all the genes studied in the liver. However, depending on the tissue or methionine form, either folate or betaine was elicited for remethylation. Thus, mRNA expressions show that genes in the remethylation and transsulphuration pathways were regulated according to tissue need, and there were some differences in the methionine form.  相似文献   

15.
16.
17.
The early post mortem expression of eight genes potentially involved in meat ageing process and the tenderness of two Italian Simmental young bulls' (Bos taurus) skeletal muscles differing in their contractile type were evaluated. Samples of Longissimus lumborum (LL) and Infraspinatus (IS) muscles were collected from 17 bulls. The messenger RNA (mRNA) abundances of calpain‐1, calpain‐2, calpastatin, caspase 3, caspase 9, heat shock protein 27 (Hsp27), Hsp40 and Hsp70 were detected by quantitative PCR. The myosin heavy chain‐slow and ‐fast isoform content, the pH48h and the lipid content of the muscles were in line with the contractile and metabolic type. In comparison with the fast LL, the slow IS showed a lower calpain‐1/calpastatin mRNA content ratio after slaughtering and a higher Warner‐Bratzler Initial Yield value after 7 days of ageing. Hsp27 and Hsp70 mRNA abundances were significantly lower in LL than IS, highlighting their potential role in the ageing process of bovine muscles.  相似文献   

18.
A 12‐year‐old, male castrated Domestic Shorthair cat was presented to Animal Medical Center of Gifu Univeristy with anorexia and vomiting. Physical examination revealed an enlarged left tonsil and right mandibular lymph node (approximately 2–3× the normal size), and a submucosal mass on the right side of the epiglottis (1.5 × 2.0 cm). On computed tomography images, an enlarged left tonsil, and enlarged right mandibular, right pharyngeal, and left and right cervical lymph nodes were observed. Cytologic examination of smears of tonsil and lymph nodes revealed numerous medium‐ to large‐sized neoplastic lymphoid cells, approximately half of which contained one or several light‐blue homogenous globoid cytoplasmic inclusions (5–10 μm), which stained magenta with periodic acid–Schiff (PAS) stain. Histopathologic examination of the left tonsil revealed diffuse proliferation of medium‐ to large‐sized neoplastic lymphoid cells effacing the original lymphoid architecture. Half of the cells contained one or several eosinophilic globoid cytoplasmic inclusions, which stained magenta with PAS and showed positive immunohistochemical reactions for immunoglobulin M (IgM) and λ light chain. Neoplastic lymphoid cells were also CD20+, Pax5+, and MUM1+, and CD3?. Thus, the neoplastic lymphoid cells expressed a B‐cell immunophenotype, and the globoid cytoplasmic inclusions represented an aberrant IgM λ light chain accumulation, similar to Russell bodies. B‐cell lymphoma with Mott cell differentiation was diagnosed based on cytologic, histopathologic, and immunohistochemical features. This is the first report of B‐cell lymphoma with Mott cell differentiation in a cat.  相似文献   

19.
Skeletal muscle fiber is largely classified into two types: type 1 (slow‐twitch) and type 2 (fast‐twitch) fibers. Meat quality and composition of fiber types are thought to be closely related. Previous research showed that overexpression of constitutively active peroxisome proliferator‐activated receptor (PPAR)δ, a nuclear receptor present in skeletal muscle, increased type 1 fibers in mice. In this study, we found that hexane extracts of Yamabushitake mushroom (Hericium erinaceus) showed PPARδ agonistic activity in vitro. Eight‐week‐old C57BL/6J mice were fed a diet supplemented with 5% (w/w) freeze‐dried Yamabushitake mushroom for 24 hr. After the treatment period, the extensor digitorum longus (EDL) muscles were excised. The Yamabushitake‐supplemented diet up‐regulated the PPARδ target genes Pdk4 and Ucp3 in mouse skeletal muscles in vivo. Furthermore, feeding the Yamabushitake‐supplemented diet to mice for 8 weeks resulted in a significant increase in muscle endurance. These results indicate that Yamabushitake mushroom contains PPARδ agonistic ligands and that dietary intake of Yamabushitake mushroom could activate PPARδ in skeletal muscle of mice. Unexpectedly, we observed no significant alterations in composition of muscle fiber types between the mice fed control and Yamabushitake‐supplemented diets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号