首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat’s genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.  相似文献   

2.
Synthetic hexaploid wheats are of interest to wheat breeding programs, especially for introducing new genes that confer resistance to biotic and abiotic stresses. A group of 54 synthetic hexaploid wheats derived from crosses between emmer wheat(Triticum dicoccum, source of the A and B genomes) and goat grass (Aegilops tauschii, D genome donor) were investigated for genetic diversity. Using the AFLP technique, dendrograms revealed clear grouping according to geographical origin for the T. dicoccum parents but no clear groups for the Ae. tauschii parents. The geographical clustering of the T. dicoccum parents was also reflected in the dendrogram of their derived synthetic hexaploids. Diversity of the T. dicoccum parents and their derived synthetic hexaploids was further evaluated by measuring 18morphological and agronomic traits on the plants. Clustering based on morphological and agronomic data also reflected geographical origin. However, comparison of genetic distances obtained from AFLP and agronomic data showed no correlation between the two diversity measurements. Nevertheless, similarities among major clusters with the two systems could be identified. Based on percentage of polymorphic markers, the synthetic hexaploids had a considerably higher level of AFLP diversity (39%) than normally observed in cultivated hexaploid wheat (12–21%). This suggests that synthetic hexaploid wheats can be used to introduce new genetic diversity into the bread wheat gene pool. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Synthetic hexaploid wheat is an effective genetic resource for transferring agronomically important genes from Aegilops tauschii to common wheat. Wide variation in grain size and shape, one of the main targets for wheat breeding, has been observed among Ae. tauschii accessions. To identify the quantitative trait loci (QTLs) responsible for grain size and shape variation in the wheat D genome under a hexaploid genetic background, six parameters related to grain size and shape were measured using SmartGrain digital image software and QTL analysis was conducted using four F2 mapping populations of wheat synthetic hexaploids. In total, 18 QTLs for the six parameters were found on five of the seven D-genome chromosomes. The identified QTLs significantly contributed to the variation in grain size and shape among the synthetic wheat lines, implying that the D-genome QTLs might be at least partly functional in hexaploid wheat. Thus, synthetic wheat lines with diverse D genomes from Ae. tauschii are useful resources for the identification of agronomically important loci that function in hexaploid wheat.  相似文献   

4.
Greater variability in starch properties is found in lower ploidy wheats than in commercial hexaploid wheats. This paper reports on the starch properties and variability in granule bound starch synthase (GBSS) loci of 17 diploid (Aegilops tauschii) and 12 tetraploid (durums) potential progenitors of wheat, compared with 29 synthetic hexaploid wheats produced from such progenitors. Starch properties examined were granule size distribution, swelling power, amylose content, gelatinisation and amylose-lipid dissociation properties. A PCR screening method was able to detect the presence or absence of each of the three GBSS genes. It also detected polymorphisms in eight diploids and nine hexaploids, all displaying the same 25 bases deletion in the D genome allele of GBSS. Two tetraploids and five hexaploids were null 4A for GBSS. There was little difference in the amylose contents and amylose-lipid dissociation peak temperatures of the synthetic hexaploids and the lower ploidy wheats. The synthetic hexaploids showed intermediate swelling power values with the durums giving the highest swelling powers. The durums also had higher B granule contents than the A. tauschii accessions, but not as high as the synthetics. However, the A. tauschii samples gave the highest gelatinisation peak temperatures. The presence of the null 4A mutation was positively correlated with swelling power, amylose content and DSC measurements. The new smaller D genome allele of GBSS was associated with slightly higher swelling power. These results confirm the value of wheat progenitor lines as sources of new starch properties for hexaploid wheat. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Wheat pre-breeding using wild progenitors   总被引:6,自引:1,他引:6  
J. J. Valkoun 《Euphytica》2001,119(1-2):17-23
To facilitate the use of wheat wild relatives in conventional breedingprograms, a wheat pre-breeding activity started at ICARDA in 1994/1995season. Preliminary results of gene introgression from wild diploidprogenitors, Triticum urartu, T. baeoticum, Aegilops speltoides andAe. tauschii and tetraploid T. dicoccoides are described. Crosseswith wild diploid Triticum spp. yielded high variation in plant andspike morphology. Synthetic hexaploids were produced from crosses of alocal durum wheat landrace `Haurani' with two Ae. tauschiiaccessions. Both Ae. tauschii accessions carry hybrid necrosis allelesthat gave necrotic plant phenotypes in crosses with some bread wheats.Backcross progenies with agronomical desirable traits, i.e. high spikeproductivity, short plant stature, earliness, drought tolerance and highproductive tillering, were identified in crosses of durum wheat with wild Triticum spp. and in a cross of one of the hexaploid synthetics with alocally adapted bread wheat cv. `Cham 6'. Resistance to yellow rust wasfound in durum wheat crosses with the three wild Triticum spp. andAe. speltoides and leaf rust resistance was identified in crosses withT. baeoticum and Ae. speltoides. The results show that wheatimmediate progenitors may be a valuable and readily accessible source ofnew genetic diversity for wheat improvement.  相似文献   

6.
Y. M. Yan    S. L. K. Hsam    J. Z. Yu    Y. Jiang  F. J. Zeller 《Plant Breeding》2003,122(2):120-124
Gliadin variation at Gli‐Dt1 and Gli‐Dt2 loci in 198 Aegilops tauschii accessions was studied by acid polyacrylamide gel electrophoresis (A‐PAGE) and capillary electrophoresis (CE). High genetic polymorphisms were found at both gliadin coding loci, revealing a total of 184 and 169 gliadin variants at the Gli‐Dt1 and Gli‐Dt2 loci, respectively. In particular, 12 gliadin blocks encoded by different alleles were apparently expressed and readily identified in six synthetic hexaploids produced by hybridization between Triticum durum and Ae. tauschii accessions. Compared with Ae. tauschii ssp. eusquarrosa, the gliadin profile of the D genome in Ae. tauschii ssp. strangulata more resembles that of T. aestivum, supporting the view that the subspecies strangulata is the most likely progenitor of bread wheat. Capillary electrophoresis analysis showed that the method is capable of separating and characterizing gliadins with speed, in high resolution using small sample amounts, and is well‐suited to detect protein alleles and to identify desirable genotypes in wheat quality improvement.  相似文献   

7.
Aegilops tauschii Coss. is the D-genome donor to hexaploid bread wheat (Triticum aestivum) and is the most promising wild species as a genetic resource for wheat breeding. To study the population structure and diversity of 81 Ae. tauschii accessions collected from various regions of its geographical distribution, the genomic representation of these lines were used to develop a diversity array technology (DArT) marker array. This Ae. tauschii array and a previously developed DArT wheat array were used to scan the genomes of the 81 accessions. Out of 7500 markers (5500 wheat and 2000 Ae. tauschii), 4449 were polymorphic (3776 wheat and 673 Ae. tauschii). Phylogenetic and population structure studies revealed that the accessions could be divided into three groups. The two Ae. tauschii subspecies could also be separately clustered, suggesting that the current taxonomy might be valid. DArT markers are effective to detect very small polymorphisms. The information obtained about Ae. tauschii in the current study could be useful for wheat breeding. In addition, the new DArT array from this Ae. tauschii population is expected to be an effective tool for hexaploid wheat studies.  相似文献   

8.
Wanquan Chen  Taiguo Liu  Li Gao 《Euphytica》2013,192(3):339-346
Stripe rust and leaf rust caused by Puccinia striiformis (Ps) Westend. and P. triticina (Pt) Eriks., respectively, are important foliar diseases of wheat worldwide. Breeding resistant wheat cultivars is the preferred strategy to control these diseases. Genes for resistance when introgressed from alien species or wheats of lower ploidy are frequently diluted effectiveness in the hexaploid wheat background or are completely suppressed. The objective of this study was to examine the expression of wheat stripe rust and leaf rust resistances derived from wild emmer wheat and Aegilops tauschii when combined in synthetic hexaploid lines. Eight amphidiploid wheat lines, synthesized by crossing five tetraploid wheats (AABB), viz. Triticum carthlicum var. darginicum, T. carthlicum var. fuligioscum, T. dicoccoides var. fuligioscum, T. durum with five lines of Ae. tauschii (DD), were evaluated in the seedling stage for resistance to five pathotypes of stripe rust caused by Ps and four pathotypes of leaf rust caused by Pt. Resistance in one or both parents was frequently suppressed in synthetic hexaploid lines, indicating the presence of suppressor genes in both Ae. tauschii and T. carthlicum var. darginicum. Specific suppression of resistance genes in the parental genotypes and to pathotypes of Ps and Pt were also observed. The presence and specificity of the suppressors for rust resistance obtained in this study provides useful knowledge for developing cultivars resistant to both rusts utilizing such genetic stocks in wheat breeding programs.  相似文献   

9.
Synthetic hexaploid wheat, produced by combining tetraploid wheat (AB genome) with Triticum tauschii (D genome), was crossed to modern hexaploid wheat (Triticum aestivum ABD genome) in an attempt to introduce new cold hardiness genes into the common hexaploid wheat gene pool. The cold hardiness levels of F) hybrids ranged from similar to parental means to equal to the hardy parent, indicating that cold hardiness was controlled by both additive and dominant genes. As expected when dominant gene action is involved, differences between F2 and parental means were smaller than comparable differences in the F., Frequency distributions of F2—derived F3 lines also suggested that dominant genes were involved in the control of cold hardiness in some crosses. Heritability estimates for cold hardiness ranged from 63 to 70 % indicating that selection for cold hardiness should be effective in populations arising from crosses between common and synthetic hexaploid wheat. However, high selection pressure on the progeny of crosses that included the most hardy T. aestivum, T. durum, and T. tauschii accessions as parents did not identify transgressive segregates for improved cold hardiness. These observations indicate that the close wheat relatives, sharing common genomes with T. aestivum, are not promising sources of new genes to increase the maximum cold hardiness potential of common hexaploid wheat.  相似文献   

10.
The gene pool of Aegilops tauschii, the D-genome donor of common wheat (Triticum aestivum L.), can be easily accessed in wheat breeding, but remains largely unexplored. In our previous studies, many synthetic hexaploid wheat lines were produced through interspecific crosses between the tetraploid wheat cultivar Langdon and various A. tauschii accessions. The synthetic hexaploid wheat lines showed wide variation in many characteristics. To elucidate the genetic basis of variation in flowering-related traits, we analyzed quantitative trait loci (QTL) affecting time to heading, flowering and maturity, and the grain-filling period using four different F2 populations of synthetic hexaploid wheat lines. In total, 10 QTLs located on six D-genome chromosomes (all except 4D) were detected for the analyzed traits. The QTL on 1DL controlling heading time appeared to correspond to a flowering time QTL, previously considered to be an ortholog of Eps-A m 1 which is related to the narrow-sense earliness in einkorn wheat. The 5D QTL for heading time might be a novel locus associated with wheat flowering, while the 2DS QTL appears to be an allelic variant of the photoperiod response locus Ppd-D1. Some of the identified QTLs seemed to be novel loci regulating wheat flowering and maturation, including a QTL controlling the grain filling period on chromosome 3D. The exercise demonstrates that synthetic wheat lines can be useful for the identification of new, agriculturally important loci that can be transferred to, and used for the modification of flowering and grain maturation in hexaploid wheat.  相似文献   

11.
CIMMYT新型人工合成小麦Pina和Pinb基因等位变异   总被引:4,自引:0,他引:4  
六倍体人工合成小麦由硬粒小麦(Triticum turgidum subsp. durum)与粗山羊草(Aegilops tauschii Coss.)杂交产生,是研究小麦进化过程中基因变异的重要材料。以国际玉米小麦改良中心(CIMMYT)提供的57份由野生二粒小麦(T. turgidum subsp. dicoccoides)与粗山羊草杂交产生的新型人工合成六倍体小麦为材料,用单籽粒特性测定仪和Pina、Pinb特异性PCR引物对其籽粒硬度变异以及控制籽粒硬度的主效基因Pina和Pinb的分布情况进行了研究。结果表明,这些材料的SKCS硬度值变异较大,从10.5到42.6,其中15~30的占78%。共有Pina-D1a、Pina-D1c、Pinb-D1h和Pinb-D1j 4种等位变异型,基因型为Pina-D1a/Pinb-D1j的8个,占14%;基因型为Pina-D1c/Pinb-D1h的49个,占86%。方差分析表明,基因型Pina-D1a/Pinb-D1j与Pina-D1c/Pinb-D1h对籽粒硬度的影响差异不显著,但父本粗山羊草和母本野生二粒小麦以及二者间的互作对籽粒硬度有显著影响,说明除Pina和Pinb外,还有其他微效基因影响籽粒硬度的形成。  相似文献   

12.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

13.
The D-genome progenitor of hexaploid wheat, Aegilops tauschii Coss., has a wide natural species range in central Eurasia and possesses wide natural variation in heading and flowering time. Here, we report identification of two Ae. tauschii accessions insensitive to short day length. Similarly to a loss or reduced degree of vernalization requirement, the photoperiod-insensitive mutations were found only in the early flowering sublineage (TauL1b) of Ae. tauschii. Quantitative trait locus (QTL) analyses using two F2 mapping populations showed that a QTL for heading time on the long arm of chromosome 5D was related to the early heading phenotype of the photoperiod-insensitive accessions under short-day conditions. In the photoperiod-insensitive accession, expression patterns of two flowering-related genes were altered under short-day conditions compared with the patterns in photoperiod-sensitive accessions. This study indicates that analysis of natural variations in the Ae. tauschii population is useful to find novel genetic loci controlling agronomically important traits.  相似文献   

14.
A collection of 89 accessions of diploid species of wheat was analysed for waxy protein in the grain: 39 accessions of Einkorn wheats, 41 accessions of Sitopsis section wheat and nine accessions of Triticum tauschii. The electrophoretic patterns showed low polymorphism. In each group of wheat, a single and different allele was detected. In accessions of Einkorn wheats that allele had a similar electrophoretical mobility to the Wx‐A1a allele of the bread wheat ‘Chinese Spring’, in accessions of the Sitopsis section it had a similar mobility to that of the Wx‐B1f allele of tetraploid wheat, and in the accessions of T. tauschii, it was similar to the Wx‐D1a allele of the bread wheat ‘Chinese Spring’. The accessions were also analysed for apparent amylose content. Results showed that amylose content ranged from 22 to 35% in Einkorn wheats, from 28 to 41% in the Sitopsis section and from 26 to 35% in accessions of T. tauschii.  相似文献   

15.
Resistance to stripe rust (caused by Puccinia striiformis Westend.) of 34 Triticum turgidum L. var.durum, 278 T. tauschii, and 267 synthetic hexaploid wheats (T. turgidum x T. tauschii) was evaluated at the seedling stage in the greenhouse and at the adult-plant stage at two field locations. Mexican pathotype 14E14 was used in all studies. Seedling resistance, expressed as low infection type, was present in all three species. One hundred and twenty-eight (46%) accessions of T. tauschii, 8 (23%) of T. turgidum and 31 (12%) of synthetic hexaploid wheats were highly resistant as seedlings. In the field tests, resistance was evaluated by estimating area under disease progress curve (AUDPC). Synthetic hexaploid wheats showed a wide range of variability for disease responses in both greenhouse and field tests, indicating the presence of a number of genes for resistance. In general, genotypes with seedling resistance were also found to be resistant as adult plants. Genotypes, which were susceptible or intermediate as seedlings but resistant as adult plants, were present in both T. turgidum and the synthetic hexaploids. Resistances from either T. turgidum or T. tauschii or both were identified in the synthetic hexaploids in this study. These new sources of resistance could be incorporated into cultivated hexaploid wheats to increase the existing gene pool of resistance to stripe rust.  相似文献   

16.
Inheritance of resistance to Karnal bunt was investigated in the crosses of four resistant synthetic hexaploid wheats (SH; Triticum turgidum×T. tauschii) and two susceptible T. aestivum cultivars. The resistance was dominant or partly dominant over susceptibility. The SH cultivars Chen/T. tauschii (205) and Chen/T. tauschii (224) have single dominant resistance genes which could be allelic to each other. ‘Altar 84’/T. tauschii (219) appeared to have two dominant genes for resistance. ‘Duergand’T. tauschii (214) possessed two complementary dominant genes for resistance. The work is being extended to involve diverse Karnal bunt-resistant SH and bread wheat cultivars.  相似文献   

17.
Summary Mycorrhizal colonization and growth dependency were studied at a single rate of phosphorous application in wild and cultivated primitive and modern wheats, inoculated with Glomus intraradices Schenck & Smith. Mycorrhizal colonization found in Triticum timopheevii var. araraticum (AAGG) was higher than that found in the other tetraploid wheats (AABB). Mycorrhizal dependency was higher in representatives of the D genome donor — Aegilops squarrosa, compared with representatives of the A and possible B genome donors T. monococcum and Ae. sharonensis, Ae. longissima and Ae. speltoides, respectively. The nature of response to VAM in hexaploid wheat was controlled by factors of the A and B genomes which are epistatic over those located in the D genome. The high mycorrhizal colonization and dependency which was found in T. timopheevii var. araraticum may indicate special genomic affinity possessed by the G genome of wheat in VAM interaction. Based on the 27 wheat lines and species tested in this study only low correlation between G. intraradices colonization and its contribution to plant growth can be suggested.  相似文献   

18.
The diploid D-genome progenitor of hexaploid wheat, Triticum tauschii (Coss.) Schmahl., was screened to identify mechanisms for resistance to pre-harvest sprouting. A number of promising mechanisms were identified, and transferred to hexaploid wheat via wide-hybridisation. One identified mechanism, an inhibitory phenolic compound present in the bracts surrounding the grain, has been shown to function effectively in synthetic hexaploid wheats. A number of seed-borne dormancy mechanisms were also identified. Expression of embryo dormancy in synthetic hexaploid wheats was demonstrated when compared with non-dormant hexaploid wheat. Effects of the seed coat on dormancy were also studied, with the seed coat of synthetic hexaploids accelerating rather than inhibiting germination. Embryo dormancy was also demonstrated in two `direct-cross' hybrids. The results suggest that a combination of the described mechanisms may produce white wheats with resistance to pre-harvest sprouting adequate for most Australian climatic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Hydroxamic acid content of triticum species   总被引:2,自引:0,他引:2  
Summary Fifty-five accessions of Triticum species were analyzed for content of hydroxamic acids (Hx), a natural resistance factor against various organisms. Hx were found in all accessions analyzed. Extreme values were found in wild diploid species: highest in T. speltoides (16.0 mmol/kg fr. wt) and lowest in T. tauschii (0.21). Modern polyploid wheats sharing the same genome did not show substantial variations in Hx levels. The data suggest possible sources of high Hx levels for wheat breeding programs.  相似文献   

20.
Triticum tauschii (Coss.) Schmal. is an ancestor of bread wheat (T. aestivum). This species has been widely used as a source ofsimply-inherited traits, but there are few reports of yield increases due tointrogression of genes from this species. Selections from F2-derivedlines of backcross derivatives of synthetic hexaploid wheats (T.turgidum / T. tauschii) were evaluated for grain yield in diverseenvironments in southern Australia. Re-selections were made in theF6 generation and evaluated for grain yield, yield componentsincluding grain weight, and grain growth characters in diverse environmentsin southern Australia and north-western Mexico. Re-selection was effectivein identifying lines which were higher yielding than the recurrent parent,except in full-irrigation environments. Grain yields of the selectedderivatives were highest relative to the recurrent parent in thelowest-yielding environments, which experienced terminal moisture deficitand heat stress during grain filling. The yield advantage of the derivativesin these environments was not due to a change in anthesis date orgrain-filling duration, but was manifest as increased rates of grain-filling andlarger grains, indicating that T. tauschii has outstanding potential forimproving wheat for low-yielding, drought-stressed environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号