首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
This paper develops a non-linear programming optimization model with an integrated soil water balance, to determine the optimal reservoir release policies, the irrigation allocation to multiple crops and the optimal cropping pattern in irrigated agriculture. Decision variables are the cultivated area and the water allocated to each crop. The objective function of the model maximizes the total farm income, which is based on crop–water production functions, production cost and crop prices. The proposed model is solved using the simulated annealing (SA) global optimization stochastic search algorithm in combination with the stochastic gradient descent algorithm. The rainfall, evapotranspiration and inflow are considered to be stochastic and the model is run for expected values of the above parameters corresponding to different probability of exceedence. By combining various probability levels of rainfall, evapotranspiration and inflow, four weather conditions are distinguished. The model takes into account an irrigation time interval in each growth stage and gives the optimal distribution of area, the water to each crop and the total farm income. The outputs of this model were compared with the results obtained from the model in which the only decision variables are cultivated areas. The model was applied on data from a planned reservoir on the Havrias River in Northern Greece, is sufficiently general and has great potential to be applicable as a decision support tool for cropping patterns of an irrigated area and irrigation scheduling.  相似文献   

2.
As water resources are limited and the demand for agricultural products increases, it becomes increasingly important to use irrigation water optimally. At a farm scale, farmer's have a particularly strong incentive to optimize their irrigation water use when the volume of water available over a season is production limiting. In this situation, a farmer's goal is to maximize farm profit, by adjusting when and where irrigation water is used. However, making the very best decisions about when and where to irrigate is not easy, since these daily decisions require consideration of the entire remaining irrigation season. Future rainfall uncertainty further complicates decisions on when and which crops should be subjected to water stress. This paper presents an innovative on-farm irrigation scheduling decision support method called the Canterbury irrigation scheduler (CIS) that is suitable when seasonal water availability is limited. Previous optimal scheduling methods generally use stochastic dynamic programming, which requires over-simplistic plant models, limiting their practical usefulness. The CIS method improves on previous methods because it accommodates realistic plant models. Future farm profit (the objective function) is calculated using a time-series simulation model of the farm. Different irrigation management strategies are tested using the farm simulation model. The irrigation strategies are defined by a set of decision variables, and the decision variables are optimized using simulated annealing. The result of this optimization is an irrigation strategy that maximizes the expected future farm profit. This process is repeated several times during the irrigation season using the CIS method, and the optimal irrigation strategy is modified and improved using updated climate and soil moisture information. The ability of the CIS method to produce near optimal decisions was demonstrated by a comparison to previous stochastic dynamic programming schedulers. A second case study shows the CIS method can incorporate more realistic farm models than is possible when using stochastic dynamic programming. This case study used the FarmWi$e/APSIM model developed by CSIRO, Australia. Results show that when seasonal water limit is the primary constraint on water availability, the CIS could increase pasture yield revenue in Canterbury (New Zealand) in the order of 10%, compared with scheduling irrigation using current state of the art scheduling practice.  相似文献   

3.
It is important to promote efficient use of water through better management of water resources, for social and economical sustainability in arid and semi-arid areas, under the conditions of severe water shortage. Based on the developments in deficit irrigation research, a recurrence control model for regional optimal allocation of irrigation water resources, aiming at overall maximum efficiency, is presented, with decomposition-harmonization principles of large systems. The model consists of three levels (layers). The first level involves dynamic programming (DP) for optimization of crop irrigation scheduling. The second level deals with optimal allocation of water resources among various crops. The last level concerns optimal allocation of water resources among different sub-regions. As a test, this model was applied to the combined optimal allocation of multiple water resources (surface, ground and in-take from the Weihe river) of Yangling, a semi-arid region on the Loess Plateau, China. Exemplary computation showed that not only are the results rational, but the method can also effectively overcome possible “dimensional obstacles” in dynamic programming of multiple dimensions. Furthermore, each sub-model is relatively independent by using various optimization methods. The model represents a new approach for improving irrigation efficiency, implementing water-saving irrigation, and solving the problem of water shortage in the region studied. The model can be extended in arid and semi-arid areas for better water management.  相似文献   

4.
《Agricultural Systems》1998,58(4):529-554
An integrated approach to reservoir, irrigation, and cropping management which links four different models—a hydrologic model (PRMS), a crop growth simulation model (EPIC), an economic model based on linear programming, and a dynamic programming model—is developed and demonstrated. The demonstration is based on an irrigation district located in a subhumid climate with an irrigation reservoir large enough for over-year storage. The model is used to make repeated simulations for various planning horizons. Two different types of results are presented. The first provides the probability that each of the various farm plans (land/crop/water allocation) will be chosen as the optimum in the first year of the planning horizon. The second approach provides probability distributions of accumulated revenues over a chosen length of planning horizon. Each distribution is associated with an initial reservoir level and a particular farm plan in the first year of the planning horizon. The consequence of selecting certain farm plans at the beginning of a specified planning horizon is therefore quantified in a probabilistic way. Based on families of probability–revenue curves, an irrigation manager can simultaneously evaluate crop, irrigation, and reservoir management options.  相似文献   

5.
Improving water use and nitrogen efficiencies is of overall importance to society at large - to conserve scarce water resources and prevent environmental pollution. Efficient cultivation practices for rice which had no yield penalty were not adopted by farmers because of the open access to water free of charge. Well-chosen combinations of policy measures are thus needed to stimulate adoption of new cultivation practices. We developed a multi-objective linear programming (MGLP) model to explore the impact of: (i) modified rice cultivation including water-saving irrigation on farm profit; (ii) water pricing and water quota government policies on adoption of modified rice cultivation by farmers; (iii) a combination of (i) and (ii) to achieve the objectives of both farmers and society at large, and (iv) to study the trade-offs between income, water and nitrogen use. The analysis was carried out on four rice-based farm types for the state of Tamil Nadu, South India. Model results showed that observed farm profit of all four farm types could be increased using current practices simply by optimizing land use for specific crops. Adoption of modified rice cultivation further increased farm profit. Water-saving practices were selected only when water pricing was introduced. Farm profits were reduced even at low water prices but were compensated by farmers through adoption of modified rice cultivation. The combination of policies that stimulate adoption of modified rice cultivation was effective in achieving both increased farm income and water savings. The required water prices differed across farm types and seasons and impacted poor resource-endowed farmers the most. Providing water quotas could protect the poor resource-endowed farmers. The model helped to identify the optimal water price and water quota for each farm type to achieve both the objectives of farmers and society at large. Opportunities for reducing water use and avoiding environmental pollution at acceptable profits are available for all farm types, but need to be tailored to the farmers’ resource endowments.  相似文献   

6.
我国干旱半干旱地区,天然降水量少且时程及地域相差大,并有很大的随机性。对有水库调节的地区,如何处理天然降水的随机性,合理利用有限的水资源,解决人畜饮水、工业用水、林业及农业灌溉耗水,使其在各种情况下都能达到最佳的社会效益和经济效益,该文选用动态规划法,编制的电算程序,很好地解决了这一问题。  相似文献   

7.
分析了有支线调蓄水库的跨流域调水工程水资源系统的结构和特点,定性分析了支线调蓄水库对跨流域调水工程沿线受水区水资源配置的影响。将数学规划与模拟技术结合,建立了由受水区水资源优化配置和干线调水协调模拟模型组成的跨流域调水工程水资源优化配置模型。采用大系统分解协调原理进行模型求解,通过有无支线水库水资源配置效果的对比分析,量化了支线调蓄水库对受水区水资源配置的影响。以南水北调中线工程河南段为例进行了应用研究,结果表明,模型和方法合理可行。  相似文献   

8.
针对西北干旱区灌区生态环境脆弱、水资源短缺、复杂不确定性等问题,以石羊河流域红崖山灌区为例,耦合2型模糊集、模糊可信度约束规划和多目标规划等理论方法,构建了基于2型模糊集的多目标农业-生态水土资源优化配置模型。模型以灌溉水损失最小、生态植被灌溉水满意度最大、生态植被灌溉水费用最小和主要粮食作物经济效益最大为目标,对红崖山灌区10个决策单元的地表水、地下水和粮食作物种植面积进行优化配置。求解模型得到不同可信度水平和不确定性程度下的水土资源优化配置方案。结果表明:耦合2型模糊集的模型能够提供丰富的配置方案,水量对可信度水平的敏感性高于不确定性程度,作物种植结构对可信度水平不敏感。以不确定性程度参数为0.5、可信度水平为0.7时为例,生态植被均通过地表水灌溉,作物通过地表水、地下水联合灌溉,玉米的产量和经济效益均大于小麦。相比前人研究,本研究考虑生态植被灌溉需求,优化结果更加真实合理。本研究可为决策者提供较为符合灌区实际的配置方案,为西北干旱区灌区现代化建设提供科学指导。  相似文献   

9.
抬高水库汛限水位的洪水资源化利用研究   总被引:8,自引:0,他引:8  
以河北洋河水库汛限水位分析为例,采用水库洪水调度多目标动态规划模型,模拟计算了不同频率入库洪水下水库不同汛限水位所对应的蓄、泄洪关系。在此基础上建立了综合考虑入库洪水、水库安全运行、下泄洪水超下游地区防洪标准、下泄洪水减少导致下游生态环境用水破坏等不确定性因素的水库汛限水位抬高风险评估模型与多目标风险决策模型,并对不同汛限水位下洪水资源化利用效益进行了计算,得出了不同频率入库洪水下的水库最优分期汛限水位方案。  相似文献   

10.
In Sri Lanka cropping enterprises interact with livestock production on peasant farms. This analysis of the crop-livestock farming system aims at understanding the existing constraints and interactions between crops and livestock in these farms. The main objective of the study is to describe the crop-livestock integrated farming systems in three rainfed villages in the Moneragala district of Sri Lanka, and to evaluate these systems in terms of maximizing farm incomes from the different crop and livestock components of the systems. A field survey was conducted to collect data from 153 farming families for the Maha season of 1982/83. A linear programming model was formulated to test the hypothesis.The results show that in general the activities for lowland rice, highland rice, sugar cane, labour, farm cash cost, and MVP (compost) are higher in the optimal farm plan than in the actual farm situation. The livestock in the optimal plan is mainly confined to milch cattle. However, with the present high level of manutrition among rural livestock industry emphasis should be placed on the expansion of the rural livestock industry in the study villages. The optimal plan also suggests the use of crop residues as a substitute for compost for farm crops. Hence, in the context of escalating prices of chemical fertilizers, research is required to find the suitability of crop residues and household residues as substitutes for compost. Increases in supplementary irrigation may result in the expansion of the farm area and hence the farm income. Other methods of increasing farm income include: replacing hired labour with non-utilized family labour, increased agricultural research, and extension activity regarding the use of modern inputs by farmers on crops.  相似文献   

11.
A mathematical model is developed to arrive at an optimal conjunctive use policy for irrigation of multiple crops in a reservoir-canal–aquifer system. The integration of the reservoir operation for canal release, ground water pumping and crop water allocations during different periods of crop season (intraseasonal periods) is achieved through the objective of maximizing the sum of relative yields of crops over a year considering three sets of constraints: mass balance at the reservoir, soil moisture balance for individual crops, and governing equations for ground water flow. The conjunctive use model is formulated with these constraints linked together by appropriate additional constraints as a deterministic linear programming model. A two-dimensional isotropic, homogeneous unconfined aquifer is considered for modeling. The aquifer response is modeled through the use of a finite element ground water model. A conjunctive use policy is defined by specifying the ratio of the annual allocation of surface water to that of ground water pumping at the crop level for the entire irrigated area. A conjunctive use policy is termed stable when the policy results in a negligible change in the ground water storage over a normal year. The applicability of the model is demonstrated through a case study of an existing reservoir command area in Chitradurga district, Karnataka State, India.  相似文献   

12.
运用线性规划对农机具进行最佳配备   总被引:1,自引:0,他引:1  
以往农业机械的动力与机具配备大多采用经验法。随着农业机械化水平的不断提高,农机保有量的逐年增长,延用传统的农机配备方法已不适应现代农业生产,因此,采用线性规划法对国有农场农机具进行最佳配备,建立了优化配置的数学模型,并结合实际,给出实例计算,其结果是使机械作业成本最低。  相似文献   

13.
In southern Mali, cultivated area and herd size increase together with population growth. Consequently, periods of natural fallow shorten and traditional farming and animal husbandry techniques lead to a decrease of soil organic matter (SOM) content. Between 20 and 45% of the land is cultivated while less than 60% is arable area. To increase efficiency of natural fallow, a reduction in livestock herds is often proposed. By means of a linear programming model, the feasibility of maintaining actual SOM content in two villages in different agro-ecological zones was investigated. By adjusting animal numbers and cropping pattern, the model maximized: (1) SOM content under the condition of positive farm labour income; or (2) farm labour income under the condition of a positive SOM content. The model results suggested that maintaining SOM content requires the use of cereal crop residues for animal feed and for manure through bedding in kraals, but also higher animal densities. The last was feasible only through: (1) herding cattle of several farms together to overcome labour constraints; and (2) introducing P-fertilized leys, for grazing in the dry season. Grazing of the leys together with crop residues allowed animal densities up to 44 tropical livestock units (TLUs) km−2, while less than 16% of the produced rangeland fodder was grazed. In such conditions, a positive SOM balance and higher income was obtained with a minimum of 16.7% of ley in the crop rotation. Limiting the area cropped with cotton stabilized income and contributed to a positive SOM balance. Zero-grazing during the warm season allowed SOM surpluses to be achieved with 12.5% of ley. However, as income decreased, seasonal zero-grazing could only be adopted for high-producing animals and small herds.  相似文献   

14.
In this paper, a model for fuzzy risk of low yield of a crop is developed to study the implications of a reservoir operating policy model. When an optimal operating policy is derived based on a known objective, the policy itself does not, in general, indicate a measure of the system performance unless a criterion to this effect is embedded in the objective function. While a systems analyst is interested in the nature of the objective function used in arriving at a policy, the irrigation decision maker would look for the implications of using the policy through answers to the questions such as, how often the system will fail and how quickly it will recover from a failure. It is, therefore, important that the implications of reservoir operation with a given policy be studied keeping in view the interests of the decision makers. Some earlier studies on reservoir operation models for irrigation have considered reliability, resiliency and productivity index, as the performance indicators of the operating policy. In this paper, fuzzy risk of low yield of a crop is considered as another performance indicator to address uncertainties due to both randomness and fuzziness. Uncertainty due to randomness arises primarily because of the random variations of hydrologic variables such as reservoir inflows and rainfall in the command area. Uncertainty due to imprecision or fuzziness arises because of uncertain crop yield response to various factors (such as farm practices and climatic variables) other than to the applied water. Two important concepts are introduced in this paper with respect to irrigation reservoir system. The first one is related to viewing the low yield of a crop, as a fuzzy event. The second concept is related to the definition of fuzzy risk of low yield of a crop. The fuzzy risk of low yield is derived using the concept of probability of a fuzzy event. Application of the methodology is demonstrated with a case study in India.  相似文献   

15.
Modelling farm-level economic potential for conversion to organic farming   总被引:1,自引:0,他引:1  
This paper discusses linear programming simulations at individual farm-level of potential income changes that may result from conversion to organic farming. The model is based on both conventional farm accountancy data and additional conventional and organic farm data from sector expertise and literature. The model is applied for Belgian agriculture. Simulations show that economic potential for conversion is higher than generally perceived, provided that farmers are willing to change farm management practices. However, the economic conversion potential (ECP) is not positive for all farms, not even when an optimal conversion process is assumed and it depends on farm type and farm characteristics. Additionally, due to higher risk and liquidity problems during the transition period, the positive results need to be put into perspective. Nevertheless, the differentiated ECP calculations can give new insights supporting farm-level policy choices with respect to conversion to organic farming.  相似文献   

16.
Choosing the appropriate reservoir water management strategy can be difficult when the water has multiple uses. This study examines this problem for reservoir managers where water use involves irrigation and fisheries. A stochastic dynamic programming (SDP) model is developed to facilitate reservoir management, using a case study illustration for southern Vietnam. The model includes the response of rice and fish yields to key factors including reservoir water levels, the timing and quantity of water release, and climatic conditions. The model also accounts for variation in rainfall patterns, irrigation requirements, and the demand for low water levels during the fish harvest season. Three production scenarios are examined where the reservoir's water is used for: only producing rice (scenario 1), only producing fish (scenario 2), and producing rice and fish (scenario 3). Key findings are: (1) for scenario 1, adequate water should be released to meet rice growing water requirements and residual water should be stored as a source of water in case of low rainfall, (2) for scenario 2, sufficient water needs to be released prior to the fish harvest to maximize this harvest; and (3) for scenario 3, water should be released prior to fish harvest, but sufficient water should remain to satisfy the water requirements of rice. When the reservoir is managed for joint production of rice and fish, net benefits are 6% greater than when the reservoir is managed solely for rice production. The SDP model developed in this paper could be adapted and applied to other multiple-use resources such as forests, river basins, and land.  相似文献   

17.
New technology introduction in this semiarid region of the Sahel is hypothesized to be made more difficult by three price problems in the region. First, staple prices collapse annually at harvest. Secondly, there is a between year price collapse in good and very good years due to the inelastic demand for the principal staple, millet, and the large changes in supply from weather and other stochastic factors. Thirdly, government and NGOs intervene in adverse rainfall years to drive down the price increases. Marketing strategies were proposed for the first two price problems and a public policy change for the third. To analyze this question at the firm level a farm programming model was constructed. Based upon surveying in four countries, including Niger, farmers state that they have two primary objectives in agricultural production, first achieving a harvest income target and secondly achieving their family subsistence objective with production and purchases later in the year. Farmers are observed selling their millet at harvest and rebuying millet later in the year. So the first objective takes precedence over the second. A lexicographic utility function was used in which these primary objectives of the farmer are first satisfied and then profits are maximized. According to the model new technology would be introduced even without the marketing strategies. However, the marketing strategies accelerated the technology introduction process and further increased farmers’ incomes. Of the three marketing-policy changes only a change in public policy with a reduction of the price depressing effect (cereal imports or stock releases) substantially increases farmers’ incomes in the adverse years. In developed countries crop insurance and disaster assistance is used to protect farmers in semiarid regions during bad and very bad (disaster) rainfall years. In developing countries finding alternatives to the poverty-nutritional problems of urban residents and poor farmers to substitute for driving down food prices in adverse years could perform the same function as crop insurance in developed countries of facilitating technological introduction by increasing incomes in adverse rainfall years in developed countries.  相似文献   

18.
Bio-economic models can be used to assess the impact of policy and environmental measures through economic and environmental indicators. Focusing on agricultural systems, farmers’ decisions in terms of cropping systems and the associated crop management at field scale are essential in such studies. The objective of this paper is to present a study using a bio-economic model to assess the impact of the Nitrate Directive in the Midi-Pyrenees region (France) by analyzing, at the farm scale, farm income and three environmental indicators: nitrate leaching, erosion and water consumption. Two scenarios, the 2003 CAP reform (baseline scenario) and the Nitrate Directive (policy scenario), with a 2013 time horizon, were developed and compared for three representative arable farm types in the Midi-Pyrenees region. Different types of data characterizing the biophysical context in the region (soil, climate), the current cropping systems (rotation, crop management) and farm resources (irrigated land, labor) were collected to calibrate and run the models. Results showed that the implementation of the Nitrate Directive may not affect farm income. However, significant modifications to cropping systems and crop allocation to soil types were simulated. Contrary to expectations, nitrogen leaching at the farm scale did not change. Overall water consumption increased and soil erosion decreased due mainly to a modification in cropping patterns and management by soil type. This study provides an example of unanticipated effects of policy and trade-offs between environmental issues.  相似文献   

19.
新疆干旱区节水灌溉工程技术发展模式研究   总被引:1,自引:0,他引:1  
以新疆干旱区农业节水灌溉工程技术应用实际为基点,采用收集资料与实地调查研究相结合、现场试验与理论分析相结合的技术路线,主要针对新疆内陆干旱地区特殊的自然条件和节水农业生产实际,重点对新疆节水灌溉分区和各分区适宜的节水灌溉工程技术进行了分析研究,并提出了适宜各分区的节水灌溉工程技术发展模式。为推动新疆干旱区节水灌溉工程技术的发展和水资源的优化配置提供了科学依据。  相似文献   

20.
A weekly irrigation planning LP model is formulated for determining the optimal cropping pattern and reservoir water allocation for an existing storage based irrigation system in India. Objective of the model is maximization of net annual benefit from the project. In an irrigation planning of a storage based irrigation system, initial storage of the reservoir at the beginning of the reservoir operation, expected inflows into the reservoir during each intraseasonal period, capacity of channels, crop calendar and yield response to water deficit in each growth stage of crop play a vital role in deciding acreage and water allocation to each crop. The planning model takes into account yield response to water deficit in each intraseasonal period of the crop, expected weekly inflows entering into the reservoir, storage continuity of reservoir, land and water availability, equity of water allocation among sub areas and proportionate downstream river release. One year comprising of 52 weeks is considered as planning horizon. To account for uncertainty in water resources availability, the model is solved for four levels of reliability of weekly inflows entering into the reservoir (90%, 85%, 80% and 75%). Alternative optimal cropping patterns and weekly releases to crops grown in each sub area under each main canal are obtained for various states of initial storage at the beginning of reservoir operation and for various levels of weekly inflows into the reservoir. Results reveal the importance of initial state of reservoir storage for feasible solution and shows the impact on cropping pattern with the change in initial storage of reservoir for different levels of reliability of weekly inflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号