首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Purpose

This study aimed to evaluate the effect of combination of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) on improving the efficiency of phytoremediation for pyrene and lead (Pb) co-contaminated soil by Scirpus triqueter.

Materials and methods

Seedlings of S. triqueter with a similar size and biomass (3 g/pot) were grown on 2-month aged soil contaminated with 184.5 mg kg?1of pyrene and 454.3 mg kg?1 of Pb at pH?=?8.3. After growth for 10 days, different doses of APG and NTA were added into the soil. After 60 days, the height of plants, Pb concentrations in plants, and pyrene amounts in soil were determined.

Results and discussion

Combined application of NTA and APG with lower dosage (1 + 1 g kg?1 soil and 1 + 2 g kg?1 soil) had no notable negative influence on the growth of S. triqueter. Moreover, significant synergy on Pb accumulation in S. triqueter was achieved with APG and NTA combined application. Besides, the dissipation of pyrene from soil after 60-day planting was increased in APG and NTA treatments when compared with the control treatments. Application of APG alone or combined with NTA had greater effect on enhancing dissipation of pyrene from soil than NTA alone.

Conclusions

This study demonstrated that the remediation of Pb and pyrene co-contaminated soil by S. triqueter can be enhanced by combined application of APG and NTA. Long-term evaluation of this strategy is needed in co-contaminated field sites.
  相似文献   

2.

Purpose

The extract of Stevia residue is an ideal substitute for cultivation of the purple nonsulfur bacterium, like Rhodopseudomonas palustris (R. palustris). But the influence of R. palustris grown under residue extract on its downstream application is still not well-characterized. The objective of this study was to assess the effect of foliar spray of R. palustris grown under Stevia residue extract on the plant growth and soil microbial properties.

Materials and methods

A pot experiment was carried out under the greenhouse condition, consisting of four treatments varying in the sprayed substances: sterilized water (control), R. palustris grown under the chemical medium supplemented with L-tryptophan (SyT), R. palustris grown under Stevia residue extract supplemented with L-tryptophan (ExT), and R. palustris grown under Stevia residue extract supplemented with NH4Cl (ExT). The net photosynthesis rate of the uppermost leaves was measured with a portable photosynthesis system. Soil microbial activity was analyzed by microcalorimetry. Soil bacterial community components were determined by real-time quantitative PCR (qPCR) and high-throughput sequencing techniques.

Results and discussion

Compared with SyT, the R. palustris grown under Stevia residue extract not only improved the plant biomass and the net photosynthetic rate to a large extent, but also increased soil microbial metabolic activity and altered community compositions as well. The treatments receiving R. palustris, especially ExT and ExN, increased the relative abundances of some functional guilds involved in C turnover and nutrient cycling in soil, including Acidobacteria, Actinobacteria, Proteobacteria, Gemmatimonadaetes, Nitrospirae, and Planctomycetes.

Conclusions

R. palustris grown under the Stevia residue extract showed advantages over that under the chemical medium on both plant growth and soil microbial properties. One of the possible reasons could result from the increases in microbial activity and several bacterial keystone guilds involved into C and nutrient cycling, both of which potentially contribute to the improved plant growth. The results would be conducive to the downstream application of R. palustris in an economical way.
  相似文献   

3.

Purpose

The in situ stabilization of multielement-contaminated agricultural soils has limited effectiveness when using common single amendments. This study examined the use of drinking water treatment residues (WTR), based on (hydr)oxides of Fe, Al, or Mn, as a cost-effective solution to optimize the immobilization of metals (Cd, Pb, Zn) and As.

Materials and methods

Trace elements (TE) bioavailability was assessed under semi-controlled conditions in a pot study cultivating winter wheat (Triticum aestivum L. cv. Tiger) until maturity. An Fe-based WTR and a Mn-based WTR, applied at rates of 0.5 and 1% (m/m), were related to effects of lime marl (LM) application. Additionally, a bioassay with earthworms (Dendrobaena veneta) was conducted. Both bioassays were compared with measurements of NH4NO3-soluble, diffusive gradients in thin film (DGT)-available and soil solution TE concentrations, representing well-established surrogates for mimicking the bioavailable element fractions in soil.

Results and discussion

The application of the Fe-based WTR reduced As accumulation in vegetative wheat tissues (by up to 75%) and earthworms (by up to 41%), which corresponded with the findings from soil chemical analyses and improved plant growth and earthworm body weight. However, As concentrations in cereal grains were not affected, Cd or Pb accumulation by wheat was not mitigated, and Zn uptake was enhanced. By contrast, the Mn-based WTR effected the greatest reduction in Pb uptake, and lowered Cd transfer to wheat grain (by up to 25%). Neither the NH4NO3-soluble nor DGT-available concentrations matched with Cd and Zn accumulation in plants or earthworms, indicating interferences due to competition for binding sites according to the biotic ligand model.

Conclusions

The results obtained in this study suggest that a bioassay with key species prior to field application should be mandatory when designing in situ stabilization options. The application of WTR to an agricultural soil strongly affected TE bioavailability to plants and earthworms. Low application rates tended to improve biomass production of biota. Higher application rates involved risks (e.g., P fixation, TE inputs), and none of the amendments tested could immobilize all targeted elements.
  相似文献   

4.

Purpose

Paulownia, one of the fastest growing broad-leaved tree species in the world, is widely distributed in the warm temperate regions of China. However, there are few commercial-scale Paulownia plantations, and there is only limited information available about the most suitable soil quality for Paulownia fortunei growth in mid-subtropical, Hunan Province, China.

Materials and methods

To understand the effect of the growth of P. fortunei on soil conditions, 25 soil property parameters under Paulownia plantations were studied in Hunan Province, China. Seventy-two standard plots of eight different stand types were analyzed by three statistical approaches to assess soil quality (SQ) in the different P. fortunei plantations.

Results and discussion

The results revealed that a majority of the soil characteristics when intercropping with oilseed rape and the pure P. fortunei (plantation III) were better than intercropping with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.). Available calcium, available magnesium, available potassium, available phosphorus, soil thickness, slope, soil organic matter, available sulfur, available copper, dehydrogenase, and available zinc were selected as the minimum data set (MDS). The SQ index (SQI) showed that three classes for soil quality among the eight P. fortunei plantations ranged from 0.48 to 0.88 and these were correlated with standing volume (p?<?0.05).

Conclusions

From the results, we concluded that selected MDS indicators can describe the soil fertility quality of P. fortunei plantations, and that the relationship between SQI and standing volume has a biological significance. P. fortunei plantations intercropped with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.) caused a deterioration in SQ, but intercropping oilseed rape and pure P. fortunei plantations produced an improvement in SQ.
  相似文献   

5.

Purpose

The effect on P uptake by plants after inoculation with P-mobilizing microorganisms may be modulated by soil properties, including natural microbiota. However, to put this theory into practical use, research is needed to shed new light on the soil factors which affect the capability of improving P nutrition in plants. The aim of this study was to assess how two P-mobilizing microorganisms, Trichoderma asperellum T34 and Bacillus subtilis QST713, influence P uptake by wheat plants in different soils; this will allow us to identify the soil properties which affect the efficiency of P nutrition in plants.

Materials and methods

In a completely randomized experiment, wheat was grown in pots in a growing chamber in soils with Olsen P values ranging from 4.8 to 8.7 mg kg?1. The plants were inoculated with three treatments: T34, B. subtilis, and a non-inoculated control.

Results and discussion

Overall, B. subtilis was more effective in increasing plant P uptake and in mobilizing soil P (measured as Olsen P values) than T34. In some soils, B. subtilis was the only treatment which increased Olsen P in the rhizosphere after cultivation. However, the effect of both microorganisms differed depending on the soil. For B. subtilis, phytase hydrolysable P, Olsen P, carbonates, the Feca/Fecbd ratio, and citrate-soluble P accounted for 92% of the variation in P uptake in inoculated plants (compared with the non-inoculated control). Most of these soil properties also accounted for 87% of the variation in the levels of shoot dry matter (DM) in B. subtilis-inoculated plants compared with shoot DM in the control plants. In addition, Olsen P, the Feca/Fecbd ratio, and phytase hydrolysable P in the NaOH extracts accounted for 82 and 74% of the variation in the effect of T34 on P uptake and shoot DM, respectively. Overall, the lower the initial Olsen P in the soil, the higher the P uptake caused by microorganisms.

Conclusions

The initial availability of P and organic P in soil, in addition to other properties affecting P dynamics in the soil, may explain the triggering and efficiency of the P-mobilizing mechanisms in microorganisms. These are crucial in explaining the potential benefits to crops and, as a result, their practical use as a bio-fertilizer.
  相似文献   

6.

Purpose

Fruiting vegetables are generally considered to be safer than other vegetables for planting on cadmium (Cd)-contaminated farms. However, the risk of transferring Cd that has accumulated in the stems and leaves of fruiting vegetables is a major issue encountered with the usage of such non-edible parts. The objective of this study was to resolve the contribution of arbuscular mycorrhizal (AM) fungi to the production of low-Cd fruiting vegetables (focusing on the non-edible parts) on Cd-contaminated fields.

Materials and methods

An 8-week pot experiment was conducted to investigate the acquisition and translocation of Cd by cucumber (Cucumis sativus L.) plants on an unsterilized Cd-contaminated (1.6 mg kg?1) soil in response to inoculation with the AM fungus, Funneliformis caledonium (Fc) or Glomus versiforme (Gv). Mycorrhizal colonization rates of cucumber roots were assessed. Dry biomass and Cd and phosphorus (P) concentrations in the cucumber shoots and roots were all measured. Soil pH, EC, total Cd, phytoavailable (DTPA-extractable) Cd, available P, and acid phosphatase activity were also tested.

Results and discussion

Both Fc and Gv significantly increased (P?<?0.05) root mycorrhizal colonization rates and P acquisition efficiencies, and thus the total P acquisition and biomass of cucumber plants, whereas only Fc significantly increased (P?<?0.05) soil acid phosphatase activity and the available P concentration. Both Fc and Gv significantly increased (P?<?0.05) root to shoot P translocation factors, inducing significantly higher (P?<?0.05) shoot P concentrations and shoot/root biomass ratios. In contrast, both Fc and Gv significantly decreased (P?<?0.05) root and shoot Cd concentrations, resulting in significantly increased (P?<?0.05) P/Cd concentration ratios, whereas only Gv significantly decreased (P?<?0.05) the root Cd acquisition efficiency and increased (P?<?0.05) the root to shoot Cd translocation factor. Additionally, AM fungi also tended to decrease soil total and phytoavailable Cd concentrations by elevating plant total Cd acquisition and soil pH, respectively.

Conclusions

Inoculation with AM fungi increased the P acquisition and biomass of cucumber plants, but decreased plant Cd concentrations by reducing the root Cd acquisition efficiency, and resulted in a tendency toward decreases in soil phytoavailable and total Cd concentrations via increases in soil pH and total Cd acquisition by cucumber plants, respectively. These results demonstrate the potential application of AM fungi for the production of fruiting vegetables with non-edible parts that contain low Cd levels on Cd-contaminated soils.
  相似文献   

7.

Purpose

This study aimed at evaluating the acute effects of arsenic and zinc to the warmwater aquatic oligochaete Branchiura sowerbyi. Relative sensitivity with the coldwater species Tubifex tubifex was compared. Implications for the use of B. sowerbyi in the risk assessment of sediments in the tropics are discussed.

Materials and methods

Water-only (96 h) and sediment (14 days) toxicity tests were conducted with both species evaluating a concentration series of arsenic and zinc. The tests were conducted considering the environmental conditions in the natural habitat of T. tubifex (predominantly temperate) and B. sowerbyi (predominantly tropical). Both lethal and sublethal endpoints (autotomy of the posterior body parts, abnormal behavior and appearance) were determined in the tests. The lethal (LC10 and LC50) and effect (EC10 and EC50) concentrations were also determined to assess metal sensitivity for both species.

Results and discussion

Both test species were more sensitive to Zn than As in water-only tests, which is in agreement with previous studies evaluating the toxicity of these metals to aquatic oligochaetes. Sublethal effects were generally noted at concentrations lower than those leading to mortality. The warmwater oligochaete B. sowerbyi was more sensitive to both metals tested than the coldwater species T. tubifex.

Conclusions

Study findings support the need for using indigenous tropical species in risk assessments in the tropics. In addition, sublethal effect parameters should be included in toxicity testing with aquatic oligochaetes.
  相似文献   

8.

Purpose

Biochar application has been shown to be effective in improving soil fertility and sequestering soil contaminants. However, the impact of biochar amendments on the environmental fate of pesticides and the bioavailability of pesticides to living organisms in the soil environment is still not fully understood.

Materials and methods

Dissipation of fomesafen and its bioavailability to corn (Zea mays L.) and the earthworm Eisenia fetida in an agricultural soil amended with three different rates of rice hull biochar (0.5, 1, and 2 % (w/w)) under laboratory conditions was investigated.

Results and discussion

Biochar amendment significantly increased the DT50 of fomesafen from 34 days in unamended soil to 160 days in 2 % biochar-amended soil. Furthermore, biochar amendment decreased fomesafen concentration in soil pore water resulting in lower plant uptake of the pesticide. In this case, total plant residue and soil pore water concentrations of fomesafen in 2 % biochar-amended soil decreased to 0.29 % and 0.28–45 % of that in the control, respectively. Similar results were obtained for bioavailability of fomesafen in earthworms, as the earthworm residue and soil pore water concentration of fomesafen in 2 % biochar-amended soil declined to 0.38–45 and 0.47–0.50 % compared to the level of the control, respectively.

Conclusions

As biochar could markedly reduce the concentration of fomesafen in soil pore water and subsequently reduce plant and earthworm uptake of fomesafen from contaminated soil, biochar amendment could be considered an appropriate option for immobilizing fomesafen in soils, protecting nontarget organisms from fomesafen contamination.
  相似文献   

9.

Purpose

Applications of mineral and organic fertilizer increased soil cadmium (Cd) and could enhance Cd concentrations in edible crops, respectively. Although red mud (RMD) effectively decreased metal bioavailability in soil, the influence of RMD addition on vegetable growth and metal accumulation under high fertilization conditions has rarely been addressed. The aim of this study was to investigate the effects of raw RMD addition on cole growth, quality, and nutrition and Cd accumulation under high fertilization conditions.

Materials and methods

Pot experiments with cole (Brassica campestris L.) were carried out in a greenhouse. Three treatments, CK (with no mineral fertilizer and RMD addition), CT (more than 2.5 times conventional level of mineral fertilizer applied without any RMD), and RM (more than 2.5 times conventional level of mineral fertilizer applied with RMD added at 0.4 % w/w), were established. After 40 days, the cole plants and soils of every replicate of all treatments were sampled. The Cd, biomass, vitamin C (VC), and total nitrogen and phosphorus of the cole plant samples and the Cd, pH, nitrate, and phosphorus of the soil samples were determined.

Results and discussion

In contrast to the CT treatment, RM treatment did not significantly influence the biomass and nitrate concentration of the aboveground cole. However, it significantly reduced the Cd content in cole shoots and its bioaccumulation factors by 30.0 and 28.5 %, respectively. The reduction of bioavailable Cd in soil by RMD sorption and the competition with calcium released from RMD led to low Cd assimilation by root. Finally, less Cd was transported to aboveground plant parts in the RM treatment compared with the CT treatment. RMD addition markedly enhanced the total nitrogen in cole shoots by >16.0 %, and the VC by 20.9 %. The promotion of bacterial abundance and soil enzyme activity by RMD addition and calcium release from RMD generated substantial plant available nitrogen.

Conclusions

With large rate of mineral fertilizer application to the soil, RMD (0.4 %, w/w) addition did not significantly influence the biomass, nitrate, and VC of aboveground cole; however, it significantly reduced the Cd and markedly enhanced the total nitrogen in cole shoots. This study provides valuable information for the safe application of RMD in vegetable production.
  相似文献   

10.

Purpose

The aim of this study was to quantify the effect of enhanced agronomic practices on cadmium (Cd) accumulation in the high-biomass energy plant Napier grass (Pennisetum purpureum Schumach).

Materials and methods

Potted-plant experiments were performed to investigate the effects of ammonium fertilizers and chelating agents, alone or in combination, on the growth, accumulation of Cd, and phytoextraction efficiency of P. purpureum on Cd-contaminated soil. The fertilizers included ammonium nitrate, ammonium sulfate, and ammonium chloride. The chelating agents included ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).

Results and discussion

The addition of ammonium fertilizers and chelating agents generally stimulated growth of P. purpureum, and the shoots accounted for 90.1–94.1% of the total biomass. The concentrations of Cd in different parts of P. purpureum plants were in the order root > leaf > stem. Ammonium chloride alone showed effectiveness in increasing root and shoot Cd concentrations compared to other amendments alone. Both EDTA alone and NTA alone significantly decreased root Cd concentration and increased shoot Cd concentration, while EDTA alone was more efficient on shoot and total Cd accumulation than that by NTA alone. The total accumulation of Cd in P. purpureum ranged from 1.10 to 2.05 mg per plant with 47.3–73.5% of Cd accumulation concentrated in shoots. The results indicate that P. purpureum can remove more Cd through phytoextraction than that by other hyperaccumulators.

Conclusions

Ammonium chloride led to the highest total Cd accumulation. Ammonium chloride applied alone or in combination with either EDTA or NTA resulted in the most effective agronomic approaches for P. purpureum phytoextraction of soil Cd.
  相似文献   

11.

Purpose

Chickpea is generally cultivated after seed treatment with host-specific Mesorhizobium ciceri, the nitrogen-fixing bacterium forming root nodules. Some species of free-living cyanobacteria are capable of nitrogen fixation. We examined the rhizosphere microbiota changes and the potential for plant growth promotion by applying a free-living, nitrogen-fixing cyanobacterium and the biofilm formulation of cyanobacterium with M. ciceri, relative to M. ciceri applied singly, to two each of desi and kabuli varieties of chickpea.

Materials and methods

Denaturing gradient gel electrophoresis (DGGE) profiles of archaeal, bacterial and cyanobacterial communities and those of phospholipid fatty acids (PLFAs) were obtained to evaluate the changes of the microbial communities in the chickpea rhizosphere. Plant growth attributes, including the pod yields and the availabilities of soil macronutrients and micronutrients, were monitored.

Results and discussion

The DGGE profiles showed distinct and characteristic changes due to the microbial inoculation; varietal differences exerted a marked influence on the archaeal and cyanobacterial communities. However, bacterial communities were modulated more by the type of microbial inoculants. Abundance of Gram-negative bacteria (in terms of notional PLFAs) differed between the desi and the kabuli varieties inoculated with M. ciceri alone, and the principal component analysis of PLFA profiles confirmed the characteristic effect of microbial inoculants tested. Microbial inoculation led to increases in the 100-seed weight and differential effects on the concentrations of available nitrogen and phosphorus, and those of iron, zinc and copper, suggesting their increased cycling in the rhizosphere.

Conclusions

Microbial inoculation of chickpea brought out the characteristic changes in rhizosphere microbiota. Consequently, the growth promotion of chickpea and nutrient cycling in its rhizosphere distinctively differed. Further studies are needed to analyse the association and dynamic changes in the microbial communities to define the subset of microorganisms selected by chickpea in its rhizosphere and the influence of microbial inoculation.
  相似文献   

12.

Purpose

Geobacteraceae are important dissimilatory Fe (III)-reducing microorganisms, influencing the cycling of metals, nutrients as well as the degradation of organic contaminants. However, little is known about their distribution, diversity, and abundance of Geobacteraceae and the effects of environment factors and geographic distance on the distribution and diversity of Geobacteraceae in paddy soils remain unclear. Therefore, the objectives of this study were to investigate the distribution, diversity, and abundance of Geobacteraceae in paddy soils and to determine key factors in shaping the Geobacteraceae distribution, environmental factors, geographic distance, or both and to quantify their contribution to Geobacteraceae variation.

Materials and methods

Illumina sequencing and quantitative real-time PCR using a primer set targeting 16S rRNA genes of bacteria affiliated with the family Geobacteraceae were employed to measure the community composition, diversity, and abundance patterns of 16S rRNA genes of Geobacteraceae in 16 samples collected from north to south of China. MRT, Mantel test, and VPA were used to analyze the relationship between communities of Geobacteraceae and environmental factors and geographic distance.

Results and discussion

Quantitative PCR showed that the abundance of 16S rRNA genes of Geobacteraceae ranged from (1.20?±?0.18)?×?108 to 1.13?×?109?±?2.25?×?108 copies per gram of soil (dry weight) across different types of soils. Illumina sequencing results showed Geobacter was the dominant genus within the family of Geobacteraceae. Multivariate regression tree (MRT) analysis showed that soil amorphous iron contributed more (22.46 %) to the variation of dominant species of Geobacteraceae than other examined soil chemical factors such as pH (14.52 %), ammonium (5.12 %), and dissolved organic carbon (4.74 %). Additionally, more geographically distant sites harbored less similar communities. Variance partitioning analysis (VPA) showed that geographic distance contributed more to the variation of Geobacteraceae than any other factor, although the environmental factors explained more variation when combined. So, we detected the uneven distribution of Geobacteraceae in paddy soils of China and demonstrated that Geobacteraceae community composition was strongly associated with geographic distance and soil chemical factors including aFe, pH, Fe, DOC, C:N, and NO3 ?-N. These results greatly expand the knowledge of the distribution of Geobacteraceae in environments, particularly in terrestrial ecosystems.

Conclusions

Our results showed that geographic distance and amorphous iron played important roles in shaping Geobacteraceae community composition and revealed that both geographic distance and soil properties governed Geobacteraceae biogeography in paddy soils. Our findings will be critical in facilitating the prediction of element cycling by incorporating information on functional microbial communities into current biogeochemical models.
  相似文献   

13.

Purpose

This study aimed at investigating the rhizosphere effects of Populus euramericana Dorskamp on the mobility of Zn, Pb and Cd in contaminated technosols from a former smelting site.

Materials and methods

A rhizobox experiment was conducted with poplars, where the plant stem cuttings were grown in contaminated technosols for 2 months under glasshouse conditions. After plant growth, rhizosphere and bulk soil pore water (SPW) were sampled together. SPW properties such as pH, dissolved organic carbon (DOC) and total dissolved concentrations of Zn, Pb and Cd were determined. The concentrations of Zn, Pb and Cd in plant organs were also determined.

Results and discussion

Rhizosphere SPW pH increased for all studied soils by 0.3 to 0.6 units compared to bulk soils. A significant increase was also observed for DOC concentrations regardless of the soil type or total metal concentrations, which might be attributed to the plant root activity. For all studied soils, the rhizosphere SPW metal concentrations decreased significantly after plant growth compared to bulk soils which might be attributed to the increase in pH and effects of root exudates. Zn, Pb and Cd accumulated in plant organs and the higher metal concentrations were found in plant roots compared to plant shoots.

Conclusions

The restricted transfer of the studied metals to the plant shoots confirms the potential role of this species in the immobilization of these metals. Thus, P. euramericana Dorskamp can be used for phytostabilization of technosols.
  相似文献   

14.

Purpose

Eucalyptus forest plantations are normally devoid of understory vegetation that is often assumed to be associated with Eucalyptus allelopathic effects. The objective of this study was to determine the influence of high soil compaction and low soil moisture content on inhibition of the germination of understory seeds in Eucalyptus forests and thus would result in the scarcity of understory vegetation.

Materials and methods

The soil water content above the depth of 1 m of six major understory vegetation types was analyzed to determine if there was a correlation between soil water content and understory vegetation. The effects of soil treatment (soil-loosening vs. no soil-loosening) and water supply amount (2500, 2000, 1500, 1000, 500, 250, or 0 ml of water per day) on the seed germination rate of Stylosanthes sp. were explored using an artificial climate chamber experiment. Influence of soil source (five Eucalyptus forest soils vs. two non-Eucalyptus forest soils) and water supply (0, 50, 150, 200, or 400 ml of water every day) on the germination rate of five types of seed were assessed using a three-factor analysis of variance (ANOVA).

Results and discussion

Soil-loosening and water supply significantly (P?<?0.05) increased seed germination rate with the contribution rates of 26.14 and 42.93 %, respectively. Analysis of variance for three-factor experiments revealed a significant (P?<?0.05) effect of water supply and vegetation seed type on the germination rate of plant seeds. No significant effect of soil type was observed on germination rate, indicating that germination rate was not affected by soils in Eucalyptus forest.

Conclusions

The conservation of soil characteristics, such as water content and compaction, during the development of a Eucalyptus forest plantation may be an effective strategy for encouraging the growth of understory vegetation. This study highlights the importance that in dry areas or areas prone to long-term drought, it would be preferable to retain native vegetation.
  相似文献   

15.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

16.

Purpose

Soil contamination resulting from industrial and agricultural activities has caused high concerns in recent years. Compared with single pollutant, co-contaminants of heavy metal and organic pollutant in soil are quite complicated. The overall objective of this study was to evaluate the potential of spent Lentinus edodes substrate (SLS) as an organic amendment for bioremediation of cadmium (Cd) and dichlorophen (DCP) co-contaminated soil.

Materials and methods

Pot experiments were conducted to investigate the effect of SLS on the distribution of Cd and dissipation of DCP. The microbial counts and soil respiration rate were determined. The ligninolytic enzymes (manganese peroxidase and laccase) and soil enzymes (dehydrogenase, urease, and acid phosphatase) were analyzed. Variations of Cd fractions in soil were determined following the modified BCR sequential extraction procedure. DCP in soil was detected on a gas chromatography–mass spectrometry (Agilent 6890N GC–MS).

Results and discussion

Results showed that the addition of SLS or sterilized SLS (SSLS) could facilitate soil biological properties including microbial counts, respiration intensity, and soil enzyme activities compared to control soil. The HOAc extractable Cd decreased by 10.94–17.09 and 9.63–12.02 % in SLS and SSLS amended soil, respectively. As for the dissipation of DCP, the SSLS amended soil recorded 82.4–92.8 % while the SLS amended soil recorded 85.0–96.9 % compared to the non-amended soil (68.3–84.1 %). The presence of available residual nutrients in the substrate could promote the growth of indigenous microbes, which could contribute to the dissipation of DCP.

Conclusions

This study investigated the potential of SLS on the bioremediation of sites co-contaminated with Cd and DCP. The SLS-facilitated removal of soil DCP was due to SLS-promoted soil biological properties including the microbial numbers and soil respiration as well as the ligninolytic enzymes. The addition of SSLS and SLS resulted in a decrease of Cd extractability in soil, and significantly facilitated the activities of dehydrogenase, urease, and acid phosphatase. The results demonstrated the potential of SLS in ex situ bioremediation of soil co-contaminated with Cd and DCP, providing an attractive reusing option of this organic waste.
  相似文献   

17.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

18.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

19.
Analysis of the genetic structure of Indonesian Oryza sativa and O. rufipogon using neighbour-joining trees based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers revealed that O. sativa in Indonesia is separated from O. rufipogon. Accessions of O. sativa in this study were differentiated into two major groups, indica and tropical japonica, excluding some varieties. SSR and SNP markers revealed the high value of differentiation (F ST) and genetic distance (D) between indica and tropical japonica and we discovered four loci by SNP markers and one locus by SSR markers that play a role in differentiation between indica and tropical japonica. Interestingly, genetic diversity (H) in O. rufipogon was lower than that in O. sativa, however H in O. rufipogon was the highest and H in tropical japonica was the lowest when O. sativa was divided into two groups. Inbreeding coefficient (Fst) showed evidences that gene flow (Nm) between species and within species might be one of the mechanisms related to the diversification and differentiation of Indonesian rice germplasm by asymmetric pattern between species and within O. sativa as revealed by SSR and SNP markers. In addition, we found evidences on stabilizing selection in Indonesian rice germplasm and they might be the reasons why Indonesian rice germplasm did not differentiate due to source location of landrace. However, we found a weak relation between SSR and SNP markers probably due to highly polymorphic in SSR and the different properties of both markers.  相似文献   

20.

Purpose

Biotite, as a type of associated mineral, is normally applied as a filling material for buildings, or is discarded as tailings. However, as a potassium-bearing phyllosilicate mineral, biotite can be easily weathered by fungi, which leads to its internal potassium being released for agricultural production (1), and the mineral residues being weathered by the fungus may be applied for adsorption of heavy metal ions (2).

Materials and methods

This work investigates the weathering of biotite by Aspergillus niger through the analysis of the differences in ion dissolution from biotite, producing of organic acids, the change of mineral morphology and composition by inductively coupled plasma optical emission spectrometry (ICP-OES), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Besides, the mineral residues were applied for adsorption of heavy metal ions.

Results and discussion

Results showed that the mycelia envelope the mineral and form fungal–mineral aggregates. The fungus can secrete a variety of organic acids including citric acid and oxalic acid; these attacked the surface and cleavage of biotite to release ions (Al3+, Fe3+, Mg2+, and K+). During incubation with A. niger, biotite weathered as shown by the relative decrease in biotite content and increase in interlayer spacing. Moreover, a certain concentration of phytic acid and tween-80 could promote the release of K+, and the fermentation liquid of rice bran has the same effect. Biotite residues showed a good adsorption for Cd2+, Pb2+, Zn2+, and Cu2+.

Conclusions

The results indicate that biotite can be biotransformed and release K+, of which the production can be acted as heavy metal ion adsorbent. It provides a reference for application of biotite in agriculture and control of heavy metal ion pollution in soil.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号