首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Despite its importance, anammox (anaerobic ammonium oxidation) in estuarine sediment systems remains poorly understood, particularly at the continental scale. This study aimed to understand the abundance, diversity, and activity of anammox bacteria and to determine the main factors influencing the anammox process in estuarine sediments in China.

Materials and methods

Estuarine sediments were collected from 18 estuaries spanning over 4000 km. Experiments using an 15 N–tracer, quantitative PCR, and clone library construction were used to determine the activity, abundance, and diversity of anammox bacteria. The impact of environmental factors on anammox processes was also determined.

Results and discussion

The abundance of the anammox-specific hydrazine synthase (hzsB) gene ranged from 1.8 × 105 ± 3.4 × 104 to 3.6 × 108 ± 7.5 × 107 copies g?1 dw. Candidatus Scalindua, Brocadia, Kuenenia, Jettenia, and two novel unidentified clusters were detected, with Scalindua dominating the anammox population. Additionally, the abundances of Scalindua, Kuenenia, and Brocadia were found to be significantly correlated with latitude. The anammox rates ranged from 0.29 ± 0.15 to 13.68 ± 3.98 nmol N g?1 dw h?1 and contributed to 2.39–82.61% of total N2 production. Pearson correlation analysis revealed that the anammox rate was positively correlated with total nitrogen, total carbon, and temperature, and was negatively correlated with dissolved oxygen (DO). The key factors influencing the hzsB gene abundance were ammonium concentration, salinity, and DO. Ammonium concentration, pH, temperature, and latitude were main variables shaping the anammox-associated bacterial community.

Conclusions

Our results suggested that anammox bacteria are ubiquitous in coastal estuaries in China and underline the importance of anammox resulting in N loss at a continental scale.
  相似文献   

2.

Purpose

Understanding how archaeal communities are affected by water-table drawdown is essential for predicting soil functional responses to future climate change and the consequences of the responses on the soil carbon cycle.

Material and methods

We investigated the effect of water-table drawdown, warming, drought, and combinations thereof on archaeal communities using terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR.

Results and discussion

Methanosarcinales, Methanosaeta, Methanomicrobiales, Methanobacteriales, uncultured Rice Cluster II (RC-II), and uncultured Crenarchaeota were detected. Water-table drawdown and drought exhibited significant effects on the archaeal communities. When the water table was at or above 10 cm, the archaeal abundance at 10 cm remained high (approximately 109 cells per gram dry soil), whereas the archaeal abundance at 10 cm was reduced to approximately 108 cells per gram dry soil where the water table was lowered to 20 cm or below. When the water table kept constant, warming caused a significant reduction in the archaeal abundance, whereas drought only caused a decrease in archaeal abundance when the water table was higher than ?20 cm.

Conclusions

Results suggest that changes in water table may directly impact archaeal community abundance and assemblage which can in turn influence methane emissions, potentially on a large scale. Our results also indicate that archaeal communities response to water-table drawdowns that are dependent on the initial ecohydrology.
  相似文献   

3.

Purpose

This study aimed to evaluate the effect of combination of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) on improving the efficiency of phytoremediation for pyrene and lead (Pb) co-contaminated soil by Scirpus triqueter.

Materials and methods

Seedlings of S. triqueter with a similar size and biomass (3 g/pot) were grown on 2-month aged soil contaminated with 184.5 mg kg?1of pyrene and 454.3 mg kg?1 of Pb at pH?=?8.3. After growth for 10 days, different doses of APG and NTA were added into the soil. After 60 days, the height of plants, Pb concentrations in plants, and pyrene amounts in soil were determined.

Results and discussion

Combined application of NTA and APG with lower dosage (1 + 1 g kg?1 soil and 1 + 2 g kg?1 soil) had no notable negative influence on the growth of S. triqueter. Moreover, significant synergy on Pb accumulation in S. triqueter was achieved with APG and NTA combined application. Besides, the dissipation of pyrene from soil after 60-day planting was increased in APG and NTA treatments when compared with the control treatments. Application of APG alone or combined with NTA had greater effect on enhancing dissipation of pyrene from soil than NTA alone.

Conclusions

This study demonstrated that the remediation of Pb and pyrene co-contaminated soil by S. triqueter can be enhanced by combined application of APG and NTA. Long-term evaluation of this strategy is needed in co-contaminated field sites.
  相似文献   

4.

Purpose

Polychlorinated biphenyls (PCBs) are persistent soil contaminants that resist biodegradation and present serious risks to living organisms. The presence of biochar in soils can lower the availability of PCBs to biota. In this study, the effect of biochar enrichment in soils on bioaccumulation of PCBs was investigated.

Materials and methods

We applied two types of biochar including pine needle biochar (PC) and wheat straw biochar (WC), and an activated carbon (AC) to soil (2 % w/w) and employed two alternative methods to quantified rates of bioaccumulation: a living bioassay (using earthworm, Eisenia fetida, as a model organism) and a triolein-embedded cellulose acetate membrane (TECAM).

Results and discussion

Our results show that the application of biochar or AC greatly reduced the uptake of PCBs (particularly less-chlorinated PCBs) by earthworms (the reduction in total PCBs concentration was up to 40.0 and 49.0 % for PC and WC treatments, while 71.6 % for AC application). We found that the bioaccumulation factors (BAFs) for PCBs in the earthworms in biochar/AC-enriched soils were strongly correlated with O:C ratio of the biochar/AC (R 2?=?0.998, p?<?0.05). We observed that BAFs increased at log K OW below 6.3 and decreased at log K OW values greater than 6.3. We demonstrated that the concentration of PCBs in TECAM membranes were positively correlated with the concentration of PCBs earthworms in soil.

Conclusions

TECAM offers an efficient and cost-effective method for predicting the bioavailability of PCBs in field-contaminated soils undergoing sorbent-based remediation.
  相似文献   

5.

Purpose

Evaluate the efficiency of Populus alba clone Villafranca in the uptake and translocation of Zn from contaminated soils.

Materials and methods

The effects of 48 days of zinc treatment (Zn t ) on the growth and the photosynthetic activities of P. alba L. clone Villafranca were studied using ZnSO4 (375 ppm per unit of soil dry weight) added in sand and peat moss substrate at the beginning of the treatment (T 0) and again after 30 days (T 1) in order to reach a target Zn concentration of 375 ppm at T 0 and 750 ppm at T 1 per unit of soil dry weight.

Results and discussion

Zn uptake in the different organs was analyzed after 30 (T 1) and 48 days (T 2) from the beginning of treatment, showing the following order: root ? leaves ≥ woody cutting = stem. The leaf area increased by 12 % in comparison to control plants at the end of second treatment (48 days). Cutting radial growth showed a high synchronicity in the growth rate fluctuation among control and Zn t plants, but a higher increase in radial diameter of Zn t cutting was observed starting from day 38 (after 8 days of second Zn t ) reaching after 48 days 38 % higher than control plants.

Conclusions

Although our data of leaf Zn concentration were in the range usually reported as toxic for plants, Villafranca clone in Zn t substrate were unaffected in terms of net CO2 assimilation and stomatal conductance to water vapor.
  相似文献   

6.

Purpose

Biochar application has been shown to be effective in improving soil fertility and sequestering soil contaminants. However, the impact of biochar amendments on the environmental fate of pesticides and the bioavailability of pesticides to living organisms in the soil environment is still not fully understood.

Materials and methods

Dissipation of fomesafen and its bioavailability to corn (Zea mays L.) and the earthworm Eisenia fetida in an agricultural soil amended with three different rates of rice hull biochar (0.5, 1, and 2 % (w/w)) under laboratory conditions was investigated.

Results and discussion

Biochar amendment significantly increased the DT50 of fomesafen from 34 days in unamended soil to 160 days in 2 % biochar-amended soil. Furthermore, biochar amendment decreased fomesafen concentration in soil pore water resulting in lower plant uptake of the pesticide. In this case, total plant residue and soil pore water concentrations of fomesafen in 2 % biochar-amended soil decreased to 0.29 % and 0.28–45 % of that in the control, respectively. Similar results were obtained for bioavailability of fomesafen in earthworms, as the earthworm residue and soil pore water concentration of fomesafen in 2 % biochar-amended soil declined to 0.38–45 and 0.47–0.50 % compared to the level of the control, respectively.

Conclusions

As biochar could markedly reduce the concentration of fomesafen in soil pore water and subsequently reduce plant and earthworm uptake of fomesafen from contaminated soil, biochar amendment could be considered an appropriate option for immobilizing fomesafen in soils, protecting nontarget organisms from fomesafen contamination.
  相似文献   

7.

Purpose

The aim of this study was to quantify the effect of enhanced agronomic practices on cadmium (Cd) accumulation in the high-biomass energy plant Napier grass (Pennisetum purpureum Schumach).

Materials and methods

Potted-plant experiments were performed to investigate the effects of ammonium fertilizers and chelating agents, alone or in combination, on the growth, accumulation of Cd, and phytoextraction efficiency of P. purpureum on Cd-contaminated soil. The fertilizers included ammonium nitrate, ammonium sulfate, and ammonium chloride. The chelating agents included ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).

Results and discussion

The addition of ammonium fertilizers and chelating agents generally stimulated growth of P. purpureum, and the shoots accounted for 90.1–94.1% of the total biomass. The concentrations of Cd in different parts of P. purpureum plants were in the order root > leaf > stem. Ammonium chloride alone showed effectiveness in increasing root and shoot Cd concentrations compared to other amendments alone. Both EDTA alone and NTA alone significantly decreased root Cd concentration and increased shoot Cd concentration, while EDTA alone was more efficient on shoot and total Cd accumulation than that by NTA alone. The total accumulation of Cd in P. purpureum ranged from 1.10 to 2.05 mg per plant with 47.3–73.5% of Cd accumulation concentrated in shoots. The results indicate that P. purpureum can remove more Cd through phytoextraction than that by other hyperaccumulators.

Conclusions

Ammonium chloride led to the highest total Cd accumulation. Ammonium chloride applied alone or in combination with either EDTA or NTA resulted in the most effective agronomic approaches for P. purpureum phytoextraction of soil Cd.
  相似文献   

8.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   

9.

Purpose

Despite the ancillary knowledge that soil N is chiefly retained as soil organic matter, little is known about how it is affected by other soil and environmental factors, especially in the tropics. In this study, we performed a comprehensive survey of soils under native vegetation in Minas Gerais, Brazil, aiming to (a) measure soil Kjeldahl-N concentrations to a 1-m depth, (b) identify the main affecting factors of soil N retention, and (c) predict N through soil profile based on organic C (SOC) and its main conditioning factors.

Materials and methods

Soils under 36 fragments of native forest and savanna were sampled at five depths (0–10, 10–20, 20–40, 40–60, and 60–100 cm) and characterized by physical and chemical analyses, including total N determined by the micro-Kjeldahl method. Single and multivariate regressions were used to predict N concentrations based on soil properties and climatic factors.

Results and discussion

The average N concentrations ranged between 0.12 and 7.54 g kg?1, decreasing with depth, and can be predicted using SOC concentrations (R 2 = 0.86). Multivariate regressions using more input data, namely texture, cation exchange capacity (CEC), and altitude increased slightly R 2 values (0.68–0.90) for separate soil depths, but not for the whole dataset (R 2 = 0.85).

Conclusions

We demonstrated that N can be adequately predicted based on SOC concentrations, for any depth and forest type. The implications of the stable SOC/N relation and their coupled cycles and the environmental factors affecting N retention in Brazilian weathered soils are further discussed.
  相似文献   

10.

Purpose

This article analyzed the survival of Escherichia coli, total coliforms, and Salmonella spp. in a soil amended with urban sewage sludge due to its potential use in soil rehabilitation and to the risk of microbial pollution.

Materials and methods

The survival of E. coli, total coliforms, and Salmonella spp. was determined in a soil amended with different doses of four different urban sewage sludge based on equivalent nitrogen fertilization of 0, 85, 170, and 340 kg N/ha. After the topsoil/sludge mixtures were made, they were wet to 18% moisture and analyzed for 2 months to determine the presence of bacteria, and then again after 1 year.

Results and discussion

The results indicate that the presence of microorganisms was strongly conditioned by the type of biosolid and the dose applied. Soil moisture diminished as the experiment progressed and seemed to play a role in controlling the presence of the bacteria.

Conclusions

The initial concentrations of bacteria depend on the sewage sludge treatment. The evolution of E. coli had a similar trend as total coliforms, and Salmonella spp. was absent after 8 weeks although a positive presence was detected in some soils after a year. As a conclusion, long periods of time reduce the risk from the presence of pathogens in soils, and the persistence may be closely related to the treatment of sewage sludge and the initial amount of microorganisms in the sewage sludge.
  相似文献   

11.

Purpose

Forest soil respiration is an important component of global carbon budgets, but its spatial variation is inadequately understood. This research aimed to measure soil respiration (R s), soil water content (M s-5), soil temperature (T), and carbon dioxide (M co2) in a coastal protection forest (CPF), which is one kind of man-made forests designed for coastal protection primarily along the coast in China, to determine the relationships among them, and to analyze their spatial distributions in a small scale.

Materials and methods

We measured R s, M s-5, T, and M co2 of 100 plots in an approximately flat grid (totally 4 hm2) by LI-8100A in a Casuarina equisetifolia L. forest on a state-owned forest farm of 326 hm2 in SE China. Traditional statistics and geo-statistics including semivariance, Moran’s I index, and fractal dimension were used to analyze data.

Results and discussion

Key findings were that (1) the spatial mean of R s, M s-5, T, and M co2 were 1.194 μmol m?2 s?1, 11.387 mmol mol?1, 14.153 °C, and 407.716 ppm, respectively, in the forest; (2) the relationship between soil respiration and the other three factors was weak, while M s-5, T, and M co2 have strong relationships with each other; and (3) the four factors, especially soil respiration, had strong autocorrelation within given limits and showed great heterogeneity with 95 % confidence intervals around the means in the study area, all of which can provide important value for the study of carbon cycling and for the sustainable management of coastal protection forests.

Conclusions

According to geo-statistical analysis and field investigations, soil respiration in the coastal forest is less than in some broad-leaf forests but higher than in some conifers. Strong heterogeneity and autocorrelation are clear; however, its relation with other three factors is weak. CPF is a considerable potential forest for carbon conservation if it is well managed.
  相似文献   

12.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

13.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

14.

Purpose

Re-establishment of soil nitrogen (N) capital is a priority in mine rehabilitation. We aimed to evaluate the effects of biochar addition on improving mine spoil N pools and the influence of elevated CO2 concentration on mine rehabilitation.

Materials and methods

We assessed the effects of pinewood biochar, produced at three temperatures (650, 750 and 850 °C, referred as B650, B750 and B850, respectively), on mine spoil total N concentrations with five different plant species, including a tree species (Eucalyptus crebra), N-fixing shrubs (Acacia floribunda and Allocasuarina littoralis) and C3 and C4 grasses (Austrodanthonia tenuior and Themeda australis) incubated at ambient (400 μL L?1) and elevated (700 μL L?1) atmospheric CO2 concentrations, as well as the effects of elevated CO2 on mine rehabilitation.

Results and discussion

Soil total N significantly improved following biochar incorporation under all plant species (P < 0.05) except for T. Australis. E. crebra had the highest soil total N (0.197%, 0.198% and 0.212% for B650, B750 and B850, respectively). Different from the negligible influence of elevated CO2 on soil properties under the grasses and the N-fixing shrubs, elevated CO2 significantly increased soil water and hot water extractable organic C (WEOC and HWEOC, respectively) and decreased total C under E. crebra, indicating that the nutrient demands were not met.

Conclusions

Biochar addition showed the potential in mine rehabilitation in terms of improving soil N pool, especially with E. crebra. However, it would be more difficulty to rehabilitate mine spoils in future with the rising atmospheric CO2 concentration.
  相似文献   

15.

Purpose

Urban soil, which is strongly influenced by anthropogenic activities, receives a major proportion of trace metal wastes. The aim of this work was to determine heavy metal concentration in (a) soil, to know the degree of the soil pollution; (b) roots and leaves of two plant species, Brassica juncea as an accumulator plant and Solanum lycopersicum as a crop plant; and (c) drainage water, to evaluate the heavy metal mobility.

Materials and methods

The study area is located in Sants, a neighborhood in Barcelona (Catalonia, Spain). Thirty kilograms of two representative soil depths (0–15 and 15–40 cm) was sampled and subsequently mixed. The two studied species were cultivated for 3 weeks in greenhouse conditions, and all pots were irrigated with water weekly to field capacity with a nutrient solution (pH = 6.5). If not otherwise stated, given results are means ± standard deviation of four replicated pots each with a composite sample of 12 individual plants per treatment. X-ray fluorescence (FRX) and diethylenetriaminepentaacetic acid soil extraction (DTPA) were used for total and available metal soil contents, respectively. Weekly cumulative drainage water of each pot was collected in polyethylene bottles and stored at 4 °C until analysis.

Results and discussion

The main pollutants are Cu, Pb, and Zn with topsoil total concentrations of approximately 1355, 2230, and 6239 mg kg?1, respectively. The same soil elements for available fractions were slightly elevated (9.6, 5.8, and 6.7% of total concentration). The concentrations of Cu, Pb, and Zn in the plants’ leaves are greater in B. juncea than in S. lycopersicum. Furthermore, they are greater in the roots than in leaves. The Pb concentrations in a crop plant exceeded the 0.10 mg kg?1 limit established for vegetables devoted for food in the European legislation. Unusually elevated concentrations of Pb (over 10 μg L?1) were detected in the drainage water. These values exceeded the acceptable toxic concentrations in waters, according to the Spanish legislation.

Conclusions

The urban soil studied was highly contaminated by Cu, Pb, and Zn, and this pollution is more evident in the topsoil. A great part of these heavy metals was bioavailable for plants. Thus, the two plants (S. lycopersicum and B. juncea) had an ability to transport heavy metals from the roots to the shoots, especially for Zn. Great contents of heavy metals in the drainage water after the irrigation of plants were observed.
  相似文献   

16.

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L?1) and elevated (700 μL L?1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.
  相似文献   

17.

Purpose

The intensive development of nanotechnology raises a question of the potential consequences of the presence of nanoparticles (NPs) in the different components of the environment, including sediments. The aim of this study was to evaluate the toxicity of nanoparticles of ZnO and Ni and their bulk counterparts in bottom sediments (SD1, SD2) with different properties collected from the Vistula River in Poland.

Materials and methods

Sediment samples with NPs at a concentration of 100 mg kg?1 were incubated for 17 months in the dark or under a photoperiod of 12 h light/12 h dark. The Microtox® (bacteria, Vibrio fischeri) and OSTRACODTOXKIT F? (ostracods, Heterocypris incongruens) tests were used to evaluate toxicity. In addition, the contents of Zn and Ni were determined in extracts (H2O and CaCl2) of the bottom sediments.

Results and discussion

The Zn concentration was much lower in the SD1 sediment with the addition of NPs/bulk particles (30–230 μg kg?1) compared to the SD2 sediment (280–1140 μg kg?1). The toxicity of ZnO and Ni was determined by the type of bottom sediment and the parameter studied. Both nano- and bulk-ZnO and Ni caused the mortality of H. incongruens at a level of 13.3–53.3 %. The influence of ZnO and Ni on the growth of H. incongruens was observed to be the opposite. ZnO resulted in growth stimulation, while Ni resulted in growth inhibition of H. incongruens. Both ZnO and Ni stimulated V. fisheri luminescence. In most cases, the incubation of ZnO and Ni under the photoperiod increased the toxicity or decreased the stimulation of V. fisheri bioluminescence and H. ingongruens growth compared to the dark-incubated sediments.

Conclusions

The study provides new and important information on the ecotoxicological effects of ZnO and Ni nanoparticles in different sediments and under various environmental conditions that may be useful for the risk assessment of this new group of contaminants.
  相似文献   

18.

Purpose

Although arsenic (As) hyperaccumulation is a constitutive property for Pteris vittata, there is intraspecific variation in As accumulation among metallicolous (from As-contaminated soils) and nonmetallicolous populations (from uncontaminated soils) and the related mechanisms is still not clear.

Materials and methods

Pot trials, hydroponic culture, and manual simulation were conducted to investigate the roles of arsenate reductase and root exudates in accumulating As in P. vittata, which were collected from two uncontaminated sites including Sun Yat-sen University campus, Guangdong Province (ZD), and a botanical garden in Guangxi Academy of Forestry Sciences, Nanning City, Guangxi Province (NN), and two As and Pb/Zn mining and/or smelting sites located in Shaoguan of Guangdong Province (SG) and Guiyang of Hunan Province (GY).

Results and discussion

The nonmetallicolous populations (ZD and NN) possessed more efficient uptake of arsenate and arsenite than the metallicolous populations (SG and GY). There were significant (p?<?0.05) difference in arsenate reductase activities in roots among the four populations of P. vittata and that the higher arsenate reductase activities were recorded in the nonmetallicolous populations (110 nkat mg?1 protein for ZD, 160 nkat mg?1 protein for NN) compared with the metallicolous populations (62.9 nkat mg?1 protein for SG, 78.1 nkat mg?1 protein for GY). Root exudates from the nonmetallicolous population (NN) and the metallicolous population (GY) of P. vittata contained similar compositions of organic acids including oxalic, malic, and succinic acids, of which oxalate were dominant (>?67%). The NN population exuded 4.23 times more oxalate than the SG population. Root exudates from the NN population mobilized significantly (p?<?0.05) more As from As-contaminated soils than those from the SG population, of which oxalate had the most effective in As mobilization.

Conclusions

The present study suggests that higher arsenate reductase activities and oxalate exudation in the nonmetallicolous populations may play an important role in increasing their efficiency in phytoremediation of As-contaminated soils.
  相似文献   

19.

Purpose

Irrigation and fertilization can change soil environment, which thereby influence soil microbial metabolic activity (MMA). How to alleviate the adverse effects by taking judicious saline water irrigation and fertilization regimes is mainly concerned in this research.

Materials and methods

Here, we conducted a field orthogonal designed test under different saline water irrigation amount, water salinity, and nitrogen fertilizer application. The metabolic profiles of soil microbial communities were analyzed by using the Biolog method.

Results and discussion

The results demonstrated that irrigation amount and fertilizer application could significantly change MMA while irrigation water salinity had no significant effect on it. Medium irrigation amount (30 mm), least (50 kg ha?1) or medium (350 kg ha?1) N fertilizer application, and whatever irrigation water salinity could obtain the optimal MMA. Different utilization rates of carbohydrates, amino acids, carboxylic acids, and polymers by soil microbial communities caused the differences of the effects, and D-galactonic acid γ-lactone, L-arginine, L-asparagine, D-glucosaminic acid, Tween 80, L-threonine, and D-galacturonic acid were the indicator for distinguishing the effects.

Conclusions

The results presented here demonstrated that by regulating irrigation water amount and fertilizer application, the effects of irrigation salinity on MMA could be alleviated, which offered an efficient approach for guiding saline water irrigation.
  相似文献   

20.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号