首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 198 毫秒
1.
基于改进YOLO v4网络的马铃薯自动育苗叶芽检测方法   总被引:1,自引:0,他引:1  
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。  相似文献   

2.
为实现作物病害早期识别,本文提出一种基于红外热成像和改进YOLO v5的作物病害早期检测模型,以CSPD-arknet为主干特征提取网络,YOLO v5 stride-2卷积替换为SPD-Conv模块,分别为主干网络中的5个stride-2卷积层和Neck中的2个stride-2卷积层,可以提高其准确性,同时保持相同级别的参数大小,并向下阶段输出3个不同尺度的特征层;为增强建模通道之间的相互依赖性,自适应地重新校准通道特征响应,引入SE机制提升特征提取能力;为减少模型计算量,提高模型速度,引入SPPF。经测试,改进后YOLO v5网络检测性能最佳,mAP为95.7%,相比YOLO v3、YOLO v4、SSD和YOLO v5网络分别提高4.7、8.8、19.0、3.5个百分点。改进后模型相比改进前对不同温度梯度下的作物病害检测也有提高,5个梯度mAP分别为91.0%、91.6%、90.4%、92.6%和94.0%,分别高于改进前3.6、1.5、7.2、0.6、0.9个百分点。改进YOLO v5网络内存占用量为13.755MB,低于改进前基础模型3.687MB。结果表明,改进YOLO v5可以准确快速地实现病害早期检测。  相似文献   

3.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   

4.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   

5.
基于YOLO v5-MDC的重度粘连小麦籽粒检测方法   总被引:1,自引:0,他引:1  
小麦籽粒检测在千粒质量计算及作物育种方面有着重要应用,重度粘连籽粒的有效检测是其关键。本研究设计了一种YOLO v5-MDC的轻量型网络用于重度粘连小麦籽粒检测。该网络在YOLO v5s检测网络的基础上,用混合深度可分离卷积(Mixed depthwise convolutional, MDC)模块进行改进,同时将MDC模块与压缩激励(Squeeze and excitation, SE)模块相结合,以达到在基本不损失模型精度的前提下减少模型参数的目的。YOLO v5-MDC网络将YOLO v5s特征提取网络骨干部分的卷积、归一化、激活函数(Convolution, Batch normal, Hardswish, CBH)模块替换为MDC模块,减少了模型的参数,经过500次迭代训练,模型的精确率P为93.15%,召回率R为99.96%,平均精度均值(mAP)为99.46%。根据模型在测试集上的检测效果,本研究探究了训练次数、不同光源与不同拍摄距离对模型检测结果的影响,统计结果表明,在绿色光源下模型检测精确率最高,为98.00%,在5 cm拍摄高度下图像的检测精确率最高,为98.60%...  相似文献   

6.
为方便调查宁夏全区荒漠草原植物种类及其分布,需对植物识别方法进行研究。针对YOLO v5s模型参数量大,对复杂背景下的植物不易识别等问题,提出一种复杂背景下植物目标识别轻量化模型YOLO v5s-CBD。改进模型YOLO v5s-CBD在特征提取网络中引入带有Transformer模块的主干网络BoTNet(Bottleneck transformer network),使卷积和自注意力相结合,提高模型的感受野;同时在特征提取网络融入坐标注意力(Coordinate attention, CA),有效捕获通道和位置的关系,提高模型的特征提取能力;引入SIoU函数计算回归损失,解决预测框与真实框不匹配问题;使用深度可分离卷积(Depthwise separable convolution, DSC)减小模型内存占用量。实验结果表明,YOLO v5s-CBD模型在单块Nvidia GTX A5000 GPU单幅图像推理时间仅为8 ms,模型内存占用量为8.9 MB,精确率P为95.1%,召回率R为92.9%,综合评价指标F1值为94.0%,平均精度均值(mAP)为95.7%,在VOC数据集...  相似文献   

7.
智能虫情测报灯下害虫的精准识别和分类是实现稻田虫情预警的前提,为解决水稻害虫图像识别过程中存在分布密集、体态微小、易受背景干扰等造成识别精度不高的问题,提出了一种基于MS-YOLO v7(Multi-Scale-YOLO v7)轻量化稻飞虱识别分类方法。首先,采用稻飞虱害虫诱捕装置搭建稻飞虱害虫采集平台,获取的稻飞虱图像构成ImageNet数据集。然后,MS-YOLO v7目标检测算法采用GhostConv轻量卷积作为主干网络,减小模型运行的参数量;在Neck部分加入CBAM注意力机制模块,有效强调稻飞虱区别度较高的特征通道,抑制沉冗无用特征,准确提取稻飞虱图像中的关键特征,动态调整特征图中不同通道的权重;将SPPCSPS空间金字塔池化模块替换SPPFS金字塔池化模块,提高网络模型对各分类样本的特征提取能力;同时将YOLO v7模型中的SiLU激活函数替换为Mish激活函数,增强网络的非线性表达能力。试验结果表明,改进后的MS-YOLO v7在测试集上的模型平均精度均值(Mean average precision,mAP)为95.7%,精确率(Precision)为96.4%,召回率(Recall)为94.2%,与Faster R-CNN、SSD、YOLO v5、YOLO v7网络模型相比mAP分别提高2.1、3.4、2.3、1.6个百分点,F1值分别提高2.7、4.1、2.5、1.4个百分点。改进后的模型内存占用量、参数量、浮点运算数分别为63.7MB、2.85×107、7.84×1010,相比YOLO v7模型分别缩减12.5%、21.7%、25.4%,MS-YOLO v7网络模型对稻飞虱种间害虫均能实现高精度的识别与分类,具有较好的鲁棒性,可为稻田早期稻飞虱虫情预警提供技术支持。  相似文献   

8.
为实现苹果果径与果形快速准确自动化分级,提出了基于改进型SSD卷积神经网络的苹果定位与分级算法。深度图像与两通道图像融合提高苹果分级效率,即对从顶部获取的苹果RGB图像进行通道分离,并提取分离通道中影响苹果识别精度最大的两个通道与基于ZED双目立体相机从苹果顶部获取的苹果部分深度图像进行融合,在融合图像中计算苹果的纵径相关信息,实现了基于顶部融合图像的多个苹果果形分级和信息输出;使用深度可分离卷积模块替换原SSD网络主干特征提取网络中部分标准卷积,实现了网络的轻量化。经过训练的算法在验证集下的识别召回率、精确率、mAP和F1值分别为93.68%、94.89%、98.37%和94.25%。通过对比分析了4种输入层识别精确率的差异,实验结果表明输入层的图像通道组合为DGB时对苹果的识别与分级mAP最高。在使用相同输入层的情况下,比较原SSD、Faster R-CNN与YOLO v5算法在不同果实数目下对苹果的实际识别定位与分级效果,并以mAP为评估值,实验结果表明改进型SSD在密集苹果的mAP与原SSD相当,比Faster R-CNN高1.33个百分点,比YOLO v5高14.23个百分点...  相似文献   

9.
针对自然环境下油茶果存在严重遮挡、近景色、小目标等现象,使用YOLO网络存在检测精度低、漏检现象严重等问题,提出对YOLO v8n网络进行改进。首先使用MPDIOU作为YOLO v8n的损失函数,有效解决因为果实重叠导致的漏检问题;其次调整网络,向其中加入小目标检测层,使网络能够关注小目标油茶以及被树叶遮挡的油茶;最后使用SCConv作为特征提取网络,既能兼顾检测精度又能兼顾检测速度。改进COF-YOLO v8n网络精确率、召回率、平均精度均值分别达到97.7%、97%、99%,比未改进的YOLO v8n分别提高3.2、4.8、2.4个百分点,其中严重遮挡情况下油茶检测精确率、召回率、平均精度均值分别达到 95.9%、95%、98.5%,分别比YOLO v8n提高4.0、9.1、4.6个百分点。因此改进后COF-YOLO v8n网络能够明显提高油茶在严重遮挡、近景色、小目标均存在情况下的识别精度,减小油茶的漏检。此外,模型能够实现动、静态输入条件下油茶果计数。动态计数借鉴DeepSORT算法的多目标跟踪思想,将改进后COF-YOLO v8n的识别输出作为DeepSORT的输入,实现油茶果实的追踪计数。所得改进模型具有很好的鲁棒性,且模型简单可以嵌入到边缘设备中,不仅可用于指导自动化采收,还可用于果园产量估计,为果园物流分配提供可靠借鉴。  相似文献   

10.
针对黄花传统人工识别效率低,辨识标准不统一的问题,提出基于轻量化和高效层聚合过渡网络的黄花成熟度识别方法LSEB YOLO v7。首先,引入轻量化卷积对高效层聚合网络和过渡模块进行轻量化处理,减少模型计算量。其次,在特征提取与特征融合网络之间增加通道注意力机制,提升模型检测性能。最后,在特征融合网络中,优化通道信息融合方式,使用双向特征金字塔网络替换Concatenate,增加信息融合通道,持续提升模型性能。实验结果表明:与原始模型相比,在黄花成熟度检测中,改进后的LSEB YOLO v7模型参数量和浮点运算量分别减少约2.0×106和7.7×109。训练时长由8.025 h降低至7.746 h,模型体积压缩约4 MB。同时,训练精确率和召回率分别提升约0.64个百分点和0.14个百分点,mAP@0.5和mAP@0.5:0.95分别提升约1.84个百分点和1.02个百分点。此外,调和均值性能保持不变,均为84.00%。LSEB YOLO v7算法可均衡模型复杂性与性能,为黄花成熟度检测和智能化采摘设备提供技术支持。  相似文献   

11.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。  相似文献   

12.
花椒树产果量大,枝干纵横交错,树叶茂密,给花椒的自动化采摘带来了困难。因此,本文设计一种基于改进YOLO v5的复杂环境下花椒簇的快速识别与定位方法。通过在主干提取网络CSPDarknet的CSPLayer层和Neck的上采样之后增加高效通道注意力ECA(Efficient channel attention)来简化CSPLayer层的计算量,提升了特征提取能力。同时在下采样层增加协同注意力机制CA(Coordinate attention),减少下采样过程中信息的损失,强化特征空间信息,配合热力图(Grad-CAM)和点云深度图,来完成花椒簇的空间定位。测试结果表明,与原YOLO v5相比较,改进的网络将残差计算减少至1次,保证了模型轻量化,提升了效率。同帧数区间下,改进后的网络精度为96.27%,对比3个同类特征提取网络YOLO v5、YOLO v5-tiny、Faster R-CNN,改进后网络精确度P分别提升5.37、3.35、15.37个百分点,连株花椒簇的分离识别能力也有较大提升。实验结果表明,自然环境下系统平均识别率为81.60%、漏检率为18.39%,能够满足花椒簇识别...  相似文献   

13.
奶牛身体部位的精准分割广泛应用于奶牛体况评分、姿态检测、行为分析及体尺测量等领域。受奶牛表面污渍和遮挡等因素的影响,现有奶牛部位精准分割方法实用性较差。本研究在YOLO v8n-seg模型的基础上,加入多尺度融合模块与双向跨尺度加权特征金字塔结构,提出了YOLO v8n-seg-FCA-BiFPN奶牛身体部位分割模型。其中,多尺度融合模块使模型更好地提取小目标几何特征信息,双向跨尺度加权特征金字塔结构实现了更高层次的特征融合。首先在奶牛运动通道处采集奶牛侧面图像作为数据集,为保证数据集质量,采用结构相似性算法剔除相似图像,共得到1452幅图像。然后对目标奶牛的前肢、后肢、乳房、尾部、腹部、头部、颈部和躯干8个部位进行标注并输入模型训练。测试结果表明,模型精确率为96.6%,召回率为94.6%,平均精度均值为97.1%,参数量为3.3×106,检测速度为6.2f/s。各部位精确率在90.3%~98.2%之间,平均精度均值为96.3%。与原始YOLO v8n-seg相比,YOLO v8n-seg-FCA-BiFPN的精确率提高3.2个百分点,召回率提高2.6个百分点,平均精度均值提高3.1个百分点,改进后的模型在参数量基本保持不变的情况下具有更强的鲁棒性。遮挡情况下该模型检测结果表明,精确率为93.8%,召回率为91.67%,平均精度均值为93.15%。结果表明,YOLO v8n-seg-FCA-BiFPN网络可以准确、快速地实现奶牛身体部位精准分割。  相似文献   

14.
基于改进YOLO的玉米幼苗株数获取方法   总被引:1,自引:0,他引:1  
为快速准确获取玉米幼苗株数、评估播种质量、进行查缺补苗等管理,对YOLO算法进行改进,提出了一种基于特征增强机制的幼苗获取检测模型(FE-YOLO),实现了对玉米幼苗株数的快速获取。该方法根据玉米幼苗目标尺寸和空间纹理特征,构建了基于动态激活的轻量特征提取网络,融合了多感受野和空间注意力机制。实验表明:FE-YOLO模型增强了幼苗空间特征、降低了网络复杂度,使模型的mAP和召回率分别达到87.22%和91.54%,每秒浮点运算次数和检测推理时间仅为YOLO v3的7.91%和33.76%。FE-YOLO能够实现无人机正射影像的玉米幼苗株数获取和种植密度估算,该模型复杂度低、识别精度高,能够为玉米苗期管理提供技术支持。  相似文献   

15.
甜椒在生长发育过程中容易产生畸形果,机器代替人工对甜椒畸形果识别和摘除一方面可提高甜椒品质和产量,另一方面可解决当前人工成本过高、效率低下等问题。为实现机器人对甜椒果实的识别,提出了一种基于改进YOLO v7-tiny目标检测模型,用于区分正常生长和畸形生长的甜椒果实。将无参数注意力机制(Parameter free attention module, SimAM)融合到骨干特征提取网络中,增强模型的特征提取和特征整合能力;用Focal-EIOU(Focal and efficient intersection over union)损失替换原损失函数CIOU(Complete intersection over union),加快模型收敛并降低损失值;使用SiLU激活函数代替原网络中的Leaky ReLU,增强模型的非线性特征提取能力。试验结果表明,改进后的模型整体识别精确度、召回率、平均精度均值(Mean average precision, mAP)mAP0.5、mAP0.5-0.95分别为99.1%、97.8%、98.9%、94.5%,与改进前相比,分别提升5.4、4.7、2.4、10.7个百分点,模型内存占用量为 10.6MB,单幅图像检测时间为4.2ms。与YOLO v7、Scaled-YOLO v4、YOLOR-CSP等目标检测模型相比,模型在F1值上与YOLO v7相同,相比Scaled-YOLO v4、YOLOR-CSP分别提升0.7、0.2个百分点,在mAP0.5-0.95上分别提升0.6、1.2、0.2个百分点,而内存占用量仅为上述模型的14.2%、10.0%、10.0%。本文所提出的模型实现了小体量而高精度,便于在移动端进行部署,为后续机械化采摘和品质分级提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号