首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
From 1977 to 1982, liming of acidified waters was performed for a trial period using governmental subsidies. Based on the experience gained, an operational liming program was started in 1982 by the National Environmental Protection Board of Sweden. All waters with pH of less than 6 and/or an alkalinity of less than 0.05 meq L?1 have been eligible for subsidies. Individual water owners as well as organizations and federal agencies may apply for subsidies. Normally 85% of the costs are covered by government grants. Each county administration draws up a 5 yr liming plan and applies yearly for subsidies on a county basis. Since 1977, SEK (Swedish Kroner) 373 million have been spent on liming operations and SEK 33 million on administration and follow-up studies. A yearly budget of about SEK 110 to 130 million has been proposed for 1988 to 1991. The liming agent used has been powdered CaCO3 with a particle size normally of 0 to 0.2 mm. At present, about 4,000 lakes have been treated. The results of the treatments are normally evaluated by analyzing water samples taken twice a year. These are analyzed for pH, alkalinity, conductivity, color, Ca and Mg. In addition, biological surveys are carried out in selected lakes and streams.  相似文献   

2.
To mitigate the acidification problem in surface waters the Swedish government is funding a liming programme. Limestone or dolomite powder has been applied to acidified waters since 1976 and on a large scale since 1982. In most projects, limestone is applied directly to the lake, but in several cases supplementary liming is carried out on wetlands and in streams using dosers or other techniques. At present 7,500 Swedish lakes and more than 11,000 kilometers of streams are limed repeatedly with a total of some 200,000 tonne of limestone every year. In 1994 about US$ 25 million was invested by the Swedish government in the liming programme. The biological objective of the liming operations is to detoxify the water so that the natural fauna and flora can survive or recolonize. The chemical aim is to raise the pH above 6.0 and the alkalinity above 0.1 meq/l, which gives an acceptable buffering capacity. In addition, dissolved metals will be deposited after liming, thus reducing their toxicity. Overdosing must be avoided, with natural softwater characteristics being the objective. The chemical and biological effects in water of the liming operations are encouraging. The Swedish liming programme has so far resulted in restoration in 80–90% of the limed surface waters. The fauna often shows an initial dominance by a few species but diversity increases with time, In general, flora and fauna in limed waters show a great resemblance to those in waters not acidified. An undesired effect of liming is significant changes in mosses and lichens after wetland liming.  相似文献   

3.
In this study we report on the effect of sediment, from an acidified lake, on the neutralization of the acidified water column. The results of this experimental study show that organic acids (presumably humic or fulvic acids) can dissolve from the sediment and destroy alkalinity as measured by a Gran plot analysis. Alkalinity destruction by organic acid dissolution was shown to be a function of pH. Some Na ion exchange for sediment H+ was also observed. This ion exchange was shown to be a function of pH and Na concentration.  相似文献   

4.
As a result of changes in hydrology, the former mesotrophic, shallow lake Naardermeer, has been eutrophicated during the last decades. To compensate for shortage of water, eutrophicated water with different chemical characteristics has been supplied. In order to determine the effects of alkalinity, acidity and external sulphate and phosphorus load on eutrophication processes, developments in water chemistry have been studied in enclosures. A decrease of the phosphorus load of the lake did not improve water quality on the short term. This observation was confirmed by this enclosure experiment. Reduction of alkalinity did improve water quality, particularly by reductions of turbidity and chlorophyll-a content. The significant increase in sulphate load in the water layer led to deterioriation of the water quality and an increased biomass of sessile algae by internal eutrophication, probably as a result of increased sulphate reduction in the sediment. Therefore, it seems that lowering of sulphate concentrations in the inlet water after the removal of phosphorus is necessary to improve the water chemistry. The best option, however, is to restore the former hydrological conditions after which the system will be fed only by seepage of groundwater poor in nutrients and sulphate.  相似文献   

5.
In 1981, an experimental neutralization program was initiated in Ontario to investigate the feasibility of using neutralization as an interim measure for the protection of acid-sensitive lakes and the restoration of acidified lakes. Aerial applications of powdered limestone (CaC03) to two lakes were used to increase whole-lake pH and alkalinity, and experiments were initiated to investigate the neutralization of lake trout (Salvelinus namaycush) spawning shoals with crushed limestone. Intensive studies are continuing to assess temporal patterns in water chemistry and to evaluate the long-term responses of zooplankton, phytoplankton, zoobenthos and fish communities.  相似文献   

6.
Acidic precipitation has caused damage to the populations of fish and invertebrates in numerous streams in the southern part of the Swedish mountain range. In the middle of the 70's, the pH of precipitation decreased and has since then frequently been lower than 4.5. Many of the streamwaters were well buffered during most time of the year, but during periods with high discharge, the buffering capacity was completely exhausted, pH frequently decreased to around 4.5 and very high levels of Fe, Mn and Al occurred. In general, base cations (BC) and organic anions decreased during periods of high flow, while SO4 increased or was relatively independent of flow. On an average, the ratio SO4/BC was negatively correlated to pH, while organic anions/BC showed a weaker correlation to pH. In order to investigate if wetland liming could be used as a remedial measure in such areas, lime treatments were started in 1983 in the Lofsdalen area, province of Härjedalen. The liming stabilized the alkalinity and pH of the streams at circum-neutral levels, and reduced the leaching of Fe, Mn, and Al. The average levels of these elements decreased and the seasonal fluctuation decreased considerably.  相似文献   

7.
Diagnostics, methods of evaluation, and geography of saline-alkali (soda) soils are discussed. The saline-alkali soils include soils of different genetic types with the following chemical properties: the pH of the water suspensions equal to or higher than 8.5; the total alkalinity exceeding 1.4 meq/100 g of soil and the sum of water-soluble calcium and magnesium; and the presence of soluble “alkaline” salts in the soil profiles, the hydrolysis of which results in the alkaline reaction of the soils. The chemical properties of the saline-alkali soils are largely related to the presence of soda (Na2CO3, NaHCO3) in the soils. According to their morphological properties, saline-alkali soils are divided into two groups: alkaline soils with an undiferentiated profile and without a morphologically pronounced solonetzic (natric) horizon, and alkaline soils with a pronounced natric horizon (solonetzes). Solonetzes, in turn, are divided into (a) alkaline solonetzes (with soda or with soda and neutral salts), (b) solonetzes salinized with neutral salts (saline soils) with increased alkalinity in the solonetzic and lower lying horizons, (c) saline solonetzes throughout the profile, and (d) leached solonetzes containing no soluble salts in the profile and almost no exchangeable sodium in the soil exchange complex (SEC) (“dead” solonetzes). The latter two groups of solonetzes cannot be ranked among the alkaline soils. The alkalinity of the saline-alkali soils under study is due to carbonate and bicarbonate ions (carbonate alkalinity), organic acid anions (organic alkalinity), and borate ions (borate alkalinity). The carbonate alkalinity is due to both soda (Na2CO3, NaHCO3) and CaCO3.  相似文献   

8.
力洋水库位于浙江省宁波市力洋镇,是居民的饮用水水源,水库在2002年春秋季相继爆发了蓝藻水华,2002年11月和2003年2月调查分析了力洋水库的地形和富营养状况,分析了春季藻类爆发的原因。同时对控制水库水质进一步富营养化提出一系列措施,主要是生活、畜禽污水治理工程,山地、林地截污治理工程,入库河道上的物理生态工程,库岸物理生物截污工程,库区采用固定化氮循环细菌技术(INCB)及建设以漂浮植物和浮床植物为主的生态浮岛群生态系统工程,库区排水口建设二层以生物膜和过滤为主要特征的物理生态工程(PEEN),减少藻类输出,保证自来水厂出水水质。  相似文献   

9.
Abstract

A laboratory incubation experiment was conducted to study the influence of organic matter and lime application on the recovery of added boron (B) by four different extractants (hot‐CaCl2, mannitol‐CaCl2, tartaric acid, and ammonium acetate) in two B‐deficient acid alluvial soils. Soils were brought to four relatively constant pHs and three organic matter levels before application of B. Recovery percentages of 23.9 to 60.9 of added B by the four extractants indicate a soil fixation of B. This is more so in fine‐than in coarse‐textured soils. Both liming (from pH 4.8 to 6.8) below neutrality and organic matter application increased such recovery of added B in all the extractable forms, the effect being more pronounced in fine‐than in coarse‐textured soils. A positive interaction between liming and organic matter particularly at the latter's higher level was observed. Complexation of added B and coating of the surfaces of Fe‐and Al‐oxides by soluble organic compounds are suggested as the possible reasons for such increased recovery of added B in soils.  相似文献   

10.
Northern Sweden has been regarded as unaffected by acid deposition, but many surface waters in the region fall within the definition of acid surface water (pH < 6.0, alkalinity < 50 mmolc m?3) permanently or during episodes. Approximatly 100 MSEK in spent annually on liming in northern Sweden. This paper summarizes our conclusions from a workshop on natural versus anthopogenic acidification held in February 1995. It was shown that organic substances have a key role in determining the acidity of surface waters in the region, although anthropogenic effects are documented in some coastal systems and in the southern mountain range. Sulfide oxidation occurs by the coast. It appears clear that many surface waters that were naturally acidic have been limed to unnatural pH levels. New criteria to screen liming candidates should be developed, and one such model based on water chemistry data is proposed.  相似文献   

11.

Purpose

This study evaluated the potential of using hot water extractable phosphorus (P) pools as a method to assess the impacts of harvest residue management on the bioavailability of P in an exotic pine plantation of southeast Queensland, Australia.

Materials and methods

This study was carried out under three harvest residue management regimes: (1) residue removal, RR0; (2) single-level residue retention (operational level), RR1; and (3) double level of residue retention, RR2, established immediately following clear-cut harvesting in a randomised complete block experiment. Soil was sampled after 24 months of the residue management regimes applied and analysed for hot water extractable inorganic P (HWEIP), hot water extractable organic P (HWEOP) and total P (HWETP), in relation to hot water extractable organic C (HWEOC) and N (HWEON), calcium chloride extractable P (CaCl2_P), bicarbonate extractable P (NaHCO3_P) and fluoride extractable P (Bray1_P).

Results and discussion

The HWEIP and CaCl2_P concentrations showed no significant variations amongst the treatments, while Bray1_P, NaHCO3_P and the HWEOP P pools were only significantly greater in the RR2 treatment than the RR0 treatment. In contrast, the HWETP pool showed highly significant (p?<?0.005) differences amongst all the treatments. In addition, both the HWEOP and HWETP were significantly related to the HWEOC and the total C, in contrast to the lack of such relationships with soil total P, suggesting their association with the HWEOC released through residue decomposition.

Conclusions

This study showed that HWETP is a more sensitive measure of labile soil P and has the potential to be used as an indicator of management practices, particularly in cases where high spatial variations in soil P concentrations might confound P responses.  相似文献   

12.
Experimental addition of phosphate to enclosures in an acidified lake in Southern Norway was performed to study the effect on nitrate, pH and labile aluminium along a gradient of phosphate from 4–19 µg P L?1. Nitrate decreased from 180 µg L?1 to below detection limit after three weeks at P-concentrations > 17 µg L?1, due to phytoplankton uptake. pH increased from 4.9 to 5.2, corresponding to a 50% decrease of H+-equivalents from 12 to 6 µg P L?1 due to algal uptake of H+-ions when assimilating NO3 ?-ions. Due to the increased pH and probably also precipitation with phosphate, concentrations of labile aluminium decreased from 150 to 100 µg L?1 within the P-interval 4–19 µg L?1. Algal biomass increased from 0.5 to 6 µg chlorophyll a L?1 along the same P-gradient. The results suggest that moderate P-addition (< 15 µg P L?1 to avoid eutrophication problems) can improve water quality in moderately acidified lakes, and also increase nitrate retention in strongly acidified lakes. In humic lakes, the treatment will be less efficient due to light limitation of primary production and the presence of organic acids.  相似文献   

13.
As part of the EPRI funded Lake Acidification Mitigation Project(LAMP), an ongoing study to evaluate the feasibility of acid lake liming, two models (WAM and ALaRM) have been tested for two calibrated Adirondack Mountain study lakes(Woods and Cranberry). A priori predictions of reacidification rates based on Ca carbonate application and historical hydrological data are presented. WAM (Watershed Acidification Model) is a deterministic model that is capable of simulating the movement of water and chemical constituents through a watershed. WAM generates indata in the form of hydrologic and alkalinity to ALaRM (Acid Lake Reacidification Model), a general mass balance model developed for the temporal prediction of the principal chemical species in both the water column and sediment pore water of small lakes and ponds. A matrix of runs to determine model sensitivity to input loadings, kinetic coefficients, and sediment dosage levels indicate that reacidification of the water column is most sensitive to variation in hydrologic loading followed by variation in sediment dosage levels. Baseline estimates (initial water column alkalinity between 400 to 500 μeqL?1) indicate that reacidification to near zero alkalinity occurs after a time period equivalent to approximately two to three average hydraulic retention times.  相似文献   

14.
Plant growth, nutritional status, and proline content were investigated in non-grafted and grafted greenhouse tomato plants onto five rootstocks of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato, exposed to 0, 5, and 10 mM sodium bicarbonate (NaHCO3) to determine whether grafting could improve alkalinity tolerance of tomato. The leaf fresh mass of ungrafted and grafted tomato plants decreased significantly as NaHCO3 levels increased. Despite other rootstocks and ungrafted plants, alkalinity had no significant effect on stem and root fresh mass and shoot phosphorus (P), potassium (K) and magnesium (Mg) concentrations of datura grafted plants. The lowest solution pH and electrical conductivity (EC) values and the highest leaf proline content were observed in the plants grafted onto datura rootstock. Moreover, sodium (Na) concentration in shoots was lower in plants grafted onto datura rootstock than in other plants especially under high NaHCO3 levels. Overall, using datura rootstock improved alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

15.
Hovvatn, a 1-km2 chronically-acidified lake in southernmost Norway, was treated with 200 tonne of powdered limestone in March 1981. An additional 40 tonne were added to a 0.046 km2 pond (Pollen) draining into Hovvatn. The lakes were stocked with brown trout in June 1981 and in each subsequent year. At ice-out pH rose from 4.4 to 6.3 (Hovvatn) and 7.5 (Pollen), Ca and alkalinity increased, and total Al decreased by 120 μg L?1. None of the other major ions exhibited significant changes in concentration. Total organic Cand Pincreased after liming. The phytoplankton community was dominated by chrysophytes and did not change significantly following liming. The zooplankton community was typical of acid lakes prior to liming. There was a clear succession in species dominance following treatment, although no new species immigrated to the lakes. Zoobenthos changed from a community characterized by low abundance and reduced number of species to increased abundances of oligochaetes, mayflies and chironomids. Hovvatn and Pollen were barren of fish prior to stocking. The stocked fish showed remarkably high growth rate during the first years. Liming apparently improved conditions for zoobenthos, enhancing the processing of fine detritus which in turn resulted in elevated levels of TOC and P in the lakewaters during the first year after liming. The “oligotrophication” process typical of acid lakes was temporarily reversed by liming. The interactions between groups of organisms in Hovvatn and Pollen indicates that many years are required before a new steady-state can be attained following liming.  相似文献   

16.
Abstract

In the present study we evaluate the feasibility of using untreated industrial sewage sludge by liming before use as a fertilizer, produced in Pakistan. In a pots experiment, limed industrial sewage sludge (LSW) and non-limed sewage sludge (NLSW), were amended with soil separately and grown sorghum. After maturity, the sorghum grains were analysed for total contents of potentially toxic metals (TPTM), As, Cd, Cr, Cu, Ni, Pb and Zn. The proportion of different mobility fractions of each element in LWS and NLSW, a modified BCR sequential extraction procedure (Community Bureau of Reference) and single extractions with mild extractants (deionized water and CaCl2) were used. In LSW, the availability of most of the elements under study was reduced, probably due to the increased pH of soil, while this was the reverse in the cases of Cd and Cu, their mobility was slightly increased by lime-treated sludge. The sorghum grains grown in LSW have low level As, Cr, Ni, Pb and Zn as compared to grains grown in NLSW, except Cu and Cd, which, however, never exceeded legal limits. Thus the research showed that liming, by augmenting soil alkalinity, allows a safe agricultural use even of industrial sludge, which is environmentally hazardous for its great content of heavy metals.  相似文献   

17.
Operational liming of surface waters is part of Sweden and Norway's strategy to counteract freshwater acidification caused by air pollutants. Smaller scale liming efforts are performed as research or experimental programs in other countries. Yearly, approx. 300,000 tons of fine-grained limestone (CaCO3) is spread in lakes and streams and on wetlands to raise the pH in surface water at a cost of approximately 40–50 million $US. The chemical target is set by the biological goals and objectives. A total of over 11,000 lakes and streams are treated on a continuing basis. Dose calculations consider pH, inorganic monomeric Al, dissolved organic matter and the necessary buffering. Lake liming, limedosers at streams and terrestrial liming are used. A mix of different liming techniques is often preferred to get an optimal result. The vast majority of changes are desirable and expected Undesirable effects may appear and damaged wetlands are probably the most serious ones. Cost-benefit analysis show that liming may be profitable for the society. Recovery of the systems can take up to 10–20 years. Liming will in the long run restore the ecosystems but will not make them identical to what may be the original ones. In some cases, complementary measures, e.g. facilitation of recolonization, are necessary to enhance recovery. Reduced emissions of acidifying pollutants according to signed protocols will decrease the need for liming, but still liming is needed for several decades in large regions to preserve biodiversity.  相似文献   

18.
Side effects related to liming have been studied in four dimictic lakes (553–642 m?a.s.l.; 59°57′N) in Finnemarka, a forested area in Southern Norway with poor catchment buffer capacity. Data series from lake profiles have been sampled two decades apart; 10 years prior to liming and after 10 years of liming. Water samples were collected during spring after ice breakup and during summer after the development of thermal stratification. Before liming, there were very low concentrations of bicarbonate (HCO 3 ; or alkalinity) in the lakes. After 10 years of liming, up to 90% of the ions in hypolimnion originate from lime products. Hence, liming strengthened the chemical stratification and increased the vertical stability. Differences in chemocline developments between lakes were explained by differences in physical properties, i.e. their depth/surface area ratio. The chemocline developments lead to increased concentrations of organic matter in the hypolimnion with a subsequent reduction in oxygen concentrations. Lime additions during late spring, as an alternative to early autumn, lead to pronounced anoxic conditions in the hypolimnion.  相似文献   

19.
A technique was developed to estimate the amount of sulfur held by the microbial population in soil. This method involves lysing the microbial cells with chloroform and measuring the S released to 10 mm CaCl2 or 0.1 m NaHCO3 extracts. Calculations of biomass-S were made from the experimentally determined proportion of cell S released. To determine this proportion, two species each of bacteria and fungi, which were grown at three concentrations of S, were added to the soil and treated with CHCl3. The average values of 34.6% with CaCl2 and 41.2% with NaHCO3 were calculated for the proportion of microbial S extracted following CHCl3 treatment. Biomass-S was found to represent approximately 2.3% of the total S in the soil.  相似文献   

20.
TRAAEN  T. S.  FROGNER  T.  HINDAR  A.  KLEIVEN  E.  LANDE  A.  WRIGHT  R. F. 《Water, air, and soil pollution》1997,94(1-2):163-180
In June 1983 a whole-catchment liming experiment was conducted at Tjønnstrond, southernmost Norway, to test the utility of terrestrial liming as a technique to restore fish populations in remote lakes with short water-retention times. Tjønnstrond consists of 2 small ponds of 3.0 and 1.5 ha in area which drain a 25-ha catchment. The area is located at about 650–700 meters above sea-level in sparse and unproductive forests of spruce, pine and birch with abundant peatlands. A dose of 3 ton/ha of powdered limestone were spread by helicopter to the terrestrial area. No limestone was added to the ponds themselves. The ponds were subsequently stocked with brown and brook trout. Liming caused large and immediate changes in surface water chemistry; pH increased from 4.5 to 7.0, Ca increased from 40 to 200 μeq/L, ANC increased from –30 to +70 μeq/L, and reactive-Al decreased from about 10 to 3 μmol/L. During the subsequent 11 years the chemical composition of runoff has decreased gradually back towards the acidic pre-treatment situation. The major trends in concentrations of runoff Ca, ANC, pH, Al and NO3 in runoff are all well simulated by the acidification model MAGIC. Neither the measured data nor the MAGIC simulations indicate significant changes in any other major ion as a result of liming. The soils at Tjønnstrond in 1992 contained significantly higher amounts of exchangeable Ca relative to those at the untreated reference catchment Storgama. In 1992 about 75% of the added Ca remains in the soil as exchangeable Ca, 15% has been lost in runoff, and 10% is unaccounted for. The whole-catchment liming experiment at Tjønnstrond clearly demonstrates that this liming technique produces a long-term stable and favourable water quality for fish. Brown trout in both ponds in 1994 have good condition factors, which indicate that the fish are not stressed by marginal water quality due to re-acidification. The water quality is still adequate after 11 years and >20 water renewals. Concentrations of H+ and inorganic Al have gradually increased and approach levels toxic to trout, but the toxicity of these are offset by the continued elevated Ca concentrations. Reduced sulphate deposition during the last 4 years (1990–94) has also helped to slow and even reverse the rate of reacidification. The experiment at Tjønnstrond demonstrates that for this type of upland, remote terrain typical of large areas of southern Norway, terrestrial liming offers a suitable mitigation technique for treating acidified surface waters with short retention times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号