首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
采棉机产量监测系统采集数据的误差分析   总被引:1,自引:0,他引:1  
为了获取农田作物产量信息,建立产量分布图,在消化、吸收美国AgLeader公司棉花产量监测系统PF3000的基础上,进行了棉花测产收获试验。在收获过程中,对流量传感器、速度传感器等进行了标定,并对产量数据进行了处理。试验结果表明,现场标定可有效提高测产系统流量传感器和速度传感器的测量精度,但田问环境比较复杂,产量数据采集过程中仍会引入一些误差,需对产量数据进行误差处理。误差处理后得到的棉花产量分布图聚类性增强,较为符合实际情况。  相似文献   

2.
基于知识模型与WebGIS的精准农业处方智能生成系统研究   总被引:7,自引:0,他引:7  
 【目的】根据土壤采样调查结果,插值生成田块土壤肥力分布图,并以此为基础生成变量施肥处方图指导变量施肥,即可实现节省肥料、提高经济效益和保护环境的目的,是精准农业的核心思想。【方法】本系统可根据不同采样点所得的土壤养分含量,通过Kriging插值获得肥力分布图,经整合多年产量、气象和土壤等基础数据,将作物生产潜力估算、平衡施肥等知识模型与GIS相耦合。【结果】生成用于精准农业变量施肥的处方图,并通过网络予以发布,用户通过计算机网络即可获得施肥田块的作物施肥信息。【结论】构建了基于知识模型与WebGIS的精准农业处方图生成系统的基本框架和处理流程,提高了处方图的合理性和可靠性,实现了通过网络生成和发布处方图,初步解决了目前处方图生成和发布的瓶颈。  相似文献   

3.
介绍一个具有数据库、知识库、方法库与模型库,用于精细农业中变量施肥的决策支持系统VRF-ISDSS。系统包括农业区的基础地理信息、作物生产知识、作物生长养分需求的数学模型和分析方法,系统利用知识库的知识对决策方案进行调节和优化,实现了智能决策。系统是在ArcView GIS地理信息系统平台上进行二次开发而成的,能够处理与分析作物生长环境参数的空间分布和作物产量的空间分布和作物产量的空间分布等信息,并能够生成相应的分布图和变量施肥处方图。能够进行精细农业变量施肥的智能决策与空间决策,使得本系统不同于传统的农业决策支持系统以及单纯的农业地理信息系统。VRF-ISDSS还具有信息服务与科学计算等功能。  相似文献   

4.
谷物产量空间分布数据的分析与处理   总被引:2,自引:0,他引:2  
从精细农业实践过程中遇到的实际问题出发,对谷物产量空间分布数据进行了分析,利用区间估计法消除误差数据,通过划分栅格利用移动加权平均法对失真数据进行了修正.对同一地块中同一产量数据在划分成不同栅格情况下对应的产量分布图的比较,得到了一种精度较高的谷物产量分布图.  相似文献   

5.
介绍一个具有数据库、知识库、方法库与模型库,用于精细农业中变量施肥的决策支持系统VRF-ISDSS。系统包括农业区的基础地理信息、作物生产知识、作物生长养分需求的教学模型和分析方法。系统利用知识库的知识对决策方案进行调节和优化,实现了智能决策。系统是在Arc View GISA地理信息系统平台上进行二次开发而成的,能够处理与分析作物生长环境参数的空间分布和作物产量的空间分布等信息,并能锌生成相应的分布图和变量施肥处方图。能够进行精细农业变量施肥的智能决策与空间决策,使得本系统不同于传统的农业决策支持系统以及单纯的农业地理信息系统。VRF-ISDSS还具有信息服务与科学计算等功能。  相似文献   

6.
陈伟  马蓉  卢帅  安光辉  李军  刘姣娣 《安徽农业科学》2010,38(30):17208-17210
棉花产量空间分布图能集中反映农田时空变量对棉花的影响,为科学调节投入和制定管理决策措施提供重要依据。研究了美国AgLeader公司Insight棉花产量监测系统的组成及工作原理,并利用该系统对试验地块棉花产量进行了测算;详细描述了Insight测产系统的设置与标定过程,并应用AFS农田空间管理系统生成了试验地块的产量空间分布图。结果表明,该图给出的棉田产量分布差异与实地调查分析结果基本吻合。  相似文献   

7.
产量信息获取是精准农业实施过程的重要组成部分。为提高测产精度,缩小国内外农机装备的差距,本文设计开发了一种CAN总线架构的测产系统。该系统主要由多种传感器、智能节点、田间计算机和SD卡4部分组成,实现了产量数据采集、显示及存储等功能。为了减小升运器转速对测产的影响,提出修正系数法对谷物流量进行修正,室内试验结果表明:修正后谷物流量最大误差为2.63%,平均误差为2.04%。应用测产系统在田间进行实验得到产量数据,并采用产量模型和反距离权重法计算单位面积产量进行计算和插值,最后绘制了产量分布图。  相似文献   

8.
通过在采棉机上安装AFS产量监测系统及建立广域差分GPS基准站,绘制出棉田产量空问分布图,为精准农业的实施提供田问基础数据。  相似文献   

9.
先对气象数据进行空间插值处理,然后通过作物单产区划选择代表性的模拟县,根据模拟县历年作物单产的变化趋势得到作物波动产量,并对波动产量和气象因子进行相关性分析,提取与作物单产相关性最大的气象因子,建立一元线性或多元回归方程,估算作物产量,将估算结果与实际统计结果进行比较。结果表明,作物单产估算结果与统计数据的误差为-7.74%~9.80%。  相似文献   

10.
粉煤灰农业利用对作物影响的研究进展   总被引:17,自引:0,他引:17  
本文综述了粉煤灰农业利用对作物生长、产量及品质等方面的影响,并就粉煤灰农业利用中应注意的问题提出了几点建议。  相似文献   

11.
Spatially-variable application of inputs to agricultural fields is dependent upon accuracy of the input variables. The effects of boundary determination, interpolation method, and GPS location errors were studied for determining a variable rate nitrogen application map based upon yield maps of a 3.6 ha Florida citrus block. A general linear model for the mean absolute error approximated the error effects.  相似文献   

12.
基于多年产量数据的精准农业管理分区提取与尺度效应评价   总被引:10,自引:3,他引:10  
 本研究利用带有差分全球定位系统(DGPS)接收机和产量监测传感器的联合收割机获取的4年产量数据进行精准农业管理分区的提取研究。对经过一系列处理后的4年的产量数据进行栅格平均运算,得到分辨率为4 m的综合产量图。分别采用尺度为12、20、28、36、44、52、60 m 的正方形窗口对分类后的综合产量图进行众数过滤,并从方差减少率、差异显著性、空间破碎化、空间一致性4个角度进行了尺度效应评价。结果表明,分类后众数过滤法有效地去除了由随机变异造成的孤立像元或碎片,保留了实际的产量变异,增加了管理分区的有效面积,提高了管理分区的连续性。分区结果可以直接作为精准农业目标产量分区图,用于作物种植前或产中适时肥料推荐管理决策。  相似文献   

13.
Yield maps reflect systematic and random sources of yield variation as well as numerous errors caused by the harvest and mapping procedures used. A general framework for processing of multi-year yield map data was developed. Steps included (1) raw data screening, (2) standardization, (3) interpolation, (4) classification of multi-year yield maps, (5) post-classification spatial filtering to create spatially contiguous yield classes, and (6) statistical evaluation of classification results. The techniques developed allow more objective mapping of yield zones, which are an important data layer in algorithms for prescribing variable rates of production inputs.  相似文献   

14.
Unknown crop width entering into the header and the delay time caused by the uncertain start and stop of cutting are the two main error sources in a yield map. A harvest area measurement system (HAMS) is presented in this article. The system has ultrasonic sensors mounted on both sides of the harvest header to detect the presence of crop, which was used to start or stop data recording, as well as measure the cutting width. A high-precision Differential Global Positioning System (DGPS) receiver was used to measure the travelled distance. Field tests were conducted to evaluate the performance of the system. Results showed that: Firstly, the developed HAMS can be used to reduce the area error and the data collected by the HAMS can be used to correct the yield data. In a yield map, the area error reached 6.89% relative to the actual area calculated based on the DGPS tracks. The travelled distance error accounted for about 1.08% and the cutting width error accounted for the other 5.81%. However, the error of the area measured by the HAMS decreased to 0.95%. The position offset of yield points could be calculated and the correction coefficient at each sampling point was determined. Secondly, ultrasonic sensors could replace the header position sensors in most yield monitoring systems, as ultrasonic sensors can detect the presence of the crop, which can be used to start or stop data recording. Finally, the HAMS also provides a potential solution to realize online correction of yield data. The time delay estimated by the HAMS between cutting and sensing was 3–6 s at the start of cutting, and was 1–7 s at the end of cutting. An online correction model of yield data was proposed.  相似文献   

15.
Remedial Correction of Yield Map Data   总被引:1,自引:0,他引:1  
Many yield maps exhibit systematic errors that attenuate the underlying yield variation. Two errors are dealt with in detail in this paper: those that occur when the harvester has a narrow finish to a land and those that occur when the harvester is filling up at the start of a harvest run. The authors propose methods to correct or remove erroneous data by the use of an expert filter, or alternatively use of an interpolation technique called potential mapping.  相似文献   

16.
17.
提出利用 GIS与 TM数据集成技术估算中国南方丘陵山地早稻种植面积的方法 .该方法首先利用 ARC/INFO对土地利用现状图进行数字化 ,建立拓朴关系后将其转化为栅格 ,然后进行投影变换 ,使土地利用现状图、行政图、TM数据具有相同的坐标 ,最后利用土地现状图 ,提取水田分布图 ,对水田分布图进行分类估算早稻种植面积 .不同方法比较结果表明 :非监督分类法不能用于提取丘陵山区的水稻种植面积 ;只用 TM资料估算龙游县早稻面积 ,与统计数据相比 ,平行六面体分类法、最大似然分类法分别达到 82 .83 %和 59.95% ;而用 GIS与 TM数据资料集成技术对水田分布图进行分类估算早稻面积 ,平行六面体分类法、最大似然分类法的估算精度分别达到 93 .98%和 60 .65% ,所以利用平行六面体分类法对南方丘陵山地早稻种植面积估算是可行的 .  相似文献   

18.
为了准确直观地描述麦地信息在空间上的分布,为麦地的精细管理提供依据,文中采用软件ArcView 3.3中的克立格插值法对麦地信息绘制不同采样方案下的空间分布图并对其进行分析,确定了合理的采样方案。另外,还利用软件ArcView的叠加分析功能,产生综合信息图,直观地反映了小麦籽粒产量与土壤特性的相互关系。  相似文献   

19.
It is generally accepted that aerial images of growing crops provide spatial and temporal information about crop growth conditions and may even be indicative of crop yield. The focus of this study was to develop a straightforward technique for creating predictive cotton yield maps from aerial images. A total of ten fields in southern Georgia, USA, were studied during three growing seasons. Conventional (true color) aerial photographs of the fields were acquired during the growing season in two to four week intervals. The aerial photos were then digitized and analyzed using an unsupervised classification function of image analysis software. During harvest, conventional yield maps were created for each of the fields using a cotton picker mounted yield monitor. Classified images and yield maps were compared quantitatively and qualitatively. A pixel by pixel comparison of the classified images and yield maps showed that spatial agreement between the two gradually increased in the weeks after planting, maintained spatial agreement of between 40% and 60% during weeks eight to fourteen, and then gradually declined again. The highest spatial agreement between a classified image and a yield map was 78%. The highest average agreement was 52% and occurred 9.9 weeks after planting. The visual similarity between the classified images and the yield maps were striking. In all cases, the dates with the best visual agreement occurred between eight and ten weeks after planting, and generally, during July for southern Georgia. This method offers great potential for offering cotton farmers early-season maps that predict the spatial distribution of yield. Although these maps can not provide magnitudes, they clearly show the resulting yield patterns. With inherent knowledge of past performance, farmers can use this information to allocate resources, address crop growth problems, and, perhaps, improve the profitability of their farm operation. These maps are well suited to be offered to farmers as a service by a crop consultant or a cooperative.  相似文献   

20.
在GIS支持下,采用普通克里格法对云南楚雄高原的离散样点进行空间插值,得到了栅格化数据,借助于DEM模型及GIS的空间分析功能,对该地区进行地形分析,在此基础上得出研究区的高程、坡度专题图及坡度分布特征;坡向专题图及楚雄高原地貌坡向特征;地形起伏度专题图及楚雄高原的总体起伏度特征,为云南楚雄的经济及其它领域的发展提供依...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号