首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to evaluate the effect of different agricultural managements on soil organic C (SOC) storage and crop yields in the North China Plain (NCP). The study was conducted at five experimental stations. Different agricultural managements were designed, including optimal (OPT) and conventional (CON) irrigation and fertilization treatments, different amounts of fertilization application and residue‐return treatments, and different tillage practices. Compared to the CON treatment, SOC storage in the 1 m soil profile under the OPT treatment increased by 2 t ha–1, 8 t ha–1, and 4 t ha–1 at Quzhou, Wuqiao, and Dongbeiwang sites, respectively. The annual increasing rate of SOC storages in the topsoil (0–30 cm) under the OPT treatments at Wuqiao (0.88 t ha–1 y–1), Quzhou (0.93 t ha–1 y–1), and Dongbeiwang (1.86 t ha–1 y–1) were higher than those in the CON treatments at Wuqiao (0.15 t ha–1 y–1), Quzhou (0.54 t ha–1 y–1), and Dongbeiwang (0.28 t ha–1 y–1), but the difference of grain yields between the two treatments was not significant. The SOC storage in 1 m soil profile in the no‐tillage treatment with standing residue return (NT1) at Luancheng increased by 5 t ha–1 and 7 t ha–1 compared with rotary‐tillage (RT) and conventional‐tillage (CT) treatments, respectively, but the crop yield under no‐tillage treatment was the lowest. While at Quzhou site, it increased by 3 t ha–1 in the top 40 cm soil under the NT treatment compared to the CT treatment. The annual increasing rate of SOC storage in the top 30 cm under NT treatment was also the highest (1.08 t ha–1 y–1 at Luancheng, 1.86 t ha–1 y–1 at Quzhou), compared to the other tillage treatments. At Henghsui site, the combination of the highest fertilization application and highest residue‐return treatments got the highest SOC storage and the highest crop yields. We concluded that the agricultural management practices, such as optimal irrigation and fertilization treatment, the higher fertilization, residue return and RT, has significant impact on the SOC storage and agricultural sustainability in the NCP.  相似文献   

2.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

3.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

4.
Response of sugar beet ( Beta vulgaris var. altissima ) to potassium fertilization—a 20‐year field experiment A long‐term fertilizer experiment was performed to develop a K fertilization strategy to achieve highest extractable sugar yields (BZE). Sugar beet was grown in a crop rotation with wheat and barley on an alluvial soil (clayic silt) in Lower Saxony with annual recycling of straw and beet tops, respectively. Since 1983, the treatments were as follows: 1) K fertilization with 0, 29, 58, 87,174, and 524 kg K ha–1 a–1 corresponding to 0, 0.5, 1, 1.5, 3, and 9 times the average annual K removal by the marketable products of the crop rotation—since 1995, the two highest treatments (3 and 9 times the removal) received only 174 kg ha–1 every third year; 2) K fertilization according to the average K removal, given each year (58 kg K ha–1) or every third year (174 kg ha–1) to sugar beet; 3) annual K fertilization of 87 kg K ha–1 (1.5 times the removal) applied in autumn or spring, respectively; 4) annual K fertilization, applied as mineral fertilizer or as organic material (recycling of grain and straw or root and leaves); 5) application of 29 kg NaCl ha–1 to sugar beet supplemental to a yearly application of 58 kg K ha–1. Both root yield and soil concentration of lactate‐soluble K increased with K fertilization up to the highest K treatment. The extractable sugar content reached a maximum at a yearly application of 174 kg K ha–1. Averaged over years, the extractable sugar yield (BZE) increased up to the highest K application. The time of K application (autumn or spring) and the source of K (mineral fertilizer or organic material) had no effect on BZE. An additional fertilization with NaCl increased BZE only slightly in single years. Low‐grade muriate of potash containing 33% K and 3% Na can thus be used. The economically optimal K‐fertilization rate was 174 kg K ha–1 given once in the crop rotation to sugar beet. A soil K concentration of about 110 mg (kg soil)–1 (lactate‐extractable K) is sufficient in this soil to achieve a high BZE.  相似文献   

5.
Management effects on forms of phosphorus in soil and leaching losses   总被引:12,自引:0,他引:12  
We should know the effects of soil use and management on the contents and forms of soil phosphorus (P) and the resulting potential for leaching losses of P to prevent eutrophication of surface water. We determined P test values, amounts of sequentially extracted forms of P, P sorption capacities and degrees of P saturation in 20 differently treated soils and compared these data with leaching losses in lysimeters. One-way analyses of variance indicated that most fractions of P were significantly influenced by soil texture, land use (grassland, arable or fallow or reafforestation), mineral fertilization and intensity of soil management. Generally, sandy soils under grass and given large amounts of P fertilizer contained the most labile P and showed the largest P test values. Fallow and reafforestation led to smallest labile P fractions and relative increases of P extractable by H2SO4 and residual P. Arable soils with organic and mineral P fertilization given to crop rotations had the largest amounts of total P, labile P fractions and P test values. The mean annual concentrations of P in the lysimeter leachates varied from 0 to 0.81 mg l–1 (mean 0.16 mg l–1) and the corresponding leaching losses of P from < 0.01 to 3.2 kg ha–1 year–1 (mean 0.3 kg P ha–1 year–1). These two sets of data were correlated and a significant exponential function (R2 = 0.676) described this relation. Different soil textures, land uses and management practices resulted in similar values for P leaching losses as those for the amounts of labile P fractions. Surprisingly, larger rates of mineral P fertilizer did not necessarily result in greater leaching losses. The contents of P extracted by NaHCO3 and acid oxalate and the degrees of P saturation were positively correlated with the concentrations of P in leachates and leaching losses. As the P sorption capacity and degree of P saturation predicted leaching losses of P better than did routinely determined soil P tests, they possibly can be developed as novel P tests that meet the requirements of plant nutrition and of water protection.  相似文献   

6.
Changes in the carbon (C) stock of grassland soil in response to land use change will increase atmospheric CO2, and consequently affect the climate. In this study we investigated the effects of land use change on soil organic C (SOC) and nitrogen (N) along a cultivation chronosequence in the Xilin River Basin, China. The chronosequence consisted of an undisturbed meadow steppe, a 28‐year‐old cropland and a 42‐year‐old cropland (abbreviated as Steppe, Crop‐28 Y and Crop‐42Y, respectively). Crop‐28Y and Crop‐42Y were originally created on the meadow steppe in 1972 and 1958, respectively. The soil samples, in ten replications from three depth increments (0–10, 10–20 and 20–30 cm), were collected, respectively, in the two cropland fields and the adjacent undisturbed steppe. Bulk density, SOC, total N and 2 m KCl‐extractable mineral N including ammonium and nitrate were measured. Our results showed that the greatest changes in the measurements occurred in the 0–10 cm soil depth. The SOC stock in the upper 30‐cm soil decreased by 9.83 Mg C ha−1 in Crop‐28Y and 21.87 Mg C ha−1 in Crop‐42Y, which indicated that approximately 10 and 25% of the original SOC of the steppe had been emitted over 28 and 42 years, respectively. Similarly, the total N lost was 0.66 Mg N ha−1 and 1.18 Mg N ha−1, corresponding to approximately 9% and 16%, respectively, of the original N at the same depth and cropping duration as those noted for SOC. The mineral N concentration in the soil of both the two croplands was greater than that in the steppe soil, and the ammonium‐N was less affected by cultivation than the nitrate‐N. The extent of these changes depended on soil depth and cropland age. These effects of cultivation were much greater in the top 10 cm of soil than in deeper soil, and also greater in Crop‐42Y than in Crop‐28Y. The findings are significant for assessing the C and N sequestration potential of the land use changes associated with grassland conversion, and suggest that improved management practices are needed to sequester SOC and total N in the cropped soil in a semi‐arid grassland.  相似文献   

7.
Abstract

The content of soil organic carbon (SOC) and total nitrogen (Ntot) was studied in a long-term field experiment with a three-field crop rotation (potato – spring wheat – spring barley) set up on arable sandy loam Stagnic Albeluvisol at Eerika, Tartu, Estonia. The studied factors were: (A) organic fertilizers with three treatments: (i) without organic fertilizer, (ii) farmyard manure (60 t ha?1) used in every third year, and (iii) different organic (alternative) fertilizers (beet leaves + straw; pure beet leaves; slurry + straw; cereal straw) and (B) mineral nitrogen fertilizer with the rates: N-0; N-40; N-80; N-120 and N-160 kg ha?1. The study years were 1993, 1996 and 1999. The average content of SOC (1.03%) was significantly influenced by the use of organic fertilizers. Only Ntot (mean value 0.110%) was influenced also by fertilization with mineral nitrogen. The C/N ratio (mean value 9.5) reflected changes in the content of SOC and Ntot  相似文献   

8.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   

9.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

10.
Soil organic carbon (SOC) sequestration in response to long-term fertilizer management practices under jute-rice-wheat agro-ecosystem in alluvial soils was studied using a modeling approach. Fertilizer management practices included nitrogen (N), phosphorus (P) and potassium (K) fertilization, manure application, and root-stubble retention of all three crops. Soil carbon (C) model RothC was used to simulate the critical C input rates needed to maintain initial soil C level in long timescale (44 years). SOC change was significantly influenced by the long-term fertilizer management practices and the edaphic variable of initial SOC content. The effects of fertilizer combination “100%NPK+FYM” on SOC changes were most significant over “100%NPK” fertilization. If the 100% NPK fertilizer along with manure applied with stubble and roots retention of all crops, alluvial soils of such agro-ecosystem would act as a net C sink, and the average SOC density kept increasing from 18.18 Mg ha?1 during 1972 to the current average of ~22 Mg ha?1 during 2065 s. On an average, the critical C input was estimated to be 5.30 Mg C ha?1 yr?1, depending on local soil and climatic conditions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. Such information will provide a baseline for assessing soil C dynamics under potential changes in fertilizer and crop residues management practices, and thus enable development of management strategies for effectively mitigating climate change through soil C sequestration.  相似文献   

11.
The Static Fertilization Experiment Bad Lauchstädt (1902) consists of a crop rotation of sugar beets, spring barley, potatoes and winter wheat. Three farmyard manure (FYM) treatments and six mineral fertilizer treatments are combined orthogonally. Comparing the first and last decades, crop yields nearly doubled. In unfertilized plots, yields and N uptake by crops also increased when comparing first and last decades. On average for the decade 2001–2010, N uptake in unfertilized plots amounted 51.6 kg ha?1. Although soil organic carbon (SOC) levels for unfertilized plots remain almost unchanged, SOC increases slowly in the most highly fertilized treatment, resulting in a gradual widening of differences in SOC between the most extreme treatments to 0.952%. Climate change and increased harvesting and root residues due to rising yields are suggested as an explanation. Except for the plot with the highest application of mineral and organic fertilizer, in all treatments more N was taken up by crops than was applied by fertilizers. Higher FYM input leads to more unfavourable N balances because N release from FYM cannot be controlled. Considering atmospheric N input, only in the exclusively mineral fertilized treatment is N balanced out. Similar results are found for C balances: the exclusively mineral fertilized treatment shows the most favourable C balance.  相似文献   

12.
The objective of this study is to evaluate different agricultural land‐use practices in terms of N leaching and to give recommendations for a sustainable agriculture on sandy soils in Middle Germany. Soil mineral N (Nmin) and leachate N were quantified at a sandy soil in N Saxony during 3 years. Two treatments were applied: intensive (I)—using inorganic and organic fertilizer and pesticides, and organic (O)—exclusively using organic fertilizer, legume‐based crop rotation, and no pesticides. Split application of mineral fertilizers did not result in substantial N losses at treatment I. Legumes induced a considerable increase of soil mineral N and particularly of leachate mineral N (Nmin_perc) at treatment O. High Nmin_perc concentrations (up to 78 mg N L–1) were observed during as well as after the cultivation of legumes. These high Nmin_perc concentrations are the reason why clearly higher Nmin_perc losses were determined at treatment O (62 kg N ha–1 y–1) compared to treatment I (23 kg N ha–1 y–1). At both treatments, the quantity of N losses was strongly affected by the precipitation rates. Concentrations and losses of dissolved organic N (DONperc) were assessed as above average at both treatments. The results suggest that the DONperc concentration is influenced by precipitation, soil coverage, and organic fertilizers. Higher values were determined in the percolation water of treatment O. The average annual DONperc losses amounted to 15 kg N ha–1 at I and to 32 kg N ha–1 at O. The average monthly percentage of DONperc losses on the loss of the dissolved total N of percolation water (DTNperc) ranged between <1% and 55% at O and between 2% and 56% at I. For the whole measuring period of 29 months, the relative amounts of DONperc of DTNperc (21% at O and 25% at I) were more or less the same for both treatments. The results show that DONperc can contribute significantly to the total N loss, confirming the importance to consider this N fraction in N‐leaching studies. It was concluded that at sandy sites, a split application of mineral fertilizers, as applied at treatment I, seems to be more expedient for limiting the N leaching losses than legume‐based crop rotations.  相似文献   

13.
In the Broadbalk Experiment at Rothamsted winter wheat has been grown in monoculture since 1843; wheat in rotation and additional treatments have been introduced during the course of the experiment. Since 1968, when new crop varieties and fungicides were introduced, yields have averaged over 6 t ha‐1with either inorganic fertilizers or farmyard manure. With high‐yielding varieties of winter wheat on Boardbalk, or spring barley on the Hoosfield experiment, maximum yields are currently achieved with a combination of inorganic and organic inputs. The long‐term experiments have provided much information on the losses of nitrate and phosphate to water from different treatments and also on the impact of recent decreases of sulphur deposition on soil S dynamics and crop composition. Archived samples of soils and crops from the Park Grass Experiment (continuous cut pasture) and experiments in which arable land has reverted to forest have provided information on soil acidification. This has resulted mainly from acid deposition, previously SO2 but now dominated by oxides of nitrogen. Acidification has caused the mobilization of toxic metals including Al, Mn and Zn and their increased uptake in herbage. Archived samples have also made it possible to study the deposition and accumulation of metals and organic pollutants in soils and crops and the changes in soil organic carbon and nitrogen content resulting from different management practices. Such data has been used to construct models of soil C and N dynamics. The on‐going sites provide experimental material for biological studies including fertilizer and management impacts on nitrous oxide fluxes and for testing hypotheses on soil biodiversity and quality.  相似文献   

14.
Biochar amendments offer promising potential to improve soil fertility, soil organic carbon (SOC) and crop yields; however, a limited research has explored these benefits of biochar in the arid and semi‐arid regions. This two‐year field study investigated the effects of Acacia tree biomass‐derived biochar, applied at 0 and 10 t ha?1 rates with farmyard manure (FYM) or poultry manure (PM) and mineral phosphorus (P) fertilizer combinations (100 kg P ha‐1), on maize (Zea mays L.) productivity, P use efficiency (PUE) and farm profitability. The application of biochar with organic–inorganic P fertilizers significantly increased soil P and SOC contents than the sole organic or inorganic P fertilizers. Addition of biochar and PM as 100% P source resulted in the highest soil P (104% increase over control) and SOC contents (203% higher than control). However, maize productivity and PUE were significantly higher under balanced P fertilizer (50% organic + 50% mineral fertilizer) with biochar and the increase was 110%, 94% and 170% than 100%‐FYM, 100%‐PM and 100% mineral fertilizer, respectively. Maize productivity and yield correlated significantly positively with soil P and SOC contents These positive effects were possibly due to the ability of biochar to improve soil properties, P availability from organic–inorganic fertilizers and SOC which resulted in higher PUE and maize productivity. Despite the significant positive relationship of PUE with net economic returns, biochar incorporation with PM and mineral fertilizer combination was economically profitable, whereas FYM along biochar was not profitable due to short duration of the field experiments.  相似文献   

15.
Nitrate leaching, overall N balance, and organic‐C build‐up in a semi‐arid agro‐ecosystem in NW India was estimated from the results of a long‐term manurial trial with farmyard manure (FYM) and mineral‐N fertilizer in operation since 1967 at the Research Farm of CCS Haryana Agricultural University, Hisar, India. The model LEACHN was calibrated for the wheat‐growing period November 2000 to April 2001 and the leaching of nitrate during this period was predicted to 48 kg N ha–1 without mineral‐N fertilization and 59 kg N ha–1 with addition of 120 kg mineral‐N fertilizer, both with the addition of 15 t ha–1 FYM. The N balance for the simulation period showed that the 120 kg N ha–1–mineral N fertilization compared to zero mineral N, both plus FYM, resulted in only slightly higher crop uptake, leaching losses, and NH3 volatilization, and a negligible increase of N in organic matter. The largest amount remains as an additional build‐up of mineral N in the profile (84.3 kg N ha–1) which is prone to losses as ammonia or nitrate. The model was used to simulate organic‐C build‐up with FYM and a decrease of organic C without FYM for a period of 33 y (1967–2000). The simulated C build‐up to about 0.1 g kg–1 agreed very well with the measured values and showed that additional mineral‐N fertilization will not have any significant effect on organic‐C content. Simulations with the assumption of no FYM application showed a gradual decrease of organic C from its starting value of 0.046 g kg–1 in 1967 down to almost half of this. This agreed well with the observed organic‐C values of 0.028 g kg–1 as measured for unmanured plots.  相似文献   

16.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

17.
Mineral and organic fertilizers are the important factors for maintenance and improvement of soil fertility and aggregation. Despite aggregation and aggregate stability are proxy of soil fertility, the connection between fertilization and aggregation is not direct, as short and long-term processes may affect the aggregate formation in different directions. In this study, the long-term effects of a 20-year application of mineral and organic fertilizers were studied in an intensive horticultural crop rotation with the following treatments: i) without fertilization (control soil), ii) nitrogen applied by mineral fertilizer, and iii) farmyard manure application with low (30 t ha?1 y?1) or iv) high (60 t ha?1 y?1) rates. In case of short-term aggregation process, K-polyacrylate was added to the soil to change aggregate composition and then the aggregated soils were incubated for 2 weeks. Long-term fertilization increased the soil organic C (SOC) content by 42–73% and the portion of small macroaggregates (1–0.25 mm) compared to control soil. In contrast, soil aggregation induced by K-polyacrylate showed an increase of the large macroaggregate (2–1 mm) portion independent of fertilization. Polyacrylate had no effect on soil microbial biomass C. According to the increased SOC content, the fertilization increased CO2 efflux from soil (4.2–5.2% of SOC after 80 days of incubation). Short-term aggregation by K-polyacrylate decreased the SOC mineralization rate mainly of the labile C-pools. In conclusion the data of this study suggest that long-term fertilization mainly contributes to the formation of small macroaggregates. In contrast, the formation of large macroaggregates is mediated mainly by short-term processes and contributes to the decrease of SOC mineralization.  相似文献   

18.
张煜  张琳  吴文良  孟凡乔 《土壤学报》2016,53(4):930-941
内蒙武川是我国典型的内蒙农牧交错带地区,土地利用方式转变和施肥是影响该地区农业生产和土壤碳储量的重要人类活动。选取内蒙武川地区,针对不同土地利用方式(耕地、退耕还林/还草)和施肥措施(化肥、有机肥)的长期定位试验土壤,分析土壤有机碳(SOC)、土壤无机碳(SIC)和全氮(TN)含量和储量,结合13C和15N稳定同位素方法,研究土地利用方式和施肥措施对于该地区土壤碳氮转化的影响规律。研究表明,退耕还灌/还草后,SOC储量较耕地均有显著提高(提高幅度0.60~0.98 Mg hm-2 a-1),SIC储量也增加或保持相同水平(柠条地除外)。相比不施肥处理,施用有机肥能显著增加SOC(1.08~1.19 Mg hm-2 a-1),施化肥处理则会降低SIC(0.06~0.16 Mg hm-2 a-1),且主要影响次生碳酸盐。施肥SIC中原生碳酸盐比例(0~23%)低于自然土壤(3%~29%)。施肥措施对于土壤碳氮的转化强度远大于土地利用方式的改变。对于内蒙等干旱半干旱地区土壤,土地利用和施肥措施对于土壤有机和无机碳的影响应该在区域固碳管理中给予全面考虑。  相似文献   

19.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

20.
ABSTRACT

Sandy soils are usually dominant in tropical monsoon regions, due to the high weathering potential associated with high temperatures and precipitation. The organic matter content of sandy soils is low due to low clay content and high microbial activity. Therefore, soil management practices that alter the soil organic carbon (SOC) content may be important for the sustainable management of crop yields. Thus, the present study investigates the distribution of rice yield and SOC content under different land management practices and analyzes the relationship between rice yield and SOC with pertinent management practices (manure and fertilizer applications). The soil horizons from 0- to 40-cm depths were collected in each layer to measure SOC and soil properties at 64 sites. At each sampling site, farmers were given questionnaires and the record book for the standards for good agricultural practices of farm owners were gathered to assimilate information on rice yield and their practices during 2010–2014. The mean rice yield of the whole crop year and SOC were 2.93 Mg ha?1 and 47.09 Mg C ha?1, respectively, in the irrigated areas, and were 2.38 Mg ha?1 and 32.08 Mg C ha?1 in the rain-fed areas. Significantly higher values were obtained in the irrigated areas (p < 0.05). There was a significant positive correlation between rice yield and SOC in both the irrigated areas (R2 = 0.72, p < 0.01) and the rain-fed areas (R2 = 0.85, p < 0.01); however, the slopes of these regression equations were significantly different. In both irrigated and rain-fed areas, manure should be applied every year, with an optimal application rate of N, P, and K fertilizers being selected. The combination of manure, fertilizer, and increasing irrigation facilities the maintenance of SOC levels and substantially increases rice yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号