首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of experiments was carried out to examine the effects of two different isolates of the nematode-trapping fungus Duddingtonia flagrans to reduce the number of free-living larvae of the bovine lungworm, Dictyocaulus viviparus. A laboratory dose-titration assay showed that isolates CI3 and Troll A of D. flagrans significantly reduced (P < 0.05 to P < 0.001) the number of infective D. viviparus larvae in cultures at dose-levels of 6250 and 12,500 chlamydospores/g of faeces. The larval reduction capacity was significantly higher for Troll A compared to CI3 when lungworm larvae were mixed in faecal cultures with eggs of Cooperia oncophora or Ostertagia ostertagi and treated with 6250 chlamydospores/g of faeces. Both fungal isolates showed a stronger effect on gastrointestinal larvae than on lungworm larvae. Two plot trials conducted in 1996 and 1997 involved deposition of artificial faecal pats containing free-living stages of D. viviparus and C. oncophora on grass plots. Herbage around the pats was collected at regular intervals and infective larvae recovered, counted and identified. These experiments showed that both D. flagrans isolates reduced the number of gastrointestinal as well as lungworm larvae in faecal pats. During both plot trials, the transmission of C. oncophora larvae, but not D. viviparus, from faecal pats to the surrounding herbage was clearly affected by climatic conditions. After collection of faecal pats from the grass plots one month after deposition, the wet and dry weight of pats as well as organic matter content were determined. No differences were found between the fungus-treated and non-treated control pats. This indicated that the rate of degradation of faeces was not affected by the addition of the fungus.  相似文献   

2.
This study investigated the effect of successive harvests of grazable herbage around cattle faecal pats on the population dynamics of infective gastrointestinal nematode larvae (L(3)). Faecal material, collected from naturally infected calves, was deposited as pats during summer, autumn and winter on three different topographical aspects within a moist, temperate region of New Zealand. Herbage was harvested four times (22-248 days) from around the faecal pats to a height of 2cm in three radial zones (0-20cm, 20-35cm and 35-45cm from the centre of the faecal pat) and L(3) extracted. Harvest date was determined by herbage mass to simulate grazing events. L(3) extracted from herbage were predominantly Cooperia spp. More L(3) were recovered from faeces deposited in summer and autumn, than those deposited during winter. L(3) concentration on herbage was highest (P<0.001) in the zone nearest the pat for all except the fourth harvest. Mean concentrations of L(3) on herbage were 11,447, 3154, 337 and 102 L(3)/kg dry matter herbage, for the four successive harvests, respectively. Microclimate differences as affected by aspect had a marked effect on herbage growth, but did not significantly affect L(3) concentration on herbage. In this study, L(3) remained aggregated close to the faecal pats they emerged from even after two successive harvests and significant rainfall. Successive harvests simulated the effect of repeated grazing events by a non-infective stock class. Two such grazings and the associated time, reduced L(3) presence on grazable herbage to <3% of the original population. Grazing strategies to generate clean pasture for vulnerable cattle are discussed in relation to these results.  相似文献   

3.
A study was conducted over 3 years (1998-2000) to investigate larval availability of gastrointestinal nematodes from faeces of cattle reared under different parasite control schemes. These cattle were part of a parallel, but separate grazing trial, and were used as donor animals for the faecal material used in this experiment. At monthly intervals, faeces were collected and pooled from three groups of first-season grazing cattle. These groups were either untreated, ivermectin bolus treated or fed the nematophagous fungus Duddingtonia flagrans. The untreated and fungus treated animals were infected with gastrointestinal nematodes and the number of eggs per gram (epg) pooled faeces ranged between 50 and 700 in the untreated group and between 25 and 525 epg in the fungus treated group. Each year between June and September, artificial 1 kg dung pats were prepared and deposited on pasture and protected from birds. The same treatments, deposition times and locations were repeated throughout the study. Larval recovery from herbage of an entire circular area surrounding the dung pats was made in a sequential fashion. This was achieved by clipping samples in replicate 1/4 sectors around the dung pats 4, 6, 8 and 10 weeks after deposition. In addition, coinciding with the usual time of livestock turn-out in early May of the following year, grass samples were taken from a circular area centred where the dung pats had been located to estimate the number of overwintered larvae, which had not been harvested during the intensive grass sampling the previous year. It was found that recovery and number of infective larvae varied considerably within and between seasons. Although the faecal egg counts in 1999 never exceeded 300 epg of the faecal pats derived from the untreated animals, the abnormally dry conditions of this year generated the highest level of overwintered larvae found on herbage in early May 2000, for the 3 years of the study. Overall, biological control with D. flagrans significantly reduced larval availability on herbage, both during and between the grazing seasons, when compared with the untreated control. However, the fungus did not significantly reduce overwintered larvae derived from early season depositions (June and July), particularly when dung pats disappeared within 2 weeks after deposition. Very low number of larvae (<3 per kg dry herbage) were sporadically recovered from grass samples surrounding the ivermectin bolus faecal pats.  相似文献   

4.
This study was carried out to examine the survival of infective Ostertagia ostertagi larvae (L(3)) on pasture under different simulated conditions of grazing, i.e. mixed grazing of cattle and nose-ringed sows, or grazing by cattle alone. Standardised pats of cattle faeces containing O. ostertagi eggs were deposited on three types of herbage plots, which were divided into zone 1: faecal pat; zone 2: a circle extending 25cm from the edge of the faecal pat; zone 3: a circle extending 25cm from the edge of zone 2. For "tall herbage" (TH) plots, the herbage in zone 2 was allowed to grow naturally, while the herbage in zone 3 was cut down to 5-7cm fortnightly, imitating a cattle-only pasture. For "short herbage" (SH) plots, the herbage in both zones 2 and 3 were cut down to 5-7cm fortnightly, imitating mixed grazing of cattle and sows. The grass in the "short herbage and scattered faeces" (SH/SF) plots were cut as for SH plots, and the faeces were broken down 3 weeks after deposition and scattered within zone 2, imitating the rooting behaviour of co-grazing sows. Five faecal pats from each plot group were collected on monthly basis, along with the herbage from zones 2 and 3 cut down to the ground. Infective larvae were then recovered from both faeces and herbage. The numbers of L(3) recovered from zone 1 were higher in the TH plots than in the other two groups and, furthermore, the larval counts from SH plots were always higher than from SH/SF plots. The three groups followed a similar pattern during the season regarding numbers of L(3) in zone 2, and no clear patterns between plot types were obtained. The presence of L(3) in zone 3 was almost negligible. Important differences were seen throughout the study from the biological point of view; more L(3) were able to survive in faeces on the TH plots, presumably reflecting a better protection from heat and desiccation compared to those in the other plots. The overall results support the idea that mixed grazing of cattle and pigs favour the reduction of O. ostertagi larval levels in pasture. This reduction is mainly due to the grazing behaviour of pigs, which by grazing up to the very edge of the cattle faeces, will either expose the larvae in faeces to adverse environmental summer conditions or ingest cattle parasite larvae, or both.  相似文献   

5.
The viability of a fungal formulation using the nematode-trapping fungus Duddingtonia flagrans was assessed for the biological control of horse cyathostomin. Two groups (fungus-treated and control without fungus treatment), consisting of eight crossbred mares (3–18 years of age) were fed on Cynodon sp. pasture naturally infected with equine cyathostome larvae. Each animal of the treated group received oral doses of sodium alginate mycelial pellets (1 g/(10 kg live weight week)), during 6 months. Significant reduction (p < 0.01) in the number of eggs per gram of feces and coprocultures was found for animals of the fungus-treated group compared with the control group. There was difference (p < 0.01) of 78.5% reduction in herbage samples collected up to (0–20 cm) between the fungus-treated group and the control group, during the experimental period (May–October). Difference of 82.5% (p < 0.01) was found between the fungus-treated group and the control group in the sampling distance (20–40 cm) from fecal pats. During the last 3 months of the experimental period (August, September and October), fungus-treated mares had significant weight gain (p < 0.01) compared with the control group, an increment of 38 kg. The treatment with sodium alginate pellets containing the nematode-trapping fungus D. flagrans reduced cyathostomin in tropical southeastern Brazil and could be an effective tool for biological control of this parasitic nematode in horses.  相似文献   

6.
A 4-year study on the free-living stages of cattle gastrointestinal nematodes was conducted to determine (a) the development time from egg to infective larvae (L3) inside the faecal pats, (b) the pasture infectivity levels over time, and (c) the survival of L3 on pasture. Naturally infected calves were allowed to contaminate 16 plots on monthly basis. Weekly monitoring of eggs per gram of faeces (epg) values and faecal cultures from these animals provided data for the contamination patterns and the relative nematode population composition. At the same time, faecal pats were shaped and deposited monthly onto herbage and sampled weekly to determine the development time from egg to L3. Herbage samples were collected fortnightly over a 16-month period after deposition to evaluate the pasture larval infectivity and survival of L3 over time. The development time from egg to L3 was 1-2 weeks in summer, 3-5 weeks in autumn, 4-6 weeks in winter, and 1-4 weeks in spring. The levels of contamination and pasture infectivity showed a clear seasonality during autumn-winter and spring, whilst a high mortality of larvae on pasture occurred in summer. Ostertagia spp., Cooperia spp. and Trichostrongylus spp. were predominant and a survival of L3 on pasture over a 1-year period was recorded in this study.  相似文献   

7.
Four calves experimentally infected with Dictyocaulus viviparus were made Pilobolus-free by hygienic measures and by feeding them irradiation sterilized feed. Two of the calves were orally administered laboratory cultured Pilobolus sporangia daily. As a result, the faeces from one air contained D. viviparus larvae and Pilobolus spores, and the faeces from the other pair contained D. viviparus larvae, but no Pilobolus spores.

Two identical plots were used for deposition of the two kinds of faeces, and one of them remained free of Pilobolus fructification. Herbage sampling and the use of tracer calves revealed that on this plot the larval contamination and the infectivity of the pasture were greatly reduced. A mean larval count of 1321 near the faecal pats (0–5 cm) in the plot where Pilobolus was observed was reduced to 69 per kg of herbage on the Pilobolus-free plot. At a distance of 100 cm from the pats, a reduction from 99 to 3 larvae per kg herbage was found.

Each plot was grazed by four parasite-free tracer calves for 3 days. During the subsequent stabling period of these calves, the lungworm larval excretion of those from the Pilobolus-free plot was reduced by 90% and the clinical symptoms were milder than those which grazed the plot which contained the fungus. The mean post mortem worm counts after 4 weeks of stabling showed a reduction from 167 to 25 worms.

A more marked effect of Pilobolus fungi on the transmission of D. viviparus infection is to be expected under field conditions where calves are grazing more selectively than in the present study.  相似文献   


8.
Horses are hosts to a wide variety of helminthes; the most important are the cyathostomin, or small strongyles. The viability of a fungal formulation (pellets) using the nematode-trapping fungus Monacrosporium thaumasium was assessed in biological control of horse cyathostomin. Two groups (fungus-treated and control) consisted of six mares in each group, crossbred (ages of 2.5 and 3.5 years), were placed in pastures of Cynodon sp. naturally infected with horse cyathostomin larvae. In the treated group, each animal received 1g/10 kg body weight (0.2g/10 kg live weight of fungus) of pellets of sodium alginate matrix containing the fungus M. thaumasium orally, twice a week for 6 months. In the control group, animals received (1g/10 kg body weight) of pellets without fungus. The egg count per gram of feces showed difference (p<0.01) in the animals treated with the fungus in relation to the control animals during all months of the experiment. The EPG percentage decrease were 87.5%, 89.7%, 68.3%, 58.7%, 52.5% and 35.2% during June, July, August, September, October and November, respectively. In faecal cultures, there was difference (p<0.05) among animals treated with fungus was found in relation to the control animals during all the experiment month, with percentage reduction of 67.5%, 61.4% and 31.8% in September, October and November, respectively. Difference (p<0.01) was observed in the recovery of infective larvae from pastures that were collected up to 20 cm from the dung pats in pastures in the group treated with the fungus in relation to the control group with a reduction of 60.9% and between 0-20 and 0-40 cm from the faecal pat reduction (p<0.01) was about 56% in the group treated with the fungus M. thaumasium in relation to the control group pasture. There was no difference (p>0.05) between the average weight gains in both animal groups. The treatment of horses with pellets containing the nematophagous fungus M. thaumasium can be effective in controlling cyathostomin in the tropical region of southeastern Brazil.  相似文献   

9.
During the 1997 Swedish grazing season, faeces were collected every 3 weeks on 7 occasions from young grazing cattle with moderate nematode parasite infections. From this source 12, 400 g dung pats were set up on each sampling occasion on a specially designated area of pasture. Half of these pats were placed on pasture where it was aimed to prevent snow cover during the subsequent winter. During the grazing season, herbage growth was kept at reasonably uniform height by clipping and the dung pats were protected from destruction by animals and birds. At the time of animal turn-out the following year (7th April 1998), it was observed that all dung pats had disappeared. Assessments of the survival of infective larvae, both on pasture and in soil, were made in a circular area encompassing the location of each pat. These sampling procedures were completed within a 3 week period. All faecal deposits yielded infective larvae at turn-out the following year, with proportionally greater numbers developing from nematode eggs deposited in cattle dung during the mid third of the previous grazing season. The surface layer of soil was found to be an important reservoir for infective larvae, with numbers recovered being approximately half those found in the overlying pasture samples. No significant differences were found between the normal pasture and snow excluded pasture in the number of infective larvae recovered from both pasture and soil samples. The epidemiological consequences of these findings are discussed.  相似文献   

10.
An experiment was performed during the grazing seasons of 1998, 1999 and 2000 to study the influence of the antiparasitic drug ivermectin and the nematophagous fungus Duddingtonia flagrans on cattle dung disintegration. The faeces originated from groups of animals that were part of a separate grazing experiment where different control strategies for nematode parasite infections were investigated. Each group consisted of 10 first-season grazing cattle that were either untreated, treated with the ivermectin sustained-release bolus, or fed chlamydospores of D. flagrans. Faeces were collected monthly on 4 occasions and out of pooled faeces from each group, 4 artificial 1 kg dung pats were prepared and deposited on nylon mesh on an enclosed pasture and protected from birds. The position of the new set of pats was repeated throughout the 3 years of the study. Each year, the dung pats were weighed 4, 6, 8 and 10 weeks after deposition and immediately afterwards replaced to their initial positions. Results showed that there was no difference in faecal pat disintegration between groups. However, the time-lag between deposition and complete disintegration of the faeces varied significantly between deposition occasions. Dung pats disappeared within 2 weeks (visual observation) when subjected to heavy rainfall early after deposition, whereas an extended dry period coincided with faeces still remaining 12 months after deposition.  相似文献   

11.
In a series of five laboratory experiments observations were made on the role of Pilobolus in the translation of infective lungworm larvae from faeces of cattle. The results indicated that a substantial proportion of the lungworm larvae present in the faeces may be translated from the faeces by this fungus within eight days at a temperature of 15 degrees C. No clear relationship was observed between the numbers of Pilobolus and the translation of lungworm larvae. Further a longitudinal study on the occurrence of Pilobolus on faecal pats of grazing calves showed that between the beginning of July and the middle of September peak emergence of sporangia generally occurred within one week and most sporangia emerged within three weeks. From faecal pats which had been deposited at the end of September and the middle of October emergence of sporangia was lower and mainly occurred after two to four weeks.  相似文献   

12.
The effectiveness of Duddingtonia flagrans in reducing the free living third stage larvae (L(3)) of equine cyathostomes on pasture when fed to horses has been demonstrated in cold temperate climates. The objective of this experiment was to assess the efficacy of D. flagrans against equine cyathostomes in the subtropical environment of southern Louisiana. Fecal pats were prepared by mixing feces obtained from a parasite-free horse fed D. flagrans at a dose of approximately 2 x 10(6) spores kg(-1), with feces containing cyathostome eggs from a parasitized horse. Control pats contained feces from a parasite-free horse mixed with feces containing cyathostome eggs. The fecal pats were placed on pasture in six replicates at 4-week intervals from March 1997 until January 1998. Comparison of recoveries of L(3) from non-treated control pats in the field with non-treated coprocultures maintained in the laboratory indicated that L(3) survival on pasture was reduced during the months of May, June, July, August and September. The efficacy of the fungus was determined by L(3) recovery from grass surrounding the fecal pats of treated and control groups. D. flagrans significantly reduced L(3) during the months of April, May, and October 1997 to January 1998 (range 66-99% reduction, p=0.0001), and for the year as a whole (p=0.0001).  相似文献   

13.
Dispersal of Dictyocaulus viviparus larvae by Pilobolus sporangia was studied on 29 faecal pats deposited between the end of June and late October 1988. Faecal pats were covered daily from day 3 to 4 after deposition with a large petri dish to measure the numbers of sporangia released and the numbers of larvae carried. The yield of both was variable. Dispersal of lungworm larvae was lowest on over-grazed pasture or when Pilobolus growth was very poor. When faecal pats were sheltered by a long sward, 17 per cent or more of larvae present at deposition were transported in this manner. In July and August, peak dispersal of lungworm larvae was on day 5, in September on day 6 and in October on day 7, the increasing time intervals being probably associated with decreasing temperature.  相似文献   

14.
A field experiment was conducted over two grazing seaons with calves on a permanent pasture in order to follow the pattern of infection with Dictyocaulus viviparus. Infective larvae persisted during the first, but not during the second, winter of observation. By means of the agar-bile herbage technique, a moderate first peak of infection was demonstrated in the pasture 2–3 weeks before the appearance of respiratory signs in the calves. Fluctuations in faecal larval output were reflected in the herbage contamination with infective larvae close to faecal pats. This, as well as the horizontal dispersion of larvae in the pasture, took place in less than a week. The proportion of lungworm larvae recovered away from faeces was low during a period of dry and hot weather while herbage sampling at two-hour intervals during two days showed an increase in herbage contamination with lungworm larvae, but not with trichostrongyle larvae between 10 a.m. and 12 noon.The infectivity of the pasture was monitored by tracer calves and compared with the results of the pasture sampling. The general course of the infection in the calves and in the pasture was the results of interaction between them. In addition, the pasture infection was influenced by climate and the infection in the calves by the development of immunity. The course of infection in individuals appeared to have an influence on the general course of the infection through the contamination of the pasture.  相似文献   

15.
An involvement of Pilobolus species fungus in the dispersal of Dictyocaulus viviparus third stage larvae from dung to surrounding herbage under Irish conditions was investigated. The presence of Pilobolus kleinii on artificial dung pats containing first stage larvae of D viviparus was associated with a 19-fold increase (P less than 0.05) in numbers of third stage larvae recovered from the surrounding herbage. A subjective examination of natural dung pats showed that the presence of Pilobolus species was significantly correlated with hours of bright sunshine (r = -0.5, P less than 0.01), total rainfall (r = 0.41, P less than 0.05) and the height of herbage surrounding the pats (r = 0.31, P less than 0.001). A multiple regression analysis showed that meteorological parameters and the height of surrounding herbage accounted for 38 per cent of the variation in growth of Pilobolus species on dung pats. The incidence of extensive damage to natural dung pats within five days of deposition, caused by biotic factors, another possible cause of D viviparus third stage larvae dispersal, varied from 0 to 92 per cent of the pats depending on their degree of dryness.  相似文献   

16.
Observations were made on the abundance and survival of Haemonchus placei, Cooperia punctata and Oesophagostomum radiatum infective larvae from cattle faecal pats exposed at various times of the year in north Queensland wet tropics. Pats exposed in the hot, wet season yielded abundant larvae on herbage. In the dry season, although low numbers of infective larvae were usual, considerable numbers were produced under conditions of heavy dews on dense herbage. Irrespective of season of deposition of pats, the resulting larvae persisted generally for not longer than 10 to 12 weeks, and in large numbers for only 2 to 6 weeks. The findings suggest that prevention of contamination in the wet season, and in the dry season when light rainfalls are accompanied by heavy dews on dense herbage, will result in low levels of larval infestation on herbage. Rotational grazing in the area is suggested as a means of worm control.  相似文献   

17.
Herbage sampling has been used to ascertain the contamination and epidemiology of cattle nematode infective in large extensive pastures situated in the centre of France, where heifers graze for four months on a total area of one ha/heifer in mountains at 1200 or 1400 m above sea level. The sampling was done for each paddock in four virtual “hectares”, tufts of grass being picked both close to faecal pats or “refusals”, and far from these pats.Ostertagia was the predominant parasite and the occurrence of Dictyocaulus resulted from silent-carrier heifers. Just after the thawing of the snow, when the heifers arrived in the mountains, the contamination was very high: 8000–9000 L3 and 45.00 to 63.00 L3 kg?1 dry herbage, respectively, far from and close to faecal pats, but this contamination decreases regularly during the season.The sampling of four areas (four “hectares”) in each paddock was found to be a very valuable method. The variation of the mean was low and found mainly when the number of larvae was high (6–19% only for the spring sampling).This technique could have some merit in parallel or concurrently with tracer calves which are always difficult and expensive to use.  相似文献   

18.
In autumn 2000, a study was carried out on 25 dairy farms in the vicinity of Utrecht with the aim to estimate infectivity levels for nematode parasites in cows. On each farm, faecal samples were collected from 15 cows, blood samples from 5 of these and herbage samples from 2 cow pastures. Faecal examination demonstrated a variation between farms and within farms in faecal egg output with a mean number of 4 eggs/g faeces (EPG) and Ostertagia spp. and Cooperia oncophora being the dominant species. In 6 out of 21 farms examined, lungworm larvae were detected in at least 1 cow. Serum pepsinogen values and serology using ELISA's with crude adult Ostertagia, crude adult C. oncophora and a specific recombinant C. oncophora protein as antigens indicated low to moderate infection levels. Pasture infectivity levels varied between farms with again Ostertagia spp. and C. oncophora as the dominant larval types and correlated with the crude worm Ostertagia ELISA, the crude worm Cooperia ELISA and the pepsinogen values. Exposure levels were high enough to enable the possible occurrence of production losses on the majority of farms.  相似文献   

19.
SUMMARY Development of the free-living stages of strongylid nematodes of the horse to the infective stage occurred in faeces in all months of the year in southern Queensland, at a rate which depended on the season. Most rapid development to the infective stage occurred in the warmer months, with the hatching of strongyle eggs being completed in 2 days in summer. During the winter, egg hatching continued for over 2 weeks. Larval moults proceeded at a faster rate in summer—all larvae were infective in 7 days during the hottest months, but it was as long as 5 weeks before all were infective in winter. However, even though development was rapid in summer, survival rates varied from 1 to 10%, in contrast to the spring and autumn, when over 80% reached the infective stage. One percent of larvae in faeces survived for up to 20 weeks in autumn and winter, but for only 4 weeks in summer. These results highlight the inadequacy of short-term pasture spelling for all but the hottest months. Infective larvae were found on herbage in all months of the year, but greatest numbers were recovered in spring and early summer, and in autumn and early winter. The relationship of pasture infestation to migration of larvae from Paecal reservoirs in response to rain was clearly shown. Most infective larvae were found within 30 cm of faecal masses, and in fact 89% of all larvae isolated from herbage in this study were found within 15 cm of faeces. Migration of larvae from faeces to herbage occurred with falls of rain as small as 25 mm. Horse faecal masses dried out completely in 6–8 days in summer and in 14–16 days in winter. Strongyle larvae developed to the infective stage in faeces in the absence of rain, although many remained in the pre-infective stage and completed their development when rain fell. This study shows that massive contamination of pastures with the eggs of strongylid nematodes must be prevented in spring and autumn if susceptible young horses are not to be at serious risk.  相似文献   

20.
SUMMARY Observations were made on the identity and activities of coprophagous arthropods in horse faeces at Moggill in southern Queensland. A number of families of arthropods were represented, but of these only members of the Scarabaeidae were involved in the dispersal of the faecal mass. Six species of indigenous dung beetles, all of the genus Onthophagus, utilised horse faeces as a food source. One of these, O granulatus, was present in large numbers, but it was unable to achieve complete dispersal of equine faecal masses. The introduced Afro-Asian dung beetle Onthophagus gazella is also well established at Moggill, and uses horse faeces as a food source. Unlike the indigenous species, this beetle is able to achieve complete breakdown of the structure of horse faecal masses in one night, leaving the fibrous remnants on the soil surface. However, this level of activity was restricted to the warmer months, from November to March, with faeces remaining largely undisturbed for the remainder of the year. It was noted that heavy rain also reduced the activity of dung beetles. A comparison was made between the recovery of infective strongyle larvae from herbage near faecal masses exposed to dung beetle activity, and from control faecal masses from which beetles were excluded by insect mesh envelopes. Reductions in recovery of the order of 60% were recorded at the peak of O. gazella activity in summer, but since much less reduction occurred for the remainder of the year, it was concluded that dung beetles are of little benefit in the control of equine strongylosis, in the absence of other measures to reduce pasture contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号