首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years the use of porous material sensors for matric potential, which were originally intended for soil drier than ?100 kPa, has been extended to wet soils. In these wetter soils, unpredictable behaviour of the sensors has been reported. We have studied the design of porous material sensors of matric potential in soil and propose a hypothesis to explain this unpredictability, and suggest recommendations for a design of sensor which will behave more reliably. The development of an experimental porous material sensor of matric potential based on this design is described. It operates between 0 and ?60 kPa, and both the drying and wetting moisture characteristics were measured. In this sensor the porous material was a ceramic and its water content was measured with a dielectric water content sensor. We tested a simple closed‐form hysteresis model to convert the measured water content of the porous material into matric potential under laboratory conditions. This was shown to give better results than using a calibration based on the drying moisture characteristic curve, where the predicted matric potentials were too small. The use of the experimental sensors in the field environment is described. Both types of sensor were installed using the same procedure. As far as we are aware the experimental sensor described in this paper is the first porous material sensor of matric potential that can be installed in the same way as a conventional tensiometer. Both conventional tensiometers and the experimental porous material sensors gave similar estimates of matric potential.  相似文献   

2.
Abstract

Coal bed natural gas (CBNG) development in the Powder River (PR) Basin produces modestly saline, highly sodic wastewater. This study assessed impacts of wetting four textural groups [0–11%, 12–22%, 23–33%, and >33% clay [(g clay/100 g soil)×100%)] with simulated PR or CBNG water on water retention. Soils received the following treatments with each water quality: a single wetting event, five wetting and drying events, or five wetting and drying events followed by leaching with salt‐free water. Treated samples were then resaturated with the final treatment water and equilibrated to ?10, ?33, ?100, ?500, or ?1,500 kPa. At all potentials, soil water retention increased significantly with increasing clay content. Drought‐prone soils lost water‐holding capacity between saturation and field capacity with repeated wetting and drying, whereas finer textured soils withstood this treatment better and had increased water‐retention capacity at lower matric potentials.  相似文献   

3.
Wetting and drying of remoulded soil resulted in water stable aggregation. The greatest proportions of water stable aggregates arose from wetting and drying in the ?1 to ?100 kPa range of matric water potential. The effect occurred with sterile and non-sterile soil. but the proportion of water stable aggregates was less with sterile soil. The application of wetting and drying cycles in the laboratory to non-tilled soil resulted in a steady decrease in the proportion of water stable aggregates. With tilled soil, the proportion of water stable aggregates first increased to a maximum and then decreased steadily with further wetting and drying cycles. However. with sterilized, tilled soil, only a steady decrease in the proportion of water stable aggregates was observed. Natural water content fluctuations in the field after tillage gave an increase in water stability to a maximum after a few days followed by a steady decrease. The similarity of this result to that obtained in the laboratory for tilled. non-sterilized soil indicates that micro-organisms were probably contributing to the observed short-term changes in the water stability of aggregates in the field.  相似文献   

4.
Dielectric sensors use electrical permittivity as a proxy for water content. They determine permittivity by using sensor‐type‐specific techniques and calibration functions, and relate it to a volumetric water content. Water potential sensors then translate the water content into a potential based on the sensor‐specific moisture characteristic curve. Dielectric readings are affected by temperature, which may distort hydraulically‐induced changes in soil water content. Methods for the removal of spurious temperature effects are lacking for dielectric water potential sensors. With this study, we aimed to fill this knowledge gap for the dielectric Decagon MPS‐2 and MPS‐6 water potential sensors. We first determined the temperature effect on MPS readings with laboratory experiments in which temperature was cycled between 4 and 26°C in different soil types. We then fitted single empirical equations that compensated for the temperature effect on MPS readings. Finally, we validated temperature‐compensated MPS soil water potentials, and therefore the equations, in a multi‐year field study in two forest soils where hourly data from three sensor models were available, i.e., from MPS‐2, MPS‐6, and a heat capacity sensor (ecoTech pF‐Meter) that is not sensitive to temperature effects. The temperature fluctuation experiments showed that the strongest temperature effects on MPS readings occur under dry conditions and that the MPS sensors themselves are largely responsible for these effects. Likewise, the field‐based validation showed that the MPS readings were highly affected by temperature under dry conditions. Applying a temperature compensation to these readings, using the equations from the temperature fluctuation experiments, resulted in strong correlations near the 1:1 line between data from the MPS and pF‐Meter sensors. Therefore, we recommend using the equations to remove spurious temperature effects from MPS‐2 and MPS‐6 readings in non‐saline soils with water potentials between –100 and –2000 kPa (at 22°C) and temperatures between 4 and 26°C.  相似文献   

5.
A digital reading, portable, pressure-transducer tensiometer, accurate to ± 100 Pa is described and compared with a dial gauge version. Both tensiometers deform the soil on insertion and the time to obtain a reliable measurement was found to depend on how long it took for disturbed soil around the sensing tip to re-equilibrate with undisturbed soil. At matric potentials greater than ?5 kPa the digital tensiometer equilibrated within a few minutes but a t potentials less than ?30 kPa both tensiometers required more than 2 h. Two examples are given in which digital tensiometers are used to investigate spatial variation in water-table height.  相似文献   

6.
滴灌调控土壤水分对马铃薯生长的影响   总被引:33,自引:6,他引:33       下载免费PDF全文
研究了滴灌灌溉频率和土壤水势对马铃薯生长和水分利用效率的影响。研究结果表明,滴灌灌溉频率和土壤水势对土壤水分的分布有很大影响,灌水频率越低,灌水前的表层土壤干燥的范围越大,灌水后的土壤湿润范围越大;控制滴头下面20 cm处土壤水势明显影响到50 cm深度以上的土壤水势,20 cm深度处土壤水势越高,50 cm深度范围内的平均土壤水势越高;土壤表面土壤水势越低,以滴头为中心形成的干燥范围越大。当土壤基质势低于-45 kPa时,马铃薯的块茎膨大率会迅速下降,总产量、商品薯产量和水分利用效率高低顺序为:-25 kPa>-35 kPa>-15 kPa>-45 kPa>-55 kPa。不同灌溉频率下马铃薯的总产量、商品薯产量和水分利用效率的高低顺序为:1天1次>2天1次>3天1次>4天1次>6天1次>8天1次。就华北地区而言,采用滴灌对马铃薯进行灌溉,土壤基质势以-25 kPa左右为好,灌水频率以每天1次最优。  相似文献   

7.
Aggregate media are often characterized by multi‐porous systems, which have structural and water retention characteristics that depend on the complex interaction between intra‐ and inter‐aggregate pores. Here we investigate the structure and water retention dynamics of rigid aggregate volcanic materials. In particular, we focus on commercially used pumices, lapilli and zeolites. The aim was to estimate the air and water content through complex dual‐porous systems, and thus to evaluate their suitability for vegetation growth. Both inter‐ and intra‐aggregate characteristics were determined by means of mercury intrusion porosimetry, X‐ray microtomography and water retention curves. The wilting point was determined with pressure plates, a dew point hygrometer and the sunflower method to assess their reliability at small matric potentials. Results indicate that aggregate porous media were bimodal and their heterogeneous pore network affected the water retention dynamics because (i) the large inter‐aggregate pores allowed a rapid drainage near saturation and (ii) the intra‐aggregate porosity held water available for root uptake and plant growth. In contrast, volcanic powders were less affected by the inter‐ and intra‐aggregate dual‐porosity. The use of a dew point hygrometer instead of pressure plates for determining small matric potentials is also suggested because pressure plates might over‐estimate the water content because of poor plate and soil conductance. However, the reference potential at wilting point should be set at values greater than ?1471.5 kPa (?784.8 kPa) to consider the interaction between plant roots and porous media with small hydraulic conductivity. Results from this work indicate that aggregate multi‐porous media allow the simultaneous supply of oxygen and available water for plants, although the heterogeneous nature of the pore network involves uncertainties regarding water balance and root–matrix interactions.  相似文献   

8.
9.
Abstract

In order to investigate the effect of soil water tension (SWT) on the nitrate content and yield of lettuce, an experimental field was established on a clay loam soil in Southern Greece. Scheduling irrigation by tensiometers and/or porous blocks, water was applied in each of the four treatments when the SWT reached ‐30, ‐60, or ‐100 kPa, respectively. The fourth treatment was irrigated by using local plant and soil criteria. Lettuce fresh yield was increased as SWT was increased with maximum fresh wt at the SWT of‐30 kPa. The highest water‐use efficiency was obtained at the SWT of ‐100 kPa. The nitrate content in the external leaves was about 3.5 to 4 times higher than the content in the heart leaves of lettuce. Furthermore, the nitrate content from ‐30 to ‐100 kPa treatment was decreased 26% for the external and 23% for the heart leaves in dry matter and 22% and 19% in fresh matter, respectively. The total nitrogen (N) of the external leaves was decreased with decreasing soil water potential and remained constant in the heart leaves.  相似文献   

10.
Nematode activity in the soil depends on the presence of free water. We conducted pressure plate experiments to understand better how soil matric potential and structural degradation affect the population growth of three bacterial‐feeding nematodes (Cephalobus, Pristionchus, Rhabditis). We took undisturbed cores from six soils (sand, silt loam and silty clay loam with four management regimes), and removed all fauna from them. Ten or 30 nematodes were added, and pressures corresponding to soil matric potentials of ?10, ?33, ?50, ?100 or ?1500 kPa were applied for 35 days. The nematodes were then counted. Significant reproduction of all bacterial‐feeding nematodes occurred when the diameters of water‐filled pores were approximately 1 μm. This confirms observations using repacked soils and field manipulations. Only for Pristionchus did declining populations match the reduction in total soil porosity related to intensification of land use on the silty clay loam. We had not expected Cephalobus to have the fastest increase in population of the three nematodes in intact soil cores, and our evidence questions the relative importance given to the three nematode families in soil processes. The differing rates of population increase of the three nematodes in the various soils reflect both habitable pore space and trophic interactions. This suggests that the very diversity of nematode assemblages is crucial in the resilience of biological soil processes. That water‐filled pores as small as 1 μm provide suitable spaces for sizeable populations of bacterial‐feeding nematodes accords with the observed migration of infective juveniles of trichostrongylid nematodes and mermithids in water films on herbage. Our results imply that assessment of the role of nematodes in soil processes may be a key to the understanding of biological interactions in water films, and the selection pressures on nematode morphology.  相似文献   

11.
Spatial location of carbon decomposition in the soil pore system   总被引:5,自引:0,他引:5  
We sought to examine the distribution of carbon (C) decomposition within the framework of the soil pore system. Soils were sampled from a transect having a natural gradient in pore‐size distribution. After the addition of labelled wheat straw (13C) the repacked soil columns were incubated (25°C) at soil water matric potentials of either ?75 kPa or ?5 kPa and for either 4 or 90 days. Pore‐size distribution was determined for each soil column after incubation and soils were then analysed for soluble C, label‐derived residual C, label‐derived and native biomass C, nematode abundance, and ergosterol concentration as an indicator of fungal biomass. Overall, the data suggested that pore‐size distribution and its interaction with soil water give rise to a highly stratified biogeography of organisms through the pore system. This results in different rates of decomposition in pores of different size. Added plant material seemed to decompose most rapidly in soils with a relatively large volume of pores with neck diameters c. 15–60 µm and most slowly in soils with large volumes of pores with neck diameters < 4 µm. Regression analysis suggested that at matric potentials of both ?75 kPa and ?5 kPa the fastest decomposition of organic substrate occurred close to the gas–water interface. This analysis also implied that slower rates of decomposition occur in the pore class 60–300 µm. Correlations between the mass of soil biota and the pore volume of each pore class point to the importance of fungi and possibly nematodes in the rapid decomposition of C in the pores c. 15–60 µm during the early stages of decomposition.  相似文献   

12.
Knowledge of hydraulic functions is required for various hydrological and plant‐physiological studies. The evaporation method is frequently used for the simultaneous determination of hydraulic functions of unsaturated soil samples, i.e., the water‐retention curve and hydraulic‐conductivity function. All methodic variants of the evaporation method suffer from the limitation that the hydraulic functions can only be determined to a mean tension of ≈ 60 kPa. This is caused by the limited measurement range of the tensiometers of typically 80 kPa on the dry end. We present a new, cost‐ and time‐saving approach which overcomes this restriction. Using the air‐entry pressure of the tensiometer's porous ceramic cup as additional defined tension value allows the quantification of hydraulic functions up to close to the wilting point. The procedure is described, uncertainties are discussed, and measured as well as simulated test results are presented for soil samples of various origins, different textures (sand, loam, silt, clay, and peat) and variable dry bulk density. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. During the experiment leaked water from the tensiometer interior wets the surrounding soil of the tensiometer cup and can lead to a tension retardation as shown by simulation results. This effect is negligible when the tensiometers are embedded vertically. For coarsely textured soils and horizontal tensiometer alignment, however, the retardation must be considered for data evaluation.  相似文献   

13.
Structural differences between bulk and rhizosphere soil   总被引:2,自引:0,他引:2  
The physical characteristics of the soil at the root–soil interface are crucial because they determine both physical aspects of root function such as water and nutrient uptake and the microbial activity that is most relevant to root growth. Because of this we have studied how root activity modifies the structure and water retention characteristic of soil adjacent to the root for maize, wheat and barley. These plants were grown in pots for a 6‐week growth period, then the soil adjacent to the root (rhizosphere soil) and bulk soil aggregates were harvested. These soil aggregates were then saturated and equilibrated at matric potentials between ?600 kPa and saturation, and the water retention characteristics were measured. From subsamples of these aggregates, thin sections were made and the porosity and pore‐size distributions were studied with image analysis. Both image analysis and estimates of aggregated density showed that the rhizosphere soil and bulk soil had similar porosities. Growing different plants had a small but significant effect on the porosity of the soil aggregates. Image analysis showed that for all the plant species the structure of the rhizosphere soil was different to that of the bulk soil. The rhizosphere soil contained more larger pores. For maize and barley, water retention characteristics indicated that the rhizosphere soil tended to be drier at a given matric potential than bulk soil. This effect was particularly marked at greater matric potentials. The difference between the water retention characteristics of the bulk and rhizosphere soil for wheat was small. We compare the water retention characteristics with the data on pore‐size distribution from image analysis. We suggest that differences in wetting angle and pore connectivity might partly explain the differences in water retention characteristic that we observed. The impact of differences between the water retention properties of the rhizosphere and bulk soil is discussed in terms of the likely impact on root growth.  相似文献   

14.
滤纸法测定干湿循环下膨胀土基质吸力变化规律   总被引:5,自引:3,他引:2  
吴珺华  杨松 《农业工程学报》2017,33(15):126-132
为了获得干湿循环作用下膨胀土基质吸力的变化规律,首先采用人工模拟降雨和蒸发的方法开展了膨胀土室内干湿循环试验,然后利用滤纸法进行了不同含水率下试样的基质吸力测定试验,获得了干湿循环条件下膨胀土的土水特征曲线,求出了相应的进气值与残余值,结合Fredlund土水特征曲线模型对经历不同干湿循环次数下的土壤土水特征曲线进行了拟合,最终建立了考虑干湿循环效应的膨胀土土水特征曲线模型。结果表明:1)随着干湿循环次数的增加,土壤的进气值呈下降趋势,从循环1次时的134.5 k Pa降至循环4次时的58.5 k Pa,降幅达56.5%。从循环1次至2次的进气值下降较大,往后降幅明显减小,趋于基本稳定,这表明对土壤进气值的影响以初次干湿循环为主。2)残余值亦呈下降趋势,从循环1次时的1 040.5降至循环4次时的528.5 k Pa,降幅达49.2%。每经历一次干湿循环,残余值降幅均较大,尚未趋于稳定,这表明干湿循环效应对土壤残余值的影响比对土壤进气值的影响要大。3)新建土水特征曲线模型中的拟合参数与干湿循环次数成较好线性关系,表明随着干湿循环次数的增加,土壤进气值逐渐减小,水分变化速率有所降低,而残余含水率逐渐增加。该成果可为深入研究土壤基质吸力及其工程应用提供参考。  相似文献   

15.
The question of whether the response of earthworms to soil moisture is governed by their reaction to soil wetness (moisture content) or to soil water energy (matric suction) was examined in two species of earthworm using moisture gradients in three contrasting soil types with clay contents varying from 4 to 39%. Gravimetric moisture gradients ranging over 5–30% were established in horizontal cores comprising 12 or 14 sections containing loosely packed soil. Earthworms were introduced to each section at the beginning of each experiment. The earthworms moved from sections containing dry soil into adjacent sections containing moister soil. Clear effects were evident after 6 h but these became more obvious after 96 h. For the earthworm Aporrectodea rosea, the threshold soil mositure level at which earthworms were induced to move away from dry soil was a matric suction of about 300 kPa (pF 3.4) and was independent of soil type. In contrast, for A. trapezoides, the threshold soil moisture varied with soil type (sandy loam 15 kPa, loam 25 kPa, clay 300 kPa). We conclude that, for the earthworm A. rosea, matric suction and not water content of soil provided the cue by which the earthworm recognized dry soil. For A. trapezoides, there was an interaction between matric suction and soil type in which the response of A. trapezoides to soil moisture varied with soil texture and the threshold for avoidance of dry soil ranged from a matric suction of 300 kPa (20% w/w) in clay to 15 kPa (10% w/w) in sandy loam.  相似文献   

16.
为了研究盐碱地上微咸水膜下滴灌不同灌水下限对土壤水盐运移和玉米产量的影响,在长胜试验站开展了微咸水膜下滴灌玉米的大田试验。试验采用负压计指导灌溉,控制滴头下20cm深处的土壤基质势下限分别为-10,-20,-30,-40kPa,每个处理重复3次,按随机区组布置。结果表明:膜下滴灌湿润体形状在垂直于滴灌带的滴头所在竖直剖面上近似为半椭圆形,随着灌水下限的增大,湿润层土体含水率增大;玉米根部附近均出现盐分低值区,膜外表层均出现盐分高值区;-20kPa和-30kPa灌水下限适中,既能较充分淋洗膜内表层土壤盐分,又不会造成微咸水中的盐分滞留累积;在玉米生育期内,膜内、膜外地下100cm土体均积盐;-10kPa和-20kPa下限处理对应的湿润体垂直深度约为60cm;玉米收获后,地下100cm土体均积盐,需要进行秋浇或春汇,大量淋洗土壤盐分,保证耕地盐分不逐年累积;试验条件下,玉米产量随着灌水下限的降低而减少。  相似文献   

17.
Indoor cylindrical titanium lysimeters (80 cm internal diameter × 150 cm height) filled with undisturbed soil were constructed to study the behaviour of solutes in soil. They were equipped with thermometers, tensiometers, ceramic porous cups, percolate reservoirs, and an automatic irrigation system. Soil sampling was conducted using an original drilling technique. Examination of the wetting front and downward migration of Br in an Andosol monolith showed no artificial sidewall flow.  相似文献   

18.
Abstract. Field measurements of cumulative infiltration and of the matric potential prior to infiltration were made with double-ring infiltrometers and tensiometers, respectively, on two sandy loams in north-east Scotland. The time to ponding for constant-rate infiltration was also measured in the same infiltrometers by applying water at a constant rate until ponding commenced. Under the range of initial potentials studied (-2 to - 17 kPa), an exponential relation was adequate to describe the relation between sorptivity and initial matric potential. The time to ponding was also strongly dependent on initial matric potential and increased dramatically as the soil became drier. Measurements of time to ponding were in good agreement with values predicted from the theory of Clothier et al. (1981) using values for sorptivity and the A parameter obtained from the cumulative infiltration experiments. Measurements and predictions clearly showed the importance of the sorptivity versus initial matric potential relation in controlling the time to ponding of such sandy soils. These results have implications for determining the generation of runoff and the establishment of stream flows, as well as determining optimum rates and design of irrigation.  相似文献   

19.
Abstract. This paper reports results from a four year study to investigate the suitability of porous ceramic cups to measure solute leaching on shallow chalk soils. Measurements were carried out in one field following surface applications of nitrate and bromide tracers and in two fields after only bromide was applied. Soil water samples were collected from porous cups at 30,60 and 90cm depth after every 25 mm of drainage, and soil samples from 0–30, 30–60 and 60–90 cm were collected monthly eachwinter. Soil matric suctions andvolumetric moisture content were measured in one winter. Leaching losses, measured with ceramic cups were compared with those measured by soil analysis. Porous cups installed in chalk at 60 and 90 cm depth were only able to collect samples regularly when soil matric suctions were less than 15 kPa. Water held at such low suctions is likely to move quickly through relatively large fissures in the chalk. The slow rate of equilibration between solute concentrations in water moving in macrofissures and those in water moving through micropores of the chalk matrix, means that porous cups may not provide good estimates of leaching losses if they are installed in chalk rock.  相似文献   

20.
干湿效应下崩岗区岩土抗剪强度衰减非线性分析   总被引:12,自引:6,他引:12  
发育于花岗岩的崩岗侵蚀区红土受干湿变化影响显著。通过室内直剪试验,研究了不同干湿效应对崩岗侵蚀区岩土抗剪强度衰减的影响。试验处理采用5种干湿效应水平(风干48h、风干24h、自然含水率、浸30s和浸60s)。结果显示:土壤黏聚力c和内摩擦角φ随干湿变化呈非线性衰减趋势,当土壤含水率13%左右时,对应的抗剪强度指标出现峰值;峰值强度前符合线性递增规律,峰值强度后符合一阶指数衰减规律。在风干阶段,抗剪强度主要受裂隙性影响,而在增湿阶段,基质吸力是影响抗剪强度的主要因素;探讨了干湿循环效应对崩岗侵蚀发育的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号