首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
采用径流小区试验,选取不施用生物炭(CK)、生物炭施用量25 t/hm~2(T1)、50 t/hm~2(T2)、75 t/hm~2(T3)和100 t/hm~2(T4)5个处理,分析生物炭施用量对土壤理化性质、持水能力、水土保持效应、节水增产效应等能够反映土地生产能力的指标的影响,建立基于Gumbel Copula函数的不同生物炭施用量下黑土区坡耕地生产能力评价模型,结果表明:随着生物炭施用量的增加,土壤容重降低,孔隙度增大,养分分布更为均匀,土壤有效P、速效K、pH值和有机质含量呈线性递增趋势,土壤铵态N含量呈指数增长;土壤饱和含水率、田间持水量、凋萎系数和有效水最大含量均与生物炭施用量正相关,且高施炭量处理对于土壤水分的影响程度明显高于低施炭量处理;随着生物炭施用量的增加,年径流深和土壤侵蚀量均呈线性递减,减流率和减沙率均呈对数函数递增,而大豆产量和水分利用效率则先增后减,呈抛物线型变化。基于Gumbel Copula函数计算的土地生产能力评价结果较为理想,计算的土地生产能力指数随生物炭施用量的增加呈"S型"曲线递增,土壤理化性质、持水能力和水土保持效应指数均呈线性递增,而节水增产效应指数则呈抛物线型先增后减。  相似文献   

2.
【目的】研究不同灌溉方式下生物炭对土壤水盐运移特征、作物生长及水分利用效率的中长期综合影响效应,推荐适宜的灌溉方式和生物炭用量,为内蒙古河套灌区农田水资源高效利用及盐碱化耕地治理提供理论依据和技术支撑。【方法】以灌溉方式、玉米秸秆生物炭用量为二因素,设计完全随机区组田间小区试验,共设置6个处理,其中灌溉方式为地下水滴灌、地下水畦灌、黄河水畦灌,生物炭用量为0、30 t/hm~2。生物炭在2016年玉米播种前施入土壤表面并通过旋耕机混入土壤耕层,2017年和2018年不再施用生物炭。2018年玉米生长季考察并分析不同灌溉条件-生物炭耦合处理下的土壤水分动态、降盐效果、玉米产量、蒸散量和水分利用效率。【结果】地下水滴灌条件下,与未施加生物炭的处理相比,施加生物炭的脱盐量增加13.3%,作物蒸散量提高10.5%,水分利用效率6.0%,产量提高3.5%。而畦灌条件下,施用生物炭的处理的脱盐量增加5.0%,蒸散量提高1.3%,产量提高4.8%,水分利用效率增加3.1%。【结论】生物炭施用后的第3年仍能抑制不同灌溉方式下玉米农田0~100 cm土壤的盐分积累,提高作物水分利用效率,增加作物产量,相比而言,膜下滴灌下施用30 t/hm~2的生物炭的节水降盐增产效果更优。  相似文献   

3.
为解决渍水胁迫这一困扰南方避雨栽培区农业生产的障碍性问题,定量评估施加生物炭对缓解作物渍害的影响,以避雨栽培番茄为对象,借助土柱试验,系统分析不同地下水位及生物炭施加量对作物耗水规律、土壤氧化还原电位及产量的影响。结果表明,地下水位越浅,作物渍害胁迫越严重,导致耗水量越少;施用生物炭后,作物耗水量显著降低,生物炭保水作用随地下水位降低而有所削弱。地下水补给量随地下水埋深变大而减小,相同地下水位条件下,施用生物炭可显著增加地下水利用量。施用生物炭可使土壤氧化还原电位变大,改善土壤通气性能。地下水位在-80cm时,5%生物炭施加量可显著提高番茄产量和水分利用效率,其增幅分别达到38.7%、56.6%,地下水位对番茄产量影响显著,而地下水位和生物炭交互作用对产量及水分利用效率影响均不显著。  相似文献   

4.
为了探讨南方地区农业生产以施加生物炭作为缓解作物渍害胁迫的可能性,利用土柱试验,系统研究了渍害条件下不同生物炭施加量对番茄形态指标、生理指标、产量及水分利用效率的影响.结果表明,在5%生物炭施用量下,除总根长、根尖数、根冠比和叶绿素荧光参数外,其余各项形态指标、生理指标较对照处理均显著增加;生物炭施用对番茄干物质积累的促进作用更为明显,施用3%生物炭处理下,根干质量、总干物质量较对照处理差异显著,分别增加了0.11 g/株、2.37 g/株.生物炭添加对番茄产量影响并不显著,仅在生物炭施加量为10%时,番茄产量明显高于对照处理,而该处理下WUE的增幅达到了120%.总体上,5%的生物炭施用量较为经济合理,适于实际生产应用.  相似文献   

5.
黑土坡耕地连续施加生物炭的土壤改良和节水增产效应   总被引:3,自引:0,他引:3  
东北黑土区土壤肥沃、性状优良、适宜作物生长,然而大面积坡耕地的水土流失问题严重威胁着区域生态环境和国家粮食安全。为探明施加生物炭对该区域坡耕地的节水增产效应,以及最优施加量与施加年限,基于田间径流小区进行为期两年的观测试验。2015年,试验根据生物炭施加量设置为C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2)5个处理;2016年,各处理分别连续施加等量生物炭。试验结果表明:施加两年生物炭均降低了土壤容重、提高了孔隙度和有机碳密度,且随施加量的增加效果越显著;2015年实测田间持水量随生物炭施加量呈上升的趋势,2016年则呈先升后降的趋势,上升至C50处理达到最佳;2016年C50处理土壤三相比较合理,广义土壤结构指数(GSSI)高于其他处理;连续两年施加生物炭均减少了3°坡耕地的年径流量,各年份年径流系数降低最多的分别为C75(15.44%)和C50(17.27%)处理。适量生物炭也可增加单次降雨后雨水蓄积量和其随时间下降的速率和幅度;2015年和2016年大豆产量最高的处理分别是C75和C50,增产率分别为27.16%和28.17%。比较2015年和2016年试验结果,连续两年施加50 t/hm2生物炭时,大豆水分利用效率较对照处理增幅最高,为27.67%,节水增产效果最佳。  相似文献   

6.
为探究黑土区坡耕地不同生物炭应用模式(不同生物炭施用量和施用年限)的综合效益,以东北黑土区坡度为3°耕地径流小区为研究对象,于2015—2018年,设置不加生物炭的常规处理(C0)和生物炭施加量分别为25 t/hm2(C25)、50 t/hm2(C50)、75 t/hm2(C75)、100 t/hm2(C100)共5个处理,分析不同施炭量以及施炭年限的综合效益,结果表明:在生态效益方面,生物炭能够有效改善土壤结构、增强土壤肥力、提高土壤蓄水保土能力,在施炭量为50 t/hm2时,连续施用2年,土壤蓄水保土效果最佳;连续施用3年,土壤结构最为理想;施炭量为100 t/hm2时,连续施用4年,土壤肥力最佳。在经济效益方面,生物炭能够有效提高作物节水增产性能及其经济产值,施用1年、施炭量为75 t/hm2时,水分利用效率最大;连续施用2年、施炭量为25 t/hm2时,生物炭边际生产力最大,施炭量每增加1 t,产量增加1...  相似文献   

7.
黑土区坡耕地施加生物炭对水土流失的影响   总被引:7,自引:0,他引:7  
为了探索生物炭对黑土区坡耕地的水土保持作用效果,于2015年在东北黑土区典型黑土带上的黑龙江省北安市红星农场3°坡耕地上的径流小区内,开展了不同生物炭施用量(0、25、50、75、100 t/hm~2)对土壤结构、持水性能、径流泥沙控制等影响的试验研究。结果表明:生物炭可有效改善黑土区土壤结构,随着生物炭添加量的增加,土壤容重随之减小,而土壤孔隙度则会明显提高;土壤饱和含水率、田间持水量和土壤储水能力均随生物炭施用量的增加而增加;适当施加生物炭对黑土区坡耕地降雨径流及水土流失具有较好的控制作用,75 t/hm~2处理具有最好的径流泥沙控制效果,其中径流控制效果好于泥沙控制;施加生物炭还可以不同程度地减少黑土区坡耕地土壤养分流失,并可以改善养分的空间分布,4种生物炭用量处理的养分含量不仅在数量上高于对照处理,而且在均匀程度上有较大的改善,减缓了坡度对土壤养分造成的坡上与坡下的差异。研究结果为东北黑土区秸秆资源的高效、绿色、循环利用提供了一条新的途径,可为黑土区坡耕地水土流失防治提供理论依据和技术支撑,对该区农业可持续发展具有重要意义。  相似文献   

8.
为探明在寒地黑土区不同生物炭添加量对玉米生物性状指标及耗水规律的影响,于2014年在北安市红星农场通过盆栽试验设置6个处理(CK-0g/kg、C1-20g/kg、C2-40g/kg、C3-60g/kg、C4-80g/kg、C5-100g/kg)进行研究。结果表明:适量施加生物炭(处理C1、C2)可以有效促进玉米生长发育,提高玉米的产量,也有效增加了玉米的日耗水量、全生育期耗水量及水分利用效率,处理C1、C2分别比对照CK增产20.95%、26.07%,水分利用效率增加14.62%和18.01%。而过量施加生物炭(处理C4、C5)则会抑制玉米的生长发育,导致减产,同时也降低了玉米的日耗水量、全生育期耗水量及水分利用效率。生物炭量与玉米单株产量和水分利用效率之间成二次抛物线关系,相关系数分别为0.812 2和0.772 1,当生物炭施加量为36.13和39.25g/kg时,产量和水分利用效率达到最大值150.95g/株和3.92g/kg。  相似文献   

9.
生物炭对坡耕地土壤肥力和大豆产量的影响与预测   总被引:2,自引:0,他引:2  
为探究施用生物炭对东北黑土区不同坡度坡耕地土壤肥力和大豆产量影响的持续性,于2016—2018年在3种典型坡度的坡耕地上开展生物炭持续效应试验,分析施加生物炭对土壤团聚体及其稳定性、土壤养分指标、大豆产量及其构成要素影响的持续性,并采用改进的灰色理论预测模型对大豆产量进行预测,进而确定生物炭一次性施入后的增产作用年限。结果表明:施用生物炭使土壤团聚体直径d 0. 25 mm的土壤团聚体含量明显减少、d 0. 25 mm的土壤大团聚体含量显著增加;施用生物炭使大于0. 25 mm的水稳性团聚体含量比例R0. 25、平均质量直径(MWD)和几何平均直径(GMD)增加,使土壤不稳定团LT粒指数E_(LT)减小,即土壤团聚体稳定性提高,该稳定性增强幅度随坡度增大、施炭后时间延长而减小;施加生物炭使土壤pH值、铵态氮、速效钾、有机质含量这4个指标显著增加(P 0. 05),最大增长率分别为17. 88%、27. 23%、20. 31%、17. 51%,施炭后土壤养分等级有所上升,土壤肥力增强,增强效果与施炭后年限呈负相关,但生物炭对有效磷含量并无明显影响;施加生物炭后,大豆单株荚数、单株粒数、百粒质量、产量均显著提高(P 0. 05),增产率高达26. 29%,并且坡度越大、施炭年限越长,各指标增加幅度越小,各因素对大豆产量影响由大到小依次为施炭与否、坡度、施炭后年限;改进的多变量灰色预测模型精度较高,预测单次施用生物炭后大豆增产有效时间为5~6年。研究结果可为东北黑土区生物炭应用提供理论依据。  相似文献   

10.
为了研究黑土区施加生物炭的施用模式,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期3年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm~2)、C25(25 t/hm~2)、C50(50 t/hm~2)、C75(75 t/hm~2)、C100(100 t/hm~2)5个处理,2016、2017分别连续施加等量的生物炭。分析了黑土区连续3年施加生物炭后土壤理化性质、水土保持效应、节水增产效应等指标的变化规律,并建立改进的TOPSIS模型对生物炭的施用模式进行综合评价。结果表明:土壤有机碳密度、p H值与施炭量均呈线性递增趋势,土壤容重与施炭量呈线性递减趋势,且使用年限越久,作用越明显;施用1年时田间持水量与施炭量呈线性递增趋势,C100处理田间持水量最大,为35.48%,连续施用2年、3年时田间持水量与施炭量呈先增后减的二次抛物线变化,均在C50处理达到最大,分别为36.20%、36.24%;3年的年径流量和年土壤侵蚀量与施炭量均呈先减后增的二次抛物线变化,连续施加2年50 t/hm~2的生物炭减流效果和抗土壤侵蚀效果最优;连续3年施加生物炭均提高了大豆产量和水分利用效率,各年份产量和水分利用效率提高最大的分别为C75(27.16%、25.3%)、C50(33.3%、27.6%)、C50(24.1%、19.8%);在不同施炭量和施用年限的条件下,改进的TOPSIS模型能客观、清晰地描述土地生产力变化过程,并总结出建议的生物炭施用模式,即连续施加2年50 t/hm~2的生物炭对土地生产能力的提升最优,其次是施加1年75 t/hm~2的生物炭。研究结果可为实际生产提供理论依据。~2  相似文献   

11.
为探明不同水土保持耕作技术对东北黑土坡耕地玉米氮素利用和温室气体排放的影响,以大田试验为基础,设置7个耕作处理:等高耕作(Transverse slope planting, TP)、垄向区田(Ridge to the district field, RF)、深松耕(Subsoiling tillage, SF)、等高耕作+深松耕(Transverse slope planting+subsoiling tillage, TP-S)、垄向区田+深松耕(Ridge to the district field+subsoiling tillage, RF-S)、等高耕作+垄向区田(Transverse slope planting+ridge to the district field, TP-R)、常规耕作(Down-slope cultivation, CK),探究水土保持耕作技术对东北黑土坡耕地土壤养分状况、温室气体排放、氮素吸收利用和产量的影响。结果表明:在玉米全生育期内,水土保持耕作处理显著提高了玉米产量、器官氮素转运率以及氮肥利用率,部分水土保持耕作措施也可以显著降低N  相似文献   

12.
生物炭对草甸黑土物理性质及雨后水分动态变化的影响   总被引:3,自引:0,他引:3  
为探明生物炭对草甸黑土物理性质及雨后水分动态变化的影响,在大豆全生育期生长条件下,研究了东北黑土区草甸黑土5种生物炭添加量(0、25、50、75、100 t/hm2)下土壤物理性质(包括:土壤水分特征曲线、土壤含水率常数、土壤水分扩散率)和单次降雨土壤含水率变化特征,分析了生物炭对黑土区草甸黑土耕层土壤持水能力及雨后水分动态变化的影响。结果表明,施用生物炭能降低土壤残余含水率,增加土壤饱和含水率和田间持水量,其中对残余含水率的影响最显著,100 t/hm~2生物炭处理使残余含水率最多降低27.6%;施用生物炭能明显降低土壤水分扩散率,随生物炭添加量的增加依次比对照组减少34.8%、37.5%、71.4%和58.9%;在单次降雨过程中,施用生物炭能减小土壤含水率的变化幅度,使土壤含水率在降雨之后更快地由迅速下降期进入缓慢下降期,并能明显提高缓慢下降期对应的土壤含水率;施用生物炭可以提高大豆产量,以75 t/hm~2生物炭处理最高。研究结果可为黑土区农业水土资源高效利用与保护提供理论依据。  相似文献   

13.
黑土区施加生物炭对土壤综合肥力与大豆生长的影响   总被引:5,自引:0,他引:5  
为探明黑土区施加生物炭对土壤持水性能、土壤养分以及大豆生长的影响,以东北黑土区3°坡耕地田间径流小区为研究对象,进行为期4年的观测。按照生物炭施加量,2015年共设置C0(0 t/hm~2)、C25(25 t/hm~2)、C50(50 t/hm~2)、C75(75 t/hm~2)、C100(100 t/hm~2) 5个处理,2016—2018年分别连续施加等量的生物炭。结果表明:连续4年,0~60 cm土层土壤储水量随施炭量的增加呈先增大、后减小的趋势,而对60~100 cm土层土壤储水量影响不显著;连续4年,饱和含水率随施炭量的增加呈逐渐增大的趋势; 2015年田间持水率、凋萎系数随施炭量的增加呈逐渐增大趋势,2016—2018年呈先增加、后减小趋势;连续4年,施加生物炭提高了大豆各生育阶段的株高和叶面积,同期相对较优处理分别为C75、C50、C50、C25;连续4年,大豆冠层覆盖度与施炭量呈抛物线变化(R~2均在0. 89以上,P 0. 01),连续施加2年的C50处理各生育期提高量最大,与C0相比提高了81. 4%、36. 7%、31. 5%和39. 6%;连续4年,土壤pH值和有机质、速效钾含量随施炭量的增加呈逐渐升高趋势,碱解氮、有效磷含量呈先升高、后降低趋势,相对较优处理为C50、C50、C25、C25。采用改进的内梅罗指数模型计算的土壤综合肥力指数与产量呈正相关(R~2=0. 861 5,P=0. 001 2,RMSE为0. 75),土壤综合肥力水平最高的生物炭施用模式为连续2年施加50 t/hm~2的生物炭。  相似文献   

14.
连年施加生物炭对黑土区土壤改良与玉米产量的影响   总被引:1,自引:0,他引:1  
为研究连年施加生物炭对黑土区坡耕地的土壤结构、持水性能、玉米产量及可持续性的影响,从2015年开始,在黑土区3°坡耕地径流小区内,将玉米作为试验作物连续进行4年生物炭效应试验。共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2) 5种生物炭的施用量处理。结果表明:4年中土壤容重随生物炭的增加有减小的倾向,孔隙度有逐渐增加的倾向;适量生物炭可有效降低土壤固相比例,提高气相和液相比例,除2015年外,连续3年广义土壤结构指数(GSSI)随施炭量的增加先增大后减小,土壤三相结构距离指数(STPSD)随施炭量的增加先减小后增大,均在第3年C50处理达到最优(99.96、0.63),同时土壤三相比偏离值R最小(1.03),三相比最接近理想状态;连续4年大于0.25 mm团聚体含量R0.25、平均质量直径(MWD)和几何平均直径(GMD)随着生物炭的增加有先增加后减小的倾向;连...  相似文献   

15.
我国坡耕地占耕地总面积的1/3,且水土流失严重。垄向区田技术是目前唯一能落实于农业生产中的水土保持技术。介绍了1QD型垄向区田筑垱机的工作原理及应用1QD型垄向区田筑垱机的关键参数,分析机械化筑垱作业的优势,以便为推广垄向区田技术提供配套的农机具。  相似文献   

16.
土壤改良剂对土壤水分及燕麦产量的影响   总被引:4,自引:1,他引:3  
试验设聚丙烯酸钾、聚丙烯酸钾+腐殖酸、聚丙烯酰胺、聚丙烯酰胺+腐殖酸、腐殖酸和对照共6个处理,研究了土壤改良剂对土壤含水率、水分利用效率(WUE)以及燕麦产量的影响。结果表明,各土壤改良剂处理均能提高0~40cm土层土壤含水率,其中"聚丙烯酸盐"和"聚丙烯酸盐+腐殖酸"较其他处理效果明显;各土壤改良剂处理的燕麦产量均高于对照,燕麦穗数、穗粒数和千粒质量也有明显提高,其中"聚丙烯酸盐+腐殖酸"产量较高,较对照增产44%,其千粒质量增加最显著;不同土壤改良剂对提高燕麦WUE均有效果,其中复配方式高于单一施用方式,"聚丙烯酸盐+腐殖酸"处理WUE最高,为7.14kg/(hm2.mm),"聚丙烯酰胺+腐殖酸"次之。表明土壤改良剂的应用改善了农田土壤水分状况,提高了降水利用率,从而提高了燕麦产量,以"聚丙烯酸钾+腐殖酸"复配处理节水增产效果最显著。  相似文献   

17.
为探究黑土区坡耕地不同生物炭施用模式的生态效益、经济效益以及二者的耦合协调度,以东北黑土区3°坡耕地径流小区为研究对象,设置不施加生物炭的常规处理(C0)和生物炭施加量分别为25t/hm2 (C25)、50t/hm2 (C50)、75t/hm2 (C75)、100t/hm2 (C100)5个处理,于2015—2018年开展试验研究,采用熵值法和耦合协调度模型测算不同生物炭施用模式的生态效益、经济效益以及二者的耦合协调度。结果表明:生物炭能够有效改善土壤结构、增强土壤肥力、提高土壤蓄水保土能力,连续施用2年、施炭量为50t/hm2时,生物炭的生态效益最佳。同时,生物炭能够有效提升作物节水增产性能,提高生物炭的收益和利用效率,施炭1年、施炭量为75t/hm2时,生物炭的经济效益最佳。耦合协调度测算结果表明,施用生物炭能有效改善生态效益与经济效益的阻抑程度,黑土区最佳的生物炭施用模式为连续施用3年、施炭量为50t/hm2,此时生物炭的生态效益指数与经济效益指数均较高且二者的协调度达到最佳,分别为0.6849、0.6345、0.5741。研究结果可为黑土资源的高效利用以及黑土区实际生产提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号