首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This study evaluated the effect of feed supplementation with chia and canola oils as a substitute for soybean oil on the composition of Nile tilapia muscle tissue using chemometrics. Diets were supplemented with 2.1% of each oil and were provided to fish for 15 and 30 days. Compared to soybean oil, supplementation with canola and chia oils significantly increased (P < 0.05) the contents of eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5 n-3), and docosahexaenoic acid (DHA, 22:6 n-3) in Nile tilapia fillet. At 30 days, DHA content increased 97% in Nile tilapia fed chia oil and 91% in treatment with canola oil. The highest EPA content correlated to treatment with chia oil (7.33 mg 100 g?1). The long-chain polyunsaturated fatty acids (LC-PUFAs) precursors, linoleic acid and α-linolenic acid, were observed to increase according to treatment type and feed supplementation duration. The principal component analysis resulted in a two-principal-component model that described 92.07% of the total data variance. Also, it highlighted that the replacement of soybean oil with canola and chia oils in Nile tilapia diets contributed to increasing the n-3 LC-PUFA concentration in Nile tilapia fillets, improving its nutritional value.  相似文献   

2.
A 8‐week feeding trial was conducted to determine the effect of substituting fish oil with palm oil‐laden spent bleaching clay (SBC), a by‐product from crude palm oil (CPO) refining, on growth, feed utilization, fatty acid composition and heavy metal accumulation in the muscle of Nile tilapia, Oreochromis niloticus. Four isonitrogenous and isolipidic practical diets were formulated to contain 0, 100, 200 or 300 g kg?1 SBC. Growth performance of Nile tilapia was significantly better in fish fed the 100 g kg?1 SBC diet compared with fish fed the 0, 200 or 300 g kg?1 SBC diet. Growth and feed utilization efficiency of fish fed 200 or 300 g kg?1 SBC were similar to fish fed the control diet without added SBC. Whole‐body composition, body‐organ indices and haematocrit of tilapia were not affected by dietary treatments. Fatty acid compositions in the muscle lipid of Nile tilapia were strongly influenced by dietary treatments with progressively elevated levels of total saturates and n‐6 PUFA because of the dietary influence of these fatty acids from residual CPO adsorbed onto SBC. A gradual decrease in total n‐3 PUFA concentrations were also observed with the ratio of n‐3 to n‐6 fatty acids in muscle lipids decreasing from 4.75 to 4.41, 3.23 or 2.37 after 8 weeks on the 0, 100, 200 or 300 g kg?1 SBC diet, respectively. The arsenic, cadmium and lead concentrations in the experimental diets increased with increasing dietary levels of SBC but the concentrations of these heavy metals in the whole body and bone of Nile tilapia were not significantly different among fish fed the various diets. The present 8‐week study showed that in fishmeal‐based diets for Nile tilapia, palm oil‐laden SBC can totally replace added fish oil. The use of this presently discarded waste product from palm oil refining in tilapia diets will greatly contribute to reducing the impact of rising feed costs in the culture of tilapia in many tropical countries. Other potential benefits may include acting as a feed binder, removal of mycotoxins in fish feeds as well as adsorbing toxic substances present in the culture water.  相似文献   

3.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The effects of stearidonic acid (SDA; 18:4n‐3) derived from SDA‐enhanced, genetically modified soybeans (Monsanto Company, St Louis, MO, USA) on growth performance and fatty acid (FA) composition of large Atlantic salmon (Salmo salar; 2.1 kg initial weight) were evaluated. There was a stepwise decrease in feed intake and subsequent weight gain of immature Atlantic salmon with increased replacement of fish oil by SDA soy oil from 0%, 50% to 100% added oil. SDA increased and n‐3 highly unsaturated FA (n‐3 HUFA; eicosapentaenoic acid + docosahexaenoic acid) decreased in the diet and corresponding fillet with increased SDA oil inclusion. Salmon with the same weight gain fed SDA oil compared with rapeseed oil at 50% fish oil replacement had similar n‐3 HUFA fillet levels indicating little or no increased synthesis of n‐3 HUFA from SDA for deposition in the fillet. However, elongation of dietary SDA to 20:4n‐3 for deposition in the fillet of SDA oil fed fish was indicated. The increased SDA and 20:4n‐3 in the fillet of Atlantic salmon fed SDA oil compared with rapeseed oil at 50% fish oil replacement may be more effective as precursors for EPA in humans than 18:3n‐3 which was in the fillet at similar levels.  相似文献   

5.
In two independent experiments, the effects of dietary inclusion of canola and linseed oil were evaluated in juvenile Murray cod (Maccullochella peelii peelii, Mitchell) over a 112‐day period. In each experiment, fish received one of five semi‐purified diets in which the dietary fish oil was replaced with canola oil (Experiment A) or linseed oil (Experiment B) in graded increments of 25% (0–100%). Murray cod receiving the graded canola and linseed oil diets ranged in final weight from 112.7 ± 7.6 to 73.8 ± 9.9 g and 93.9 ± 3.6 to 74.6 ± 2.2 g, respectively, and exhibited a negative trend in growth as the inclusion level increased. The fatty acid composition of the fillet and liver were modified extensively to reflect the fatty acid composition of the respective diets. Levels of oleic acid (18:1 n‐9) and linoleic acid (18:2 n‐6) increased with each level of canola oil inclusion while levels of α‐linolenic acid (18:3 n‐3) increased with each level of linseed oil inclusion. The concentration of n‐3 highly unsaturated fatty acids in the fillet and liver decreased as the amount of vegetable oil in the diets increased. It is shown that the replacement of fish oil with vegetable oils in low fish meal diets for Murray cod is possible to a limited extent. Moreover, this study reaffirms the suggestion for the need to conduct ingredient substitution studies for longer periods and where possible to base the conclusions on regression analysis in addition to anova .  相似文献   

6.
Rainbow trout (Oncorhynchus mykiss Walbaum) were fed purified diets containing fish oil for six weeks and then soybean lecithin or soybean oil for 25 days. The gastrointestinal tract segments, stomach, midgut and hindgut were then sampled for lipid and fatty acid composition and electron microscopy. Membrane lipid class composition was fairly similar in all three segments of trout fed fish oil. Hindgut contained slightly more phosphatidylserine than stomach and midgut, while midgut contained more phosphatidylcholine and less lysophospatidylcholine/sphingomyelin. Feeding soybean products appeared to marginally decrease free cholesterol. The fatty acid compositions of the main lipid classes showed significant regional differences. In control fish, stomach had higher levels of arachidonic acid (20:4n-6) and n-6 polyunsaturated fatty acids than midgut and hindgut, and lower content of docosahexaenoic acid (22:6n-3) and n-3 polyunsaturated fatty acids. Midgut phosphatidylethanolamine also had higher levels of saturated fatty acids and less n-3 polyunsaturated fatty acids than the other tissues. Feeding soybean products decreased the n-3/n-6 ratio mainly due to increases in linoleic (18:2n-6) and 20:4n-6 and decreases in 22:6n-3 and eicosapentaenoic acid (20:5n-3). Phosphatidylcholine and to a lesser extent phosphatidylethanolamine adapted more readily to dietary changes by major increases in 18:2n-6 and C20−22 n-6 polyunsaturated fatty acids. The composition of phosphatidyl-serine and -inositol appeared to be under more strict metabolic control. Linoleic acid hardly increased at all while the increase in other n-6 polyunsaturated fatty acids was less pronounced than for the other lipid classes. Regardless of lipid class, stomach resisted dietary changes more strongly than midgut and hindgut. Increases in n-6 polyunsaturated fatty acids were minor as were the loss of n-3 polyunsaturated fatty acids. The dead-end product 20:2n-6 accumulated to a higher degree in hindgut phosphatidyl-ethanolamine and -coline compared to midgut and stomach, suggesting that the activity of Δ6 desaturation is higher in the anterior part of the intestine where most of the lipid is absorbed. Feeding soybean oil caused massive accumulation of free lipid droplets in midgut enterocytes while little lipid droplets were observed in trout fed fish oil or soybean lecithin. Since both soybean products influenced intestinal composition to the same degree, altered fatty acid profiles in membranes is not responsible for the observed lipid accumulation. This supports previous observations in Arctic charr (Salvelinus alpinus L.), suggesting that fish may require exogenous phospholipids in order to sustain a sufficient rate of lipoprotein synthesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The objective of the present study was to evaluate the effects of the diets enriched with safflower and canola oil on growth, feed utilization, body composition, liver, and muscle fatty acid composition of rainbow trout (Oncorhynchus mykiss). Rainbow trout having approximate initial weight of 97.03 ± 0.10 g were fed the experimental diets containing only fish oil (Group 0SFO), safflower oil (50% safflower oil, Group 50SFO and 33% safflower oil, Group 33SFO), and vegetable oil blend (33% safflower and 33% canola oil, Group 66SFCO) for 45 days. Twenty-five fish were randomly assigned for triplicate treatments and offered the test diets two times daily to apparent satiation. At the end of the experiment, survival was 100% in all treatments. No significant differences in the weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were found between fish fed with the different experimental diets. The highest hepatosomatic index (HIS) and viscerasomatic index (VSI) was obtained in 50SFO and 33SFO groups, respectively. The moisture, protein, lipid, and ash content in the body composition of the fish increased in all experimental groups. The lipid content was not significantly different among the groups (p > 0.05); however, there was a significant difference in ash content between the control and the other groups (p < 0.05). The experimental diets containing vegetable oil (50SFO and 33SFO groups) and vegetable oil blend (66SFCO group) had significantly higher concentrations of n-6 fatty acids, predominantly in the form of linoleic acid (LA). The n-3 fatty acids were present in significantly higher concentration in the control treatment (0SFO). The fatty acid composition of fish fillet and liver were reflective of the dietary lipid source. While the fillet and liver of fish fed the 50SFO diet was high in linoleic acid (18:2 n-6), fish fed the 66SFCO diet had high concentrations of oleic acid (OA; 18:1 n-9). The present study suggests that fish oil can be replaced by up to 50% with safflower oil and by up to 66% with safflower + canola oil blend in rainbow trout diets with no significant effect on growth.  相似文献   

8.
An 8-week feeding trial was conducted to determine the effects of various dietary lipids on the growth, tissue proximate composition, muscle fatty acid composition and erythrocyte osmotic fragility of red hybrid tilapia, Oreochromis sp. Five isonitrogenous and isoenergetic semipurified diets were supplemented with 10% of either cod liver oil (CLO), sunflower oil (SFO), crude palm oil (CPO), crude palm kernel oil (CPKO), or a combination of 5% CLO with 5% palm fatty acid distillates (PFAD), respectively. There were no significant effects (P > 0.05) of diet on growth but fish fed the CLO diet showed a significantly (P< 0.05) poorer feed efficiency ratio compared to fish fed the CPO diet. Lipid deposition in fish muscle was mostly similar among fish fed the various diets but bone ash was significantly higher in fish fed the CPO and CPKO diets. Muscle lipids of fish fed palm oil-based diets did not increase in saturated fatty acids content but showed significantly lower polyunsaturated fatty acid (PUFA) concentrations compared to fish fed the CLO diet. The concentrations of individual PUFA in muscle lipids were strongly influenced by dietary PUFA concentrations. Dietary lipids did not markedly affect the structural integrity of erythrocyte membranes but the erythrocytes of tilapia fed the CPO diet were slightly more resistant to osmotic lysis. It was concluded that palm oil products, especially CPO, could be successfully used in the diet of hybrid tilapia based on its availability, cheaper costs and its potential ability to enhance oxidative stability due to its low PUFA content and high natural concentrations of antioxidants.  相似文献   

9.
Five sources of dietary fatty acids (fish, linseed, sunflower, olive and coconut oils) were evaluated in juvenile Nile tilapia in two trials: at optimal (28°C) and suboptimal (22°C) temperatures lasting 9 and 12 weeks, respectively. At 28°C, there was no clear effect of dietary source on fish growth, but at 22°C, the highest daily weight gain occurred in fish fed sunflower, linseed and fish oil. Feed efficiency and apparent net protein utilization increased as the amount of unsaturated fatty acids, especially n‐3 polyunsaturated fatty acids (PUFA), in the diet increased. Coconut oil, which is rich in saturated fatty acids (SFA), led to the worst growth results, especially at 22°C, with the lowest weight gain, feed intake and feed utilization by tilapia. The body fatty acid profile, in % of total fatty acids, was dependent on diet composition. However, for all treatments, PUFA body content increased with the decrease in temperature, but SFA and monounsaturated fatty acids remained the primary contributors to the body profile. Either fish oil or vegetable oil may be used as sources of dietary fatty acids for Nile tilapia, but at suboptimal temperatures, a dietary source containing more PUFA and less SFA improves performance.  相似文献   

10.
The replacement of dietary marine fish oil with vegetable oils was examined in fingerling humpback grouper, Cromileptes altivelis, over the course of an 8‐week growth trial. Five isolipidic (10%) and isoproteic (50%) fish meal‐based practical diets were formulated to contain iso‐ingredients but with different sources of lipids [crude palm oil (CPO), refined, bleached and deodorized, palm olein (RBDPO), soybean oil (SBO) or canola oil (CNO)], and their performance was compared with the control diet, which contained cod liver oil (CLO) as the added lipid source. The experimental diets were fed close to apparent satiation twice a day to triplicate groups of fish (10.6 ± 2.2 g). The grouper fingerlings were randomly distributed into groups of 12 fish in cylindrical cages (61 cm depth and 43 cm diameter) that were placed in a 150 tonne polyethylene seawater tank. There were no significant differences (P>0.05) in terms of growth, survival, feed conversion ratio, protein efficiency ratio, net protein utilization, hepatosomatic index and condition factor among fish fed the various dietary treatments. Similarly, the dietary lipid source did not significantly affect the whole body proximate composition of the fish. Muscle and liver fatty acid composition of fish was influenced by the experimental diets. Replacement of dietary CLO with CPO, RBDPO, SBO or CNO produced fish with lower n‐3 highly unsaturated fatty acids and increased levels of 18:2n‐6 in the muscle and liver. The n‐3:n‐6 fatty acid ratio in the muscle of fish fed the CLO‐based diet was 3.0 compared with 0.5–0.8 in the muscle of fish fed the various vegetable oil‐based diets. The present study demonstrated that various vegetable oils can be used in fish meal‐based dietary formulations for humpback grouper without compromising growth or feed utilization efficiency.  相似文献   

11.
Relationships between dietary lipid source, stress, and oxidative stress were examined in juvenile chinook salmon (Oncorhynchus tshawytscha). Four different experimental diets were used: menhaden oil (MHO; elevated 20:5n-3 and 22:6n-3), soybean oil (SBO; elevated 18:2n-6), linseed oil (LSO; elevated 18:3n-3), and a mixture of 55% linseed oil and 45% soybean oil (MIX; approximately equal levels of 18:2n-6 and 18:3n-3). Juvenile salmon (initial body weight of 16.0 g) were fed experimental diets for 12 weeks (early March to early June). At the end of feeding, fish subjected to a low-water stressor for 96 h had greater liver and brain lipid peroxidation compared to unstressed controls; peroxidation was not influenced by diet. Diet and stress affected plasma cortisol levels. Stressed fish fed SBO had the greatest cortisol concentrations, followed by MIX, MHO, and LSO (mean concentrations for the SBO and LSO diets differed significantly). The cortisol response to stress may have been influenced by the ratio of prostaglandin 1- and 2-series to prostaglandin 3-series precursor fatty acids provided by the different diets. The results of this study suggest a connection between the physiological response to stress, dietary lipid quality, and oxidative stress. This is the first evidence of such a relationship in fish. Abbreviations: AA - arachidonic acid; ACTH - adrenocorticotropin; BHT - butylated hydroxytoluene; BLPO - brain lipid peroxidation; dGLA - dihomo-γ-linolenic acid; DHA - docosahexanoic acid; EPA - eicosapentanoic acid; FER - feed efficiency ratio; FOX - ferrous oxidation-xylenol orange; GLA -γ-linolenic acid; LA - linoleic acid; LCO3 - long-chain n-3 polyunsaturated fatty acids; LLPO - liver lipid peroxidation; LN - linolenic acid; LPO - lipid peroxidation; LSO - linseed oil; MHO - menhaden oil; MIX - 55% linseed oil + 45% soybean oil; PC - plasma cortisol; PG - prostaglandin(s); PGE2- prostaglandin E2; PUFA - polyunsaturated fatty acid; SBO - soybean oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Complete dietary fish oil replacement with palm or poultry oil in barramundi (Lates calcarifer) had no detrimental effects on growth or hepatosomatic index of juvenile fish up to an average size of ~50 g. However, it significantly decreased the omega-3 (n-3) long-chain polyunsaturated fatty acid content of the fish muscle (fillet) lipids. This was particularly true for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which are recognised for their health beneficial effects in the human diet. As a result of their decreased EPA and DHA content, the peroxidation index of the muscle lipids was also decreased. This was associated with increased simulated retail storage shelf life as indicated by decreased thiobarbituric acid reactive substances in muscle samples from fish fed the palm or poultry oil-based diets. Concomitantly, glutathione peroxidase (GPx) activity, but not glutathione S-transferase (GST) activity or reduced glutathione concentration, was significantly reduced in the liver of barramundi fed the palm or poultry oil-based diets as compared with the fish fed the fish oil-based diet. Furthermore, GPx and GST activity were very low in muscle, much lower than in gastrointestinal tract, liver or swim bladder. Therefore, we propose that liver GPx activity may be a good predictor of fillet shelf life in barramundi and other fish species.  相似文献   

13.
The objective of this study was to determine the effects of fish oil replacement with dietary vegetable oils on growth performance, chemical composition and fatty acids profiles in fillets of farmed Caspian great sturgeon juveniles Huso huso (26.97 ± 0.49 g). Five isonitrogenous and isolipidic diets were formulated, containing 10 % of added oil. The diet with 100 % kilka fish oil (Caspian tyulka, Clupeonella caspia) was the control. Fish oil was substituted by 50 % of vegetable oils consisting of an equal share of sunflower and soybean oils (diet A), sunflower and canola oils (diet B) and soybean and canola oils (diet C). In diet D, 100 % of fish oil was replaced with vegetable oil (1:1:1 ratio of sunflower oil, soybean oil and canola oil). Significant differences (P > 0.05) were not detected during 60 days feeding trial in final body weight, weight gain, condition factor, specific growth rate, feed conversion rate, protein efficiency ratio and the chemical composition of fillet (crude protein, crude lipid, moisture and ash). Generally, the fatty acids composition of fish fillets was reflective of the dietary lipid sources. These results indicate the feasibility of substituting fish oils with the mixture of vegetable oils in diets of juvenile H. huso without negative influence on growth providing optimum ratios of n-3/n-6 and n-3/18:1n-9 is met in the diet.  相似文献   

14.
The dominant fatty acids (FAs) in oils are often used to explain different nutritional effects of dietary oils in fish. However, the amounts of dominant FAs among oils are different, and the nutritional roles of these important FAs in fish have not been precisely compared at similar levels in feeding trials. In the present study, different amounts of palmitic acid were added to safflower oil (SO), olive oil (OO) and fish oil (FO) to obtain comparable amounts (about 550 g/kg of total FAs) of 18:2n‐6, 18:1n‐9 and 20:5n‐3 + 22:6n‐3 and subsequently fed to Nile tilapia (11.1 ± 0.01 g) for 8 weeks. The results showed similar growth among groups but FO group obtained lower fat deposition, serum ALT and AST activities, compared to OO. Lipogenesis‐related gene expressions were higher in OO group than FO group in liver, muscle and adipose tissue, but there were only few differences in these genes between SO and FO groups. Lipid catabolism genes in FO group were higher than OO and SO groups in adipose tissue, but not in muscle, and the significantly higher expressions of CPT1b and PPARα were only observed in liver. Overall, dietary 18:2n‐6, 20:5n‐3 and 22:6n‐3 were beneficial to normal growth and lipid metabolism, whereas high amount of 18:1n‐9 induced lipid deposition and liver damage in Nile tilapia.  相似文献   

15.
This study was conducted to confirm the essentiality of dietary n-3 highly unsaturated fatty acids (n-3 HUFA) and to investigate the effects of dietary lipid sources on growth performance, liver, and blood chemistry in juvenile Japanese flounder. Three replicate groups of fish (average weighing 3.0 g) were fed experimental diets containing lauric acid ethyl ester, soybean oil, soybean and linseed oils mixture, and squid liver oil as lipid sources for 13 wk. No significant difference was observed in survival among all groups ( P >0.05). Weight gain, feed efficiency and protein efficiency ratio of fish fed the squid liver oil diet containing high n-3 HUFA level were significantly higher than those of fish fed the other diets ( P 0.05). Saturated and monounsaturated fatty acids of liver polar and neutral lipid fractions in fish fed the diet containing lauric acid tended to increase compared to those of the other groups. Fish fed the diets containing soybean and/or linseed oils, which contained high contents of 18:2n-6 and 18:3n-3, respectively, showed the highest contents of 18:2n-6 and 18:3n-3 in both lipid fractions of the liver ( P 0.05). Significantly higher content of n-3 HUFA was observed in both lipid fractions of the liver from fish fed the diet containing squid liver oil than for fish fed the other diets ( P 0.05). Total cholesterol, glucose, and glutamic-oxaloacetic acid transaminase in plasma were significantly affected by dietary lipids ( P 0.05). Histologically, the liver of fish fed the diet containing squid liver oil had a clear distinction between nuclear and cytoplasm membranes; however, cytoplasm of fish fed the diets containing lauric acid and soybean oil was shrunken, and the hepatic cell outline was indistinguishable. It is concluded that the dietary n-3 HUFA is essential for normal growth, and that the dietary lipid sources affect growth performance, liver cell property, and blood chemistry in juvenile Japanese flounder.  相似文献   

16.
Feeding experiments and laboratory analyses were conducted to establish the essential fatty acid (EFA) requirement of red drum (Sciaenops ocellatus). Juvenile red drum were maintained in aquaria containing brackish water (5 ± 2‰ total dissolved solids) for two 6-week experiments. Semipurified diets contained a total of 70% lipid consisting of different combinations of tristearin [predominantly 18:0] and the following fatty acid ethyl esters: oleate, linoleate, linolenate, and a mixture of highly unsaturated fatty acids (HUFA) containing approximately 60% eicosapentaenoate plus docosahexaenoate. EFA-deficient diets (containing only tristearin or oleate) rapidly reduced fish growth and feed efficiency, and increased mortality. Fin erosion and a “shock syndrome” also occurred in association with EFA deficiency. Of the diets containing fatty acid ethyl esters, those with 0.5–1% (n-3) HUFA (0.3–0.6% eicosapentaenoate plus docosahexaenoate) promoted the best growth, survival, and feed efficiency; however, the control diet containing 7% menhaden fish oil provided the best performance. Excess (n-3) HUFA suppressed fish weight gain; suppression became evident at 1.5% (n-3) HUFA, and was pronounced at 2.5%. Fatty acid compositions of whole-body, muscle and liver tissues from red drum fed the various diets generally reflected dietary fatty acids, but modifications of these patterns also were evident. Levels of saturated fatty acids appeared to be regulated independent of diet. In fish fed EFA-deficient diets (containing only tristearin or oleate), monoenes increased and (n-3) HUFA were preferentially conserved in polar lipid fractions. Eicosatrienoic acid [20:3(n-9)] was not elevated in EFA-deficient red drum, apparently due to their limited ability to transform fatty acids. Red drum exhibited some limited ability to elongate and desaturate linoleic acid [18:2(n-6)] and linolenic acid [18:3(n-3)]; however, metabolism of 18:3(n-3) did not generally result in increased tissue levels of (n-3) HUFA. Based on these responses, the red drum required approximately 0.5% (n-3) HUFA in the diet (approximately 7% of dietary lipid) for proper growth and health.  相似文献   

17.
Channel catfish feed intake and growth decline with temperature, but different dietary lipids might sustain performance during cool weather. Catfish at a suboptimal temperature (22°C) were fed 32% protein commercial floating pellets supplemented with 2% soybean oil (SBO), menhaden oil (MFO), or flaxseed oil (FLX). After 12 weeks, fish were counted and weighed, then health assays and proximate and fatty acid analysis of fillets were conducted. Weight gain, feed conversion ratio, and survival were similar among treatments, indicating limited potential of different lipids to improve growth at low temperatures. However, the favorable feed conversion ratios (FCRs; ≤1.6) indicated that feeding at 22°C was worthwhile to maintain good condition of catfish. Across diets, the unsaturated fatty acids in muscle lipids increased. The FLX and MFO both increased the n-3 HUFA in the fillet, but FLX was less effective. Unfortunately, both FLX and MFO reduced sensory properties of the fillet relative to the SBO control.  相似文献   

18.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as the lipid sources, added at 120 g kg?1 of crude lipid each. The diets were fed by hand to triplicate groups of Pangasius nasutus (Bleeker, 1863) juveniles (mean weight 10.66 ± 0.04 g), to apparent satiation twice daily for 12 weeks. Fish survival rate was 100% among all the treatments. Growth performance (DGR) was similar among fish fed the SBO, CPO and LO diets, but was significantly (P < 0.05) higher in the CPO compared to fish fed the control (FO) diet. Fish fed SBO and CPO diets also recorded significantly (P < 0.05) higher intraperitoneal fat compared to fish fed the control, whereas fish fed the LO diet did not significantly differ from the other treatments. Muscle and liver fatty acid profile of fish from all the treatments generally mirrored the composition of the diets fed and the major fatty acids recorded were 18:3n‐3 and 18:2n‐6 in the tissues of fish fed the LO and SBO treatments, respectively. Results of this study suggests that P. nasutus fed diets containing vegetable oils (especially CPO and SBO) produce better growth performance, without compromising fish survival and feed efficiency compared with those fed a diet containing only FO.  相似文献   

19.
To investigate the impact of different dietary lipid sources on fillet composition and lipid transport, we conducted a feeding trial and evaluated the proximate composition of muscle tissue, fatty acid profiles, total cholesterol (in muscle and plasma), triglycerides, and lipoprotein concentrations in Nile tilapia, Oreochromis niloticus. Five semi‐purified diets, containing different oils (soybean – SO, corn – CO, linseed – LO, fish – FO, and olive – OO), were supplied to tilapia for 160 d. Fish fed with LO and FO diets had a lower percentage of total lipids in muscle compared with the others (P < 0.05). The highest percentage of protein was found in fish fed with FO diet (P < 0.05). The muscle fatty acid profile was influenced differently by diets (P < 0.05). The group supplemented with SO and CO had a higher concentration of 18:2n‐6, whereas the fish fed with LO diet had a higher level of 18:3n‐3 and those that received the FO diet had more 22:6n‐3 in comparison with those supplemented with vegetable oils. Plasma lipid transport was also affected by the diets: the fish fed with FO diet had higher total cholesterol and high‐density lipoprotein and lower very‐low‐density lipoprotein concentrations (P < 0.05).  相似文献   

20.
Five dietary lipid sources (fish oil, soybean oil, palm oil, rapeseed oil and linseed oil) were evaluated in juvenile red claw crayfish, Cherax quadricarinatus, based on the response of growth, antioxidant capacity, intestine histology, whole‐body composition, fatty acid nutrition and lipid metabolism. Crayfish were fed in quadruplicate net cages for 8 weeks. Crayfish fed diets with fish oil, soybean oil and linseed oil obtained significantly higher weight gain and specific growth rate than those fed the other two diets. Survival, condition factor and hepatosomatic index were not significantly affected by lipid sources. Lipid sources also do not affect the whole‐body composition of crayfish. Serum SOD, T‐AOC and GSH‐PX activities of crayfish fed the palm oil and rapeseed oil diets had a significantly lower value than those fed other diets. The minimum concentrations of MDA have been observed in crayfish fed the soybean oil diet. The activity of ACC in the hepatopancreas of crayfish fed the linseed oil diet showed the highest value, and the CPT‐1 activity was not significantly affected by different lipid sources. Crayfish fed the soybean oil diet showed significantly higher TC and TG contents in hepatopancreas than those fed other diets. Crayfish fed linseed oil diet had a significantly higher percentage of EPA, C18:3n?3 and Σn?3 PUFA in muscle than those fed other treatments. Most of the fatty acid compositions in the hepatopancreas had a close correlation to fatty acid compositions in diets. All findings in this study indicate that soybean oil is the advantageous lipid source for juvenile C. quadricarinatus which can reflect in satisfactory growth performance, antioxidant capacity and fatty acid nutrition of edible tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号