首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
多重PCR技术鉴定番茄Ty-1和Mi基因   总被引:2,自引:0,他引:2  
利用同一PCR反应体系,对分别与番茄(Lycopersion esculentum)抗黄化曲叶病毒(Tomato YellowLeaf Curl virus)病的Ty-1基因和番茄抗根结线虫(root-knot nematode)的Mi基因紧密连锁的SCAR标记进行同时扩增筛选,扩增的特异性片段与单引物扩增片段完全吻合.与Ty-1基因紧密连锁的SCAR1标记为共显性标记,抗感材料均产生398 bp的特异片段,纯合和杂合抗病基因型存在TaqⅠ酶切位点,酶切后分别产生了303 bp和95 bp以及398 bp、303 bp和95 bp的特异性片段,而感病基因型无此酶切位点.与Mi基因紧密连锁的SCAR2标记也为共显性标记,抗感材料均产生750 bp的特异片段,纯合和杂合抗病基因型存在TaqⅠ酶切位点,酶切后分别产生了570bp和180bp以及750bp、570bp和180bp的特异性片段,而感病基因型无此酶切位点.酶切结果仍为750 bp的产物.经反复验证,结果准确可靠,可以用于在同一PCR反应体系中对两个抗病基因进行同时筛选鉴定.  相似文献   

2.
本研究利用10份番茄材料,筛选出能够鉴定番茄抗黄化曲叶病基因Ty-1的双SNP标记,Ty-3基因的SCAR1标记和抗根结线虫病Mi基因的SCAR2标记。应用以上分子标记构建出同时检测番茄Ty-1、Ty-3和Mi基因的多重PCR体系。结果表明,多重PCR扩增结果与单引物PCR扩增结果一致,使用该体系只需1次PCR反应及琼脂糖凝胶电泳便可快速、准确地对番茄3种基因的基因型进行检测。对96份番茄材料的分子检测结果与田间鉴定结果吻合度达到94%以上。使用该体系无需PCR产物酶切反应,可大大缩短分子检测的时间,节省检测成本,检测结果能够有效地辅助番茄抗病育种工作。  相似文献   

3.
番茄枯萎病抗性基因I-2的显性分子标记及其应用   总被引:2,自引:0,他引:2  
番茄是世界上最主要的蔬菜作物之一,番茄枯萎病(Fusarium oxysporumf.sp.lycopersici)的发生和蔓延使番茄生产受到严重影响,培育抗枯萎病的番茄品种是控制该病害最经济有效的方法.本研究根据I-2的基因序列设计特异扩增引物,以不同抗病基因型的番茄为材料,扩增I-2基因3 132~3 640 bp之间的单拷贝片段,基因型为I-2/-的材料均特异地扩增出一条509 bp的条带,而基因型为i-2/i-2的材料均无扩增条带.从而可建立了I-2基因的显性标记,对I-2基因进行分子识别.在此基础上,利用该标记对16个主要番茄品种进行了I-2基因鉴定,其中8个品种含有I-2基因.另外,本研究通过一次PCR和一次HindⅢ酶切建立了I-2和Tm-22双基因检测体系,为多基因鉴定及标记辅助选择提供了有力工具.  相似文献   

4.
本研究采用多重PCR方法对与抗番茄黄化曲叶病毒病(tomato yellow leafcurl virus,TYLCV)的Ty-2和Ty-3基因紧密连锁的共显性SCAR标记进行扩增筛选,不同基因型(Ty-2/Ty-2,Ty-2/ty-2,ty-2/ty-2,ty-3/ty-3)的材料扩增出不同长度的特异片段,建立了一种快速检测抗TYLCV基因的技术。利用该技术对22份番茄材料进行检测,同时利用普通PCR对上述材料进行检测,两者结果完全吻合。最后用田间自然发病的方法在大田对这些材料抗性进行验证,符合率达86.4%。  相似文献   

5.
中品95-5117抗大豆花叶病毒基因源分析   总被引:1,自引:0,他引:1  
中品95-5117和中品95-5383是以中品661为亲本选育的抗东北花叶病毒病3号株系(SMV3)的大豆新品系。中品95-5383抗病基因的SCAR标记已被定位于大豆F连锁群(Chr.13),与抗病基因Rsv1紧密连锁。利用大豆F连锁群的34个对SSR标记引物及与抗病基因紧密连锁的SCAR标记SCN11及Rsv1候选基因标记Rsv1-f/r,对中品95-5117系谱亲本进行检测,结合对SMV3的抗性鉴定结果进行分析,旨在明确抗SMV3基因在系谱中的传递规律,为利用分子标记辅助选择培育抗SMV3新品种提供依据。通过SSR标记分析发现,中品95-5117和中品95-5383与亲本中品661的相似性最高,而与另外一个亲本鲁豆4号关系较远。SCAR标记SCN11检测表明,只有1份材料Mangnolid(F-53)B为感病基因型。系谱的Rsv1-f/r标记分析表明,Williams82是中品95-5117中Rsv1基因的供体亲本。抗病性鉴定发现鲁豆4号高抗SMV3,但它并不携带Rsv1基因。据上述结果推测中品95-5117中不仅含有Rsv1,还具有来自鲁豆4号的抗病基因,证明该品系比其亲本中品661具有对SMV3更强的抗性。  相似文献   

6.
烟草花叶病(TMV)是世界性的番茄主要病害,我国各地均严重发生。受害病株叶片斑驳、绉缩,果形变小,畸形,果肉质地变劣,严重影响番茄产量和质量。1975年自美国引入的番茄品种玛娜佩尔Tm-2nv(Manapalpat Tm-2nv,简称马 T),具有抗烟草花叶病毒的显性基因 Tm-2。近年来,  相似文献   

7.
小麦品系5R625苗期和田间均对小麦叶锈病有良好抗性,但其所携带的抗病基因还不清楚。利用36个携带已知抗叶锈病基因的对照品系和15个中国小麦叶锈菌小种对5R625携带的抗病基因进行了苗期人工接种鉴定和基因推导,结果 5R625对这15个叶锈菌生理小种的侵染型与Lr9、Lr19、Lr24、Lr28、Lr39、Lr47、Lr51、Lr53相同。利用5R625和感病品种郑州5389的杂交后代F1、F2和F2:3群体对5R625的抗病性进行了遗传分析,苗期和成株期的分析结果均表明5R625对小麦叶锈菌的抗性由1个显性基因控制。进一步利用F2:3家系和分子标记方法将该基因定位在3DL染色体上。与5R625携带的抗病基因连锁的5个分子标记中,STS标记24-16和SCAR标记OP-J09此前已经被证明与已知抗叶锈病基因Lr24共分离,因此,推测5R625携带的抗病基因与Lr24可能为同一基因。  相似文献   

8.
普通菜豆抗炭疽病基因SCAR标记鉴定   总被引:4,自引:0,他引:4  
赵晓彦  王晓鸣  王述民 《作物学报》2007,33(11):1815-1821
利用12个菜豆品种(鉴别寄主)评价了7个抗炭疽病基因SCAR标记的可靠性和实用性,其中SBB141150/1050标记引物扩增没有特异性,SAS13950没有扩增带。用5个可靠的菜豆抗炭疽病基因SCAR标记(SCAreoli1000、SH181100、SAB3400、SB12350 和SCF101072),对127份普通菜豆抗炭疽病品种进行抗炭疽病基因分子标记鉴定,82份未检测到SCAR标记,45份分别含有1~3个SCAR标记;检测到SCAR标记的资源中,13份含有SCAreoli1000标记,13份含有SH181100标记,5份含有SAB3400标记,9份含有SB12350标记,11份含有SCF101072标记。分析表明抗病品种含有的抗病基因标记与品种来源存在相关性。  相似文献   

9.
豌豆白粉病是由白粉菌(Erysiphe pisi DC.)引起的一种世界范围内的重要病害。防治豌豆白粉病最经济、最有效、最环保的方法是应用抗病品种。对20个甘肃地方豌豆品种(系)进行抗白粉病表型和标记基因型鉴定。结果显示,20个品种中,6个表现高抗(HR),10个品种表现抗病(R),4个品种表现中抗(MR);5个与豌豆抗白粉病基因er1连锁的SCAR标记将20个豌豆品种(系)区分为4个标记基因型。迄今,2个隐性抗白粉病基因er1、er2和一个显性抗白粉病基因Er3已在豌豆中被鉴定,其中er1基因在世界上被广泛应用于抗病品种培育。er1基因隶属MLO基因家族,其抗性由豌豆PsMLO1基因座位功能丧失产生。每个er1等位基因都对应着不同的PsMLO1同源基因突变位点和模式。PsMLO1基因序列分析发现,6个高抗豌豆品种含有3个已知的er1等位基因(er1-2, er1-6, er1-7)。本研究结果为下一步提高对甘肃地方抗病资源的认识和豌豆分子辅助育种提供工具都具有重要作用。  相似文献   

10.
番茄黄化曲叶病抗病基因与抗病育种的最新进展   总被引:1,自引:0,他引:1  
番茄黄化曲叶病毒病作为一种新型病毒病,已成为威胁各国番茄生产的主要病害之一。目前已经发现和挖掘的抗病基因有Ty-1、Ty-2、Ty-3、Ty-4和ty-5,只有Ty-1/Ty-3被克隆。关于番茄黄化曲叶病毒病的研究较为广泛,而关于植物抗TYLCV机制的研究和报道很少。本综述对黄化曲叶病毒病株系分化、相关的抗病基因、抗病机制以及病毒诱导及基因沉默技术的国内外研究进展进行了综述。  相似文献   

11.
Summary A RAPD marker, linked to the Tm-2 agene engendering TMV resistance in tomatoes, was identified. The validity of the RAPD marker was corroborated by screening several tomato varieties, and correctly identifying those which carried Tm-2 a, as well as by F2 segregation analysis. All tested resistant varieties descending from a common Lycopersicon peruvianum/esculentum ancestor, LA1791, exhibited this marker.  相似文献   

12.
A recombinant inbred line (RIL) mapping population (F8) was generated by crossing Vigna mungo (cv. TU 94‐2) with Vigna mungo var. silvestris and screened for mungbean yellow mosaic virus (MYMV) resistance. The inter simple sequence repeat (ISSR) marker technique was employed to identify markers linked to the MYMV resistance gene. Of the 100 primers screened, 54 showed amplification of which 36 exhibited polymorphism between the parents TU 94‐2 (resistant) and V. mungo var. silvestris (susceptible). Individual plants from 53 RIL populations were analysed and one marker (ISSR8111357) was identified as tightly linked to the MYMV resistant gene at 6.8 cM. Both the phenotype as well as the ISSR8111357 marker segregated in a 1 : 1 ratio. The ISSR8111357 marker was sequenced and sequence characterized amplified region (SCAR) primers were designed (YMV1‐F and YMV1‐R) to amplify the marker. Screening for the SCAR marker in the RIL population distinguished the MYMV resistant and susceptible plants, agreeing well with the phenotypic data. The ISSR8111357 marker was validated using diverse blackgram genotypes differing in their MYMV reaction. The marker will be useful for the development of MYMV‐resistant genotypes in blackgram.  相似文献   

13.
A polymerase chain reaction (PCR)-based co-dominant marker was developed which is tightly linked to Tm22. This dominant locus confers resistance to ToMV in tomato. Random-amplified-polymorphic DNA (RAPD) screening was carried out with DNA from ToMV-susceptible and resistant tomato near-isogenic lines. A polymorphic band linked to ToMV resistance was observed. The polymorphic fragment was cloned and the DNA sequences of both ends determined. Specific PCR primers were designed from these sequences. PCR amplification with the specific primers resulted in an amplified band (SCAR) in both susceptible and resistant tomato lines. The amplified band from the susceptible lines could, however, be discerned from that of the resistant ones after cleavage with the restriction enzyme Hind III. In an F2 population of 90, the polymorphic markers co-segregated with susceptibility or resistance, as determined by biological assays for ToMV resistance. The reported SCAR marker is linked to ToMV resistance not only in cultivars derived from American lineage, but also from European lineage. This method enables the distinction of homozygous and heterozygous individual plants in segregating populations, and provides a convenient and rapid assay for both selection and quality control during breeding programs and hybrid seed production, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Knowledge of the evolutionary origin and sources of pest resistance genes will facilitate gene deployment and development of crop cultivars with durable resistance. Our objective was to determine the source of common bacterial blight (CBB) resistance in the common bean Great Northern Nebraska #1 (GN#1) and GN#1 Selection 27 (GN#1 Sel 27). Several great northern cultivars including GN#1, GN#1 Sel 27, and Montana No.5 (the female parent of the common x tepary bean interspecific population from which GN #1 and GN # 1 Sel 27 were derived) and known susceptible checks were evaluated for CBB reaction in field and greenhouse environments. These genotypes and CBB resistant and susceptible tepary bean including Tepary #4, the male parent and presumed contributor of CBB resistance toGN#1 and GN#1 Sel 27, were assayed for presence or absence of three SCAR markers tightly linked with independent QTLs conditioning CBB resistance. The parents and F2 of Montana No. 5/GN #1 Sel 27 and Montana No.5/Othello(CBB susceptible) were screened for CBB reaction and SCAR markers. CBB resistance in Montana No.5 was comparable to that of GN#1 and GN#1 Sel27. The SAP6 SCAR marker present in GN#1 and GN#1 Sel 27 was also present in Montana No.5, and it co-segregated (R 2 =35%) with the CBB resistance in the Montana No.5/Othello F2 population. Although a few CBB resistant and susceptible transgressive segregants were found in the F2 of MontanaNo.5/GN #1 Sel 27 and later confirmed by F3 progeny tests, SAP6 SCAR marker was present in all progenies. None of the tepary bean specific CBB resistance-linked SCAR markers were present in GN#1, GN#1 Sel 27, or Montana No.5. A cluster analysis of 169 polymorphic PCR-based markers across three common bean and Tepary #4 indicated that GN#1, GN#1 Sel 27, and Montana No.5 were closely related, and not related at all with Tepary #4.Thus, these results clearly indicate Montana No.5, not Tepary #4, as the source of CBB resistance in GN#1 and GN#1 Sel 27. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
This report describes the conversion of a restriction fragment length polymorphism (RFLP) marker (the 2B12a locus). linked to the Sd1 aphid resistance gene, to a polymerase chain reaction (PCR) based marker. A section of the 2BI2 probe was sequenced and two primers were designed lo amplify this sequence in the cultivars‘Prima’and‘Fiesta’: all the amplification products were the same size. After sequencing. two specific 24-mer oligonueleotides were synthesized (DdARM-51 and DdAR.M-32) to exploit a single base-pair difference. These primers were used to screen 44 plants from the‘Prima’x‘Fiesta’family and generated a single amplification product (196bp). in approximately half of the seedlings, which was linked to the resistance gene Sd1,. The DdARM primer combination was used to evaluate a range of apple cultivars and selections, including some varieties derived from‘Cox’and alternative sources of resistance reported in the literature. In parallel with this work, the phenotypic response of the same genotypes was either confirmed or determined in replicated glasshouse tests. The sequence characterized amplified regions (.SCAR) marker was amplified in all the resistant plants, with the exception of‘Northern Spy’and 3760 (the sources of Sd2 and Sd3 resistance, respectively), but never in the susceptible plants. The possible role of this marker in a marker-assisted breeding strategy, and its compatibility with a SCAR marker linked to the I, gene for resistance to apple scab. is discussed.  相似文献   

16.
Pea powdery mildew is one of the major constraints in pea production worldwide, causing severe seed yield and quality loss. The resistance is governed by a single recessive gene er1 in majority of resistant cultivars, but er2 and Er3 have also been reported. The objective of the study was to find out tightly linked sequence characterized amplified regions (SCAR) markers to er1 gene using NILs. A total of 620 random amplified polymorphic DNA (RAPD) markers were screened for length polymorphism between seven sets of NILs. The 880 bp polymorphic band of the tightly linked RAPD marker OPX 04880 was cloned, sequenced and a SCAR marker ScOPX 04880 was developed. In a population of completely classified 208 F2 plants (supported by phenotypic data from 208 F2:3 and 4,390 F3:4 families) ScOPX 04880 was linked at 0.6 cM in coupling phase with er1 gene in the order ScOPX 04880er1–ScOPD 10650. ScOPX 04880 will correctly differentiate homozygous resistant plants from the susceptible accessions with more than 99 % accuracy. In combination with repulsion phase marker ScOPD 10650, ScOPX 04880 can help in an error free marker-assisted selection.  相似文献   

17.
Early selection of scab-resistant apple seedlings can be enhanced by the use of markers tightly linked to the Vf resistance gene. Two sequence characterized amplified regions (SCAR) markers have been obtained from previously described random amplified polymorphic DNA (RAPD) markers. AM19-SCAR is a codominant marker, while AM19-SCAR is dominant, as is the RAPD from which it was derived. A highly detailed map in the vicinity of the Vf gene was built through the cumulative analysis of about 600 seedlings from six different controlled crosses. The usefulness of these and other SCAR markers will be discussed in relation to combining the traditional phenotypic selection with MAS. The availability of two codominant, tightly linked markers flanking both sides of the resistance gene (AL07-SCAR and M18-CAPS) also makes it easy to identify the seedlings homozygous for the resistance gene.  相似文献   

18.
M. Staniaszek    E. U. Kozik    W. Marczewski 《Plant Breeding》2007,126(3):331-333
Fusarium oxysporum f. sp. lycopersici inhabits most tomato-growing regions worldwide, causing tomato production yield losses. A molecular marker linked to resistance would be useful for tomato improvement programmes. Thus, a cleaved amplified polymorphic sequence (CAPS) marker TAO1902 was developed to identify tomato genotypes possessing the I-2 gene, which confers resistance to F. o. lycopersici race 2. The Rsa I or Fok I restriction fragments corresponded to the presence or absence of the I-2 allele in a segregating 100 F2 progeny, tomato cultivars, 16 resistant and 20 susceptible to Fusarium wilt, respectively, lines and F1 hybrids, representing various tomato gene pools. TAO1902 may be helpful for selection of F. o. lycopersici -resistant tomato germplasm.  相似文献   

19.
Resistance at the TM-2 locus in the tomato to tomato mosaic virus   总被引:4,自引:0,他引:4  
T. J. Hall 《Euphytica》1980,29(1):189-197
Summary There are three known tomato mosaic virus (TMV) resistance factors, Tm-1, Tm-2 and Tm-2 2, in the tomato. Tm-2 2 is currently the most widely utilised in glasshouse cultivars. Both Tm-2 and Tm-22 can induce systemic necroses in response to virus infection. These are considered to be hypersensitive resistance reactions in view of the low virus concentrations in affected plants and because sub-inoculation usually fails to infect all plants possessing the same resistance gene. The literature relating to TMV resistance at the Tm-2 locus in the tomato is reviewed.Virulent strains may readily establish when Tm-1 or Tm-2 are used, but Tm-2 2 confers more effective resistance. The possible development of aggressive isolates capable of affecting Tm-2 2/Tm-22 plants is discussed. The establishment of virus types which cause systemic necrosis at normal growing temperatures is considered more likely than widespread infection from fully virulent strain 22 mutants. However, the growing of crops isolated from the TMV reservoirs in the soil considerably reduces the likelihood of even this occurring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号