首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this article is to present the problem of purification of 50-year-old weathered wastes (soil) from waste pits—the result of oil drilling. The soil was deeply contaminated with petroleum hydrocarbons—total petroleum hydrocarbon (TPH) level: 85,654–101,842 mg kg dry mass. This work presents results of waste pit material purification with the use of stage technology: initial reclamation, basic bioremediation, and bioaugmentation (inoculation with indigenous microorganisms). The whole process was controlled with the use of gas chromatography/flame ionization detector. This analytical method enables observation of alternation in n-alkanes content during the consecutive stages of purification. According to this method, estimation of oil hydrocarbon biodegradation degree with the use of n-C17/Pr and n-C18/F indicators can be done. The use of biomarker C30-17α(H)21β(H)-hopane to normalize the TPH concentration in laboratory research enabled the creation of the first-order mathematical model of biodegradation. It is possible to recognize the dynamics of the following purification stages due to the calculated first-order biodegradation constants. Decrease in the TPH content (63.8–65.1%) was a result of laboratory tests led in 130 days of basic bioremediation. The next stage of soil purification (130 days) included inoculation with biopreparation based on indigenous microorganisms—TPH decrease in 80.7–81.7%. Laboratory tests results enabled elaboration of purification methods applied in tested waste pits in industrial conditions (in situ). The technology of the G-44 and G-12 waste pits purification from huge petroleum hydrocarbons content, consisting of stage purification process, enables the TPH decrease to the satisfactory level in 3 years.  相似文献   

2.

Purpose

In order to improve and support decision-making for the selection of remedial techniques for contaminated sites, a multi-criteria assessment (MCA) method has been developed. The MCA framework is structured in a decision process actively involving stakeholders, and compares the sustainability of remediation alternatives by integrating environmental, societal, and economic criteria in the assessment.

Materials and methods

The MCA includes five main decision criteria: remedial effect, remediation cost, remediation time, environmental impacts, and societal impacts. The main criteria are divided into a number of sub-criteria. The environmental impacts consider secondary impacts to the environment caused by remedial activities and are assessed by life-cycle assessment (LCA). The societal impacts mainly consider local impacts and are assessed in a more qualitative manner on a scale from 1 to 5. The performance on each main criterion is normalized to a score between 0 and 1, with 1 being the worst score. An overall score is obtained by calculating a weighted sum with criteria weights determined by stakeholders. The MCA method was applied to assess remediation alternatives for the Groyne 42 site, one of the largest contaminated sites in Denmark.

Results and discussion

The compared remediation alternatives for the site were: (1) excavation of the site followed by soil treatment; (2) in situ alkaline hydrolysis; (3) in situ thermal remediation; and (4) continued encapsulation of the site by sheet piling. Criteria weights were derived by a stakeholder panel. The stakeholders gave the highest weighting to the remedial effect of the methods and to the societal impacts. For the Groyne 42 case study, the excavation option obtained the lowest overall score in the MCA, and was therefore found to be the most sustainable option. This was especially due to the fact that this option obtained a high score in the main categories Effect and Social impacts, which were weighted highest by the stakeholders.

Conclusions

The developed MCA method is structured with five main criteria. Effect and time are included in addition to the three pillars of sustainability (environment, society, and economy). The remedial effect of remediation is therefore assessed and weighted separately from the main criteria environment. This structure makes interpretation of criteria scores more transparent and emphasizes the importance of effect and time as decision parameters. This also facilitated an easier weighting procedure for the stakeholders in the case study, who expressed a wish to weigh the remedial effect independently from the secondary environmental impacts.
  相似文献   

3.
This work examines the rates of bioremediation during a landfarming process. A field study was performed using three types of soil, which were contaminated with two different hydrocarbon concentrations: 20,000 and 50,000 ppm of total petroleum hydrocarbons (TPH). They were subjected to landfarming under the action of different treatments, based on the provision of irrigation, aeration by rototilling, fertilizer, and surfactant. The biodegradation of TPH, considering concentration and families of hydrocarbon compounds (including polycyclic aromatic hydrocarbons, PAHs), was precisely measured for a period of 486 days. The results show how biodegradation rates depend on soil texture, initial contamination level, and type of amendment. Thus, the combination of fertilizer, irrigation, and aeration was the best treatment for treating the soil contaminated with 20,000 ppm of TPH (TPH final concentrations were reduced to a range of 49 to 62% depending on the soil texture). In the case of parcels contaminated with 50,000 ppm of TPH, the most effective treatment combined the supply of fertilizer, surfactant, irrigation, and aeration (TPH final concentrations were reduced to a range of 47 to 63%, depending on the soil texture). The best biodegradation results are obtained for soils with coarser textures and using the treatment with fertilizer, irrigation, and aeration. In addition, the application of surfactant did not imply a significant improvement in the level of biodegradation of hydrocarbons in soil contaminated with 20,000 ppm of TPH, whereas in soils contaminated with 50,000 ppm of TPH, it played a leading role.
Graphical Abstract ?
  相似文献   

4.
固定/稳定化土壤修复技术的应用与优化分析   总被引:2,自引:0,他引:2  
刘甜甜  陈剑雄  陈晨  张海林  毛旭辉 《土壤》2014,46(3):407-412
固定/稳定化技术是污染土壤修复的常用方法之一,具有费用低、无毒、综合效益好等优点,非常适合我国典型土壤污染区的修复。本文介绍了固定/稳定化方法的作用原理与修复材料,分析了此技术的适用范围及优缺点。文章归纳了近年来固定/稳定化技术在污染土壤修复中的应用成功案例,并结合我国土壤污染的实际状况和修复需求,从加强工程技术与装备研发、优化费用结构和发展环境友好型固定/稳定化技术等角度,提出了固定/稳定化技术应用的优化建议。  相似文献   

5.
李青青  罗启仕  郑伟  李小平 《土壤》2009,41(2):308-314
土壤修复技术的可持续性是评价土壤修复工程的可持续性和选择土壤修复技术的重要依据.本研究以上海某重大工程的污染场地土壤修复为例,运用多标准分析法(MCA),从人体健康、社会、能源消耗以及环境保护等角度,对两种典型的修复技术(原位稳定/固化,异地填埋)的可持续性进行综合分析和评价.结果表明,稳定/固化技术是一种较为经济且环境污染少的可持续的修复方法;填埋技术不仅经济成本较高,而且温室气体排放种类多,对社会的可持续发展较为不利.  相似文献   

6.
Background, Aims and Scope  An out-of-service oil distribution and storage station (ODSS), which operated from 1966 to 2000 in Mexico, is contaminated mainly by gasoline and diesel, showing the presence of methyl-tert-butyl-ether, benzene, toluene, ethyl benzene, and xylenes. Nine of the 16 polycyclic aromatic hydrocarbons were found, as well as Fe, Pb, V, and Zn. The health risk assessment suggested the necessity of reducing of three PAHs [benzo(a)anthracene, benzo(a)pyrene, and benzo-(b)fluoranthene], and vanadium. The aim of this work is to show that soil washing (on-site) and biopiles are excellent remediation methodologies to treat soils contaminated with petroleum derivates and metals. Applying them, it is possible to reach the goal value of 2,000 mg TPH/kg in a few months, as requested by Mexican legislation. Methods  More than 140 m3 were excavated from the ODSS. Three soil-washing dishes were built. 1540 m3 were treated by soil washing using a nonionic surfactant. A 100 m3 biopile was built to study the system capabilities in the biodegradation of around 4,500 mg/kg of TPH using the autochthonous microflora. Results and Discussion  The soil washing, average TPH-removal value was 83%, but values up to ca. 93% were observed. Removal values resulted in a function of the TPH initial values. Biopile (100 m3) worked during 66 days, reaching a TPH-removal value of 85%. At the end of the processes, no PAHs were detected. The contaminated soil was treated successfully, reaching the legislation limits (TPH values under 2,000 mg/kg, and a significant reduction in PAH concentrations). Conclusion and Recommendation  Both systems are suitable for remediation purposes, achieving high removal efficiencies at short and medium stages. It is highly recommended to proceed with soil washing studies, identifying new products, and mixtures, which could reduce costs and assure optimum operation.  相似文献   

7.
In this biological oxygen demand (BOD) study, the manometric respirometric BOD OxiTop® method was used to monitor the biodegradation of two summer grade (SFO 1 and 2) and two winter grade light fuel oils (WFO 1 and 2) in OECD 301 F conditions, in groundwater, and in two different Finnish forest soils (mineral-poor and mineral-rich). The biodegradation measurements in the OECD 301 F conditions were carried out in two nutrient solutions for 28 days. In both solutions WFO 1 reached the highest biodegradation degree, 32% in the solution OECD 301 F, and 70% in a solution containing additional ammonium chloride. In groundwater conditions all the biodegradation degrees of fuel oils remained below 2% within the 28-day period. SFO 1 reached the highest 30 day biodegradability (4%) in mineral-poor soil, 18% in mineral-rich soil. In a 189-day measurement in a mineral-rich soil, the biodegradation degree for the SFO 1 was 94%. The manometric respirometric method proved to be a very suitable and practicable measurement method for the purpose of biodegradation studies of highly volatile light fuel oils, because in this method samples are treated to a lesser degree than in conventional methods, and dilutions are not needed. Results also indicated a considerable effect of conditions on the biodegradability in both water and soil environments. The results of these biodegradation studies could be used when planning in situ treatment methods based on natural biodegradation. In situ treatment methods are eco-efficient, and are especially suitable for sparsely populated sites.  相似文献   

8.
随着城市化快速发展与产业结构的调整,“退二进三”政策的实施以及重污染企业地理位置的变迁,使得多数城市产生大量可再利用再开发的场地。当前场地土壤环境污染状况日益严峻,对场地土壤开展污染物来源识别,成因解析和防控管理等已成为场地土壤污染治理修复的研究重点。基于国内外文献,综述了场地土壤污染物迁移转化过程、风险评估、治理修复等研究进展,发现场地中污染物的来源、输送的“源-汇”关系和不同介质/界面间迁移转化机制等环境行为的综合性研究有待进一步深化;风险评估框架与方法仍具有一定的不全面性和不确定性;绿色可持续联合修复技术已成为土壤修复治理的核心。未来需加强场地土壤“多来源、多途径、多介质、多界面、多尺度”环境过程和机理以及“排放来源、输送途径、迁移转化、动态累积”生态风险评估的系统研究,发展绿色可持续修复功能材料和技术,以期为我国本土场地土壤污染防控管理与修复治理提供依据。  相似文献   

9.
《Applied soil ecology》2006,31(1-2):43-52
A greenhouse pot experiment was conducted for investigating the capability of a grass (annual ryegrass), a legume (summer vetch), and a crucifer (white mustard) to grow in a soil with portions from a former coal gasification site, influence the soil bacterial community, and promote the biodegradation of petrol hydrocarbons (PHCs). Soil concentrations of 1517 mg kg−1 of total petrol hydrocarbons (TPHs), including 71.4 mg kg−1 of total US EPA priority polycyclic aromatic hydrocarbons (TPAHs) have caused a significant (P < 0.05) reduction in shoot and root dry matter yields by more than 50%. Culturable bacteria and actinomycetes in soil were as much as 18-fold more abundant and the species composition was largely altered because of PHC contaminants and depending on crop species and age. After 95 days, 68.7% of initial TPH amounts and 59% of the TPAHs had disappeared from unplanted soil. Mustard and vetch fostered the removal of PHCs from soil reaching final TPH concentrations that were 15.6% and 12% lower than in unplanted soil. Both crops elicited the greatest degradative root activities and sustained particularly great populations of rhizosphere bacteria that are known hydrocarbon degraders. None of the crops aided the reduction of TPAHs in soil.  相似文献   

10.
大环内酯类抗生素在土壤中的迁移转化与毒性效应分析   总被引:5,自引:2,他引:3  
赵英姿  徐振  颜冬云  徐绍辉 《土壤》2014,46(1):23-28
抗生素已成为一种新型土壤环境污染源,为确切评估大环内酯类抗生素对土壤生态环境的影响,对该物质在土壤中的吸附、迁移、降解行为及毒理效应进行了综述,重点分析了大环内酯类抗生素在土壤中的降解过程,主要阐述了微生物与植物对大环内酯抗生素的生物降解作用,旨在为土壤污染防治与修复提供理论依据。  相似文献   

11.
Phytoremediation is a novel treatment option for weathered, hydrocarbon contaminated, flare-pit soil in prairie ecosystems. The remediation potential of six different naturalized prairie plants was assessed by examining their impact on the degradation potential of indigenous bacterial communities. Culture-based and culture-independent microbiological methods were used to determine if mixed plant treatments stimulate different microbial communities and catabolic genotypes in comparison to individual plant species that comprise the mix. DGGE analysis of PCR-amplified 16S rRNA genes revealed that alfalfa (Medicago sativa) had a dominant effect on the structure of rhizosphere microbial communities in mixed plant treatments, stimulating relative increases in specific Bacteroidetes and Proteobacteria populations. Alfalfa and mixes containing alfalfa, while supporting 100 times more culturable PAH degraders than other treatments, exhibited only 10% TPH reduction, less than all planted treatments except perennial rye grass (Lolium perenne). Total petroleum hydrocarbon (TPH) reduction was greatest in single-species grass treatments, with creeping red fescue (Festuca rubra) reducing the TPH concentration by 50% after 4.5 months. Overall TPH reduction throughout the study was positively correlated (p<0.001) to culturable n-hexadecane degraders.  相似文献   

12.
徐金兰  刘博雅 《土壤》2020,52(3):539-544
H_2O_2分次投加可以提高石油烃(total petroleum hydrocarbons,TPH)去除率,本试验选用900 mmol/L H_2O_2分3次投加的方式进行分级Fenton氧化修复长链原油污染土壤。在Fe~(2+)、固相铁、Fe~(2+)+盐酸羟胺、固相铁+盐酸羟胺4种催化体系下进行试验,发现在向Fe~(2+)体系和固相铁体系加入盐酸羟胺后,后两级反应·OH强度明显增强,是未加入盐酸羟胺体系下的3倍~4倍,TPH及长链烃氧化量也大幅提高。采用向Fenton体系中加入盐酸羟胺的方式,克服了分级Fenton氧化过程中由于Fe~(2+)不足导致·OH强度较第一级显著降低、TPH及长链烃氧化量大幅下降的缺陷,促进了后两级反应过程中·OH的产生,从而大大提高了后两级TPH及长链烃的去除效果,使后两级去除效果与第一级接近,能够维持在较高水平,为急需短时间进行的土壤修复提供了一定的理论依据。  相似文献   

13.
土地生物处理过程中多环芳烃降解模型及应用   总被引:8,自引:3,他引:8       下载免费PDF全文
刘凌  崔广柏 《土壤学报》2001,38(4):558-568
土地生物处理能有效降解土壤中有机污染物多环芳烃 (PAHs) ,构建的基于土壤屏蔽反应机理的数学模型能较好的描述该降解过程 ,从而可以预测降解土壤生态系统中PAHs所需的时间、降解程度以及降解结束后被土壤所屏蔽的PAHs的量 ,数学模型在美国Alcoa公司LTU基地的大型土地生物处理工程中得到了验证。利用该数学模型 ,预测了 3,4,5和 6-环 -PAHs的土地生物处理过程及规律  相似文献   

14.
The total petroleum hydrocarbon (TPH) extraction potential of organic solvents including dichloromethane (DCM), pentane, hexane, methanol, ethanol, propanol, and acetone was investigated along with the effect of water content in solvents for their efficiency of extraction. The extent of TPH extraction was analyzed using various extraction schemes (i.e., solvent/solid ratio, treatment time, extraction method, solvent/water ratio) to better understand the physical and chemical factors controlling TPH release from contaminated soils. More TPH was extracted with increasing solvent/solid ratio and increasing time. The extent of TPH extracted also varied depending on the extraction method, solvent type, and solvent/water ratio, but was highest when using the total extraction method and 100% DCM. However, the efficiency of TPH extraction decreased dramatically with the increase in the water content in organic solvents. The results also showed that TPH extraction using DCM was the best option for achieving cost-effective, eco-friendly outcomes along with remediation goals. DCM used in solvent extraction to remediate diesel-contaminated soils showed low toxicity, low cost, high recycling potential, and high efficiency compared to the other solvents tested in this study.  相似文献   

15.
The effects of two different biological treatments on hydrocarbon degradation and on soil biological activities were determined during a 100-d incubation period. An evaluation of soil biological activities as a monitoring instrument for the decontamination process of diesel-oil contaminated soil was made using measurements of organic carbon content, soil microbial respiration, soil ATP and dehydrogenase, β-glucosidase, lipase enzyme activities. Five samples were used: S (control, uncontaminated soil), CS (contaminated soil), SCS (sterilized contaminated soil), CFS (contaminated soil plus N and P), CCS (contaminated soil plus compost). The relationships between soil parameters and the levels of total petroleum hydrocarbons (TPH) residues were investigated. Results showed that inorganic nutrients NP and compost stimulated hydrocarbon biodegradation but not all biological activities to a significant extent. The residual hydrocarbon trend was positively related with that of the organic C content, microbial respiration and with β-glucosydase activity, while both soil lipase and dehydrogenase activities were negatively related with the hydrocarbon trend. Lipase activity was found to be the most useful parameter for testing hydrocarbon degradation in soil.  相似文献   

16.
Journal of Soils and Sediments - The remediation of diesel-contaminated hydrophobic soil is difficult due to the inability of aqueous phase remedial agents to infiltrate the soil. This novel...  相似文献   

17.
Research on oil residuals in lowland forest soil was carried out in 6 sample plots in the lowland forest ecosystem located in an oil field. Four plots were differently affected in terms of discharged oil and the time lapsed after the accident, as well as in terms of micro-relief terrain features. One plot was established in a reclaimed mud ditch site, while the control plot was set up in a micro-relief elevation outside the influence of oil pollution. Total petroleum hydrocarbon (TPH) concentrations were measured at three soil depths at the beginning and the end of the vegetation period. The analysis of the results revealed significant differences in petroleum hydrocarbon concentrations among the sites. Increased TPH concentrations were recorded in several plots, while the values measured in some other plots indicated very low quantities of residual TPH in the soil. The highest average TPH concentrations (200–400 mg kg1) were recorded in the mud ditch site. In one of the plots exposed to oil pollution after an oil pipe rupture, there was the constant presence of increased TPH concentration in the surface soil part (≥200 mg kg1 on average). The sporadic presence of increased TPH concentrations in micro-depressions that cannot be attributed to a local accident indicates seasonal soil pollution with petroleum carbohydrates from floodwater. The soil in the sample plots is not contaminated with soluble salts or heavy metals. Low values of TPH concentrations in the soil water eluate indicate that the soil does not represent a source of hydrospheric pollution with petrol hydrocarbons.  相似文献   

18.
坡面过程、块体移动和土壤侵蚀研究进展   总被引:1,自引:0,他引:1  
Soil erosion and land degradation are global problems and pose major issues in many countries.Both soil erosion and mass movement are two forms of land degradation and humans play important roles in these geomorphological processes.This paper reviews slope processes associated with mass movement and soil erosion and contributory factors,including physical and human agents.Acting together,these cause diverse geomorphological features.Slope processes are illustrated by reference to case studies from Brazil and UK.The causes and impacts of erosion are discussed,along with appropriate remedial bioengineering methods and the potential of the measures to prevent these types of environmental degradation.Although there are several agents of erosion,water is the most important one.Cultivation can promote soil erosion,due to ploughing and harvesting,which moves soil down slopes.Soil erosion and mass movement data would inform the viability of soil conservation practices.Integrated management of drainage basins offers a promising way forward for effective soil conservation and soil remedial bioengineering in Brazil and UK.  相似文献   

19.

Purpose  

In order to provide highly effective yet relatively inexpensive strategies for the remediation of recalcitrant organic contaminants, research has focused on in situ treatment technologies. Recent investigation has shown that coupling two common treatments—in situ chemical oxidation (ISCO) and in situ bioremediation—is not only feasible but in many cases provides more efficient and extensive cleanup of contaminated subsurfaces. However, the combination of aggressive chemical oxidants with delicate microbial activity requires a thorough understanding of the impact of each step on soil geochemistry, biota, and contaminant dynamics. In an attempt to optimize coupled chemical and biological remediation, investigations have focused on elucidating parameters that are necessary to successful treatment. In the case of ISCO, the impacts of chemical oxidant type and quantity on bacterial populations and contaminant biodegradability have been considered. Similarly, biostimulation, that is, the adjustment of redox conditions and amendment with electron donors, acceptors, and nutrients, and bioaugmentation have been used to expedite the regeneration of biodegradation following oxidation. The purpose of this review is to integrate recent results on coupled ISCO and bioremediation with the goal of identifying parameters necessary to an optimized biphasic treatment and areas that require additional focus.  相似文献   

20.
To devise effective procedures for the remediation of soil contaminated by VOCs, an improved understanding of their fate and transport mechanisms in soil is essential. To show the effect of plants on the dissipation of 1,1,1-trichloroethane (TCA), trichloroethylene (TCE) and tetrachloroethylene (PCE), two types of experiments, vial and column, were conducted. The results suggested that keeping the soil moisture content at field capacity is desirable for VOCs dissipation. All VOCs were dissipated quickly in unplanted columns than planted conditions in early periods of the experiment because more volatilization occurred in unplanted conditions. The plants could take up and retard volatile contaminants, and prevent contamination of ambient air. Although the time for acclimation for microbial communities to contaminants for enhanced biodegradation should be considered, phytoremediation is potentially a cost-effective remediation technique for soils contaminated by volatile organic compounds (VOCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号