首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
Phytoextraction of Heavy Metals by Eight Plant Species in the Field   总被引:1,自引:0,他引:1  
Phytoremediation is an in situ, cost-effective potential strategy for cleanup of sites contaminated with trace metals. Selection of plant materials is an important factor for successful field phytoremediation. A field experiment was carried out to evaluate the phytoextraction abilities of six high biomass plants (Vertiveria zizanioides, Dianthus chinensis, Rumex K-1 (Rumex upatientia × R. timschmicus), Rumex crispus, and two populations of Rumex acetosa) in comparison to metal hyperaccumulators (Viola baoshanensis, Sedum alfredii). The paddy fields used in the experiment were contaminated with Pb, Zn, and Cd. Our results indicated that V. baoshanensis accumulated 28 mg kg?1 Cd and S. alfredii accumulated 6,279 mg kg?1 Zn (dry weight) in shoots, with bioconcentration factors up to 4.8 and 6.3, respectively. The resulting total extractions of V. baoshanensis and S. alfredii were 0.17 kg ha?1 for Cd and 32.7 kg ha?1 for Zn, respectively, with one harvest without any treatment. The phytoextraction rates of V. baoshanensis and S. alfredii for Cd and Zn were 0.88 and 1.15%, respectively. Among the high biomass plants, R. crispus extracted Zn and Cd of 26.8 and 0.16 kg ha?1, respectively, with one harvest without any treatment, so it could be a candidate species for phytoextraction of Cd and Zn from soil. No plants were proved to have the ability to phytoextract Pb with high efficiency.  相似文献   

2.
The Nyabugogo natural wetland (Kigali City, Rwanda) receives all kinds of untreated wastewaters, including those from industrial areas. This study monitored heavy metal concentrations (Cd, Cr, Cu, Pb, and Zn) in all environmental compartments of the swamp: water and sediment, the dominant plant species Cyperus papyrus, and fish (Clarias sp. and Oreochromis sp.) and Oligochaetes. Cr, Cu, and Zn concentrations in the water were generally below the WHO (2008) drinking water standards, whereas Cd and Pb were consistently above these limits. Except Cd, all metal concentrations were below the threshold levels for irrigation. The highest metal accumulation occurred in the sediment with up to 4.2 mg/kg for Cd, 68 mg/kg for Cu, 58.3 mg/kg for Pb, and 188.0 mg/kg for Zn, followed by accumulation in the roots of C. papyrus with up to 4.2 mg/kg for Cd, 45.8 mg/kg for Cr, 29.7 mg/kg for Cu, and 56.1 mg/kg for Pb. Except Cu and Zn, other heavy metal (Cd, Cr, and Pb) concentrations were high in Clarias sp., Oreochromis sp., and Oligochaetes. Therefore, there is a human health concern for people using water and products from the swamp.  相似文献   

3.
Two species of sunflower, i.e., Tithonia diversifolia and Helianthus annuus, were investigated for their potential to remove heavy metals from contaminated soils. Dried and mature T. diversifolia (Mexican flower) seeds were collected along roadsides, while H. annuus (sunflower) seeds were sourced from the Department of PBST, University of Agriculture Abeokuta, Nigeria. The contaminants were added as lead nitrate (Pb (NO3)2) and zinc nitrate (Zn (NO3)2) at 400 mg/kg which represents upper critical soil concentration for both Pb and Zn. The results indicated that T. diversifolia mopped up substantial concentrations of Pb in the above-ground biomass compared to concentrations in the roots. The concentrations in the leaf compartment were 87.3, 71.3, and 71.5 mg/kg at 4, 6, and 8 weeks after planting (AP), respectively. In roots, it was 99.4 mg/kg, 97.4 mg/g, and 77.7 mg/kg while 79.3, 77.8, and 60.7 mg/kg were observed in the stems at 4, 6, and 8 weeks AP, respectively. Observations with H. annuus followed the pattern found with T. diversifolia, showing significant (p?<?0.05) accumulation of Pb in the above-ground biomass. Results obtained from Zn contaminated soils showed significant (p?<?0.05) accumulation in the above-ground compartments of T. diversifolia and H. annuus compared with root. However, the highest accumulation of Zn was observed in the leaf. The translocation factor and enrichment coefficient of Pb and Zn with these plant species are greater than 1, indicating that these metals moved more easily in these plants. However, this result also showed that the translocation of Zn from root to the shoot of the two plants was higher than Pb. In conclusion, this experiment showed that these plants accumulated substantial Pb and Zn in their shoots (leaf and stem) at 4 weeks AP which diminished with time. This implies that the efficiency of these plants in cleaning the contaminated soils was at the early stage of their growth.  相似文献   

4.
外源锌对水稻植株镉的累积差异分析   总被引:1,自引:0,他引:1  
通过水稻威优46盆栽种植试验,研究了外源Zn施用(0,40,80,160 mg/kg 4个水平)对Cd中度(0.72mg/kg)和重度(5.26mg/kg)污染土壤中Cd生物有效性及水稻Cd累积的差异。结果表明:施Zn对各检测指标存在影响,但土壤Cd总量仍是土壤Cd活性和水稻Cd累积差异变动的主控因素。在Cd中度污染土壤中,施Zn降低了土壤交换态Cd含量1.9%~17.0%,但水稻根表铁膜、根和糙米中Cd含量随Zn施用浓度的增大而增大,糙米Cd含量从0.09mg/kg上升到0.17mg/kg,相关分析显示糙米Cd含量与土壤交换态Zn含量显著正线性相关。在Cd重度污染土壤中,施Zn增大了土壤交换态Cd含量2.1%~4.8%,但降低了水稻各部位中Cd含量,当施Zn浓度超过80mg/kg时,糙米Cd含量可从对照组的0.45mg/kg降低到0.12mg/kg,符合国家食品污染物限量标准(GB 2762-2017)的要求,相关分析显示糙米Cd含量与土壤交换态Zn含量显著负线性相关。对2种Cd污染程度的土壤,施Zn均可增大Cd在水稻地下部的累积率,从而降低水稻地上部Cd的累积率。在Cd重度污染土壤中,可通过施Zn降低糙米Cd含量,施Zn量80mg/kg是试验中最佳施用量;但在Cd中度污染土壤中,施Zn有增大糙米Cd含量的风险。  相似文献   

5.

Purpose

Effects of phytoextraction by Sedum alfredii H., a native cadmium hyperaccumulator, on metal removal from and microbial property improvement of a multiple heavy metals contaminated soil were studied under greenhouse conditions.

Materials and methods

A rhizobox experiment with an ancient silver-mining ecotype of S. alfredii natively growing in Zhejiang Province, China, was conducted for remediation of a multiple heavy metals contaminated soil. The rhizobox was designed combining the root-shaking method for the separation of rhizospheric vs near-rhizospheric soils and prestratifying method for separation of sublayers rhizospheric soils (0–10 mm from the root) and bulk soil (>10 mm from the root). Soil and plant samplings were carried out after 3 and 6 months of plant growth.

Results and discussion

Cadmium (Cd), zinc (Zn), and lead (Pb) concentrations in shoots were 440.6, 11,893, and 91.2 mg kg?1 after 6 months growth, and Cd, Zn, and Pb removed in the shoots were 0.862, 25.20, and 0.117 mg/plant. Microbial biomass C, basal respiration, urease, acid phosphatase, and invertase activities of the rhizospheric soils were significantly higher than that of unplanted soils after 6 months growth. Microbial biomass carbon (MBC) of 0–2 mm and basal respiration (BR) rate of 0–8 mm sublayer rhizospheric soils were significantly higher than that of bulk soil after 6 months growth. So were the three enzyme activities of 0–4 mm sublayer rhizospheric soils. BR rate and urease were significantly negatively correlated with soluble Cd, so were MBC, acid phosphatase, and intervase activities with soluble Zn, MBC, BR rate, and three enzyme activities with soluble Pb.

Conclusions

Harvesting shoots of S. alfredii could remove remarkable amounts of Cd, Zn, Pb, and lower water-soluble Cd, Zn, and Pb concentrations in the rhizospheric soils. MBC, BR rate, and enzyme activities of the metal polluted soil, especially the rhizospheric soils increased with phytoextraction process, which is attributed to the stimulation of soil microbes by planting as well as the decrease in soil-soluble metal concentration.  相似文献   

6.
Yellow lupin (Lupinus luteus L.), which is grown as a grain legume in rotation with spring wheat (Triticum aestivum L.) on acidic, sandy soils of south-western Australia, accumulates cadmium (Cd) in grain. Application of fertilizer is required to combat zinc (Zn) and phosphorus (P) deficiency for yellow lupin production on these soils, which may affect Cd concentration in grain. In the same field experiment conducted at two sites on acidified sand over clay duplex soils, five Zn levels (0, 0.8, 1.6, 3.2, 6.4 kg Zn ha-1), as Zn oxide, and three P levels (0, 10, and 20 kg P ha-1), as triple superphosphate, were applied. At both sites, applying increasing Zn levels decreased Cd concentration in grain, whereas applying increasing P levels increased Cd concentration in grain. The ZnxP interaction was not significant for either grain yield or Cd concentration in grain. At the 8–10 leaf stage, Zn and P concentration was measured in whole shoots (WS), and Zn concentration was also measured in the youngest mature growth (YMG). The concentrations of the elements that were related to 90% of the maximum grain yield (critical prognostic plant test Zn and P) was i) for WS, 29 mg kg-1for Zn and 3.5 g kg-1for P; and ii) for YMG, was 23 mg kg-1for Zn.  相似文献   

7.
Two varieties of Bechmeria nivea (L.) Gaud. (Ramie), namely, triploid Tri-2 and diploid Xiangzhu-3, were potted with soils from Guangdong for 15 weeks and treated with 10 mmol kg?1 EDTA or EGTA before harvest at 17th week. Lead, Zn, and Cd in plant and soil materials were analyzed, and their potential ecological risk in soils was simultaneously evaluated. These three metals in soils was found to be above 14.4, 3.0, and 29.9 times higher than the national (China) background value, 10.9, 6.19, and 96.7 times higher than the local (Guangdong) background value, and 1.25, 1.20, and 9.67 times higher than the maximum permissible concentration for soils, respectively. An ecological risk analysis of metals using Häkanson's method indicated an extremely high contamination and a significantly high potential ecological risk by these three metals in soils. The both ramie varieties contained respective concentration exceeding the concentration of <10, <80, and <0.27 mg kg?1, respectively, for Pb, Zn, and Cd in normal plants, suggesting they were multimetal tolerant. Tri-2 generally contained higher Pb, Zn, and Cd than Xiangzhu-3. Treatment with EDTA or EGTA applied at 10 mmol kg?1 generally promoted Pb or Cd concentration in both plants while the uptake of Zn was depressed. The ramie variety of Tri-2 and Xiangzhu-3 could extract 0.161 and 0.147 t?ha?1 of Cd, respectively, equaling to the 0.17 t Cd per hectare by Cd-hyperaccumulating species Viola baoshanensis. Therefore, two ramie varieties in this study had a higher extracting potential for removal of Cd from contaminated soils.  相似文献   

8.
朝天委陵菜的重金属耐性与吸收性研究   总被引:1,自引:0,他引:1  
利用植物生长室水培试验和温室土培盆栽试验的方法,研究了朝天委陵菜在不同浓度Pb水培条件下和Cu、Zn、Pb、Cd复合污染土壤条件下的重金属耐性和吸收性,结果表明,水培条件下随着处理浓度的增加,朝天委陵菜均生长良好,虽高浓度Pb处理下出现植株矮小、叶渐黄、根系变黑等毒害症状,但植株并未死亡,表明在水培条件下朝天委陵菜对Pb具有极强的耐性;在最高浓度3 600μmol/L Pb处理下地上部和根中Pb浓度达到最大值,分别为947 mg/kg和71 053 mg/kg。在温室土培盆栽条件下,朝天委陵菜在外加Cu、Zn、Pb和Cd分别为200、1 000、1 000和5 mg/kg的土壤上较对照生长受到抑制,地上部Cu、Zn、Pb和Cd浓度分别达到741±164、18 248±2 222、1 543±483和29.4±5.2 mg/kg;外加重金属更高时则导致植株死亡。朝天委陵菜对Pb胁迫和Cu、Zn、Pb、Cd复合污染土壤具有较强的耐受性,可作为重金属尤其是Pb污染土壤的修复植物。  相似文献   

9.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

10.
Mining activities generate spoils and effluents with extremely high metal concentrations of heavy metals that might have adverse effects on ecosystems and human health. Therefore, information on soil and plant metal concentrations is needed to assess the severity of the pollution and develop a strategy for soil reclamation such as phytoremediation. Here, we studied soils and vegetation in three heavily contaminated sites with potential toxic metals and metalloids (Zn, Pb, Cd, As, TI) in the mining district of Les Malines in the Languedoc region (southern France). Extremely high concentrations were found at different places such as the Les Aviniéres tailing basins (up to 160,000 mg kg?C1 Zn, 90,000 mg kg?C1 Pb, 9,700 mg kg?C1 of As and 245 mg kg?C1 of Tl) near a former furnace. Metal contamination extended several kilometres away from the mine sites probably because of the transport of toxic mining residues by wind and water. Spontaneous vegetation growing on the three mine sites was highly diversified and included 116 plant species. The vegetation cover consisted of species also found in non-contaminated soils, some of which have been shown to be metal-tolerant ecotypes (Festuca arvernensis, Koeleria vallesiana and Armeria arenaria) and several Zn, Cd and Tl hyperaccumulators such as Anthyllis vulneraria, Thlaspi caerulescens, Iberis intermedia and Silene latifolia. This latter species was highlighted as a new thallium hyperaccumulator, accumulating nearly 1,500 mg kg?C1. These species represent a patrimonial interest for their potential use for the phytoremediation of toxic metal-polluted areas.  相似文献   

11.
Heavy metal accumulations in Salic Fluvisols of the southern North Sea coast The total contents of Cd, Pb, Cu and Zn (HNO3 bomb digestion) and their EDTA extractable fractions in Salic Fluvisols were investigated. The mean total content of Cd was 0,09 mg/kg, of Pb 44,1 mg/kg, of Cu 11,4 mg/kg and of Zn 105,6 mg/kg. Mostly the highly developed soils showed higher contents than poorly developed ones. The EDTA extractable fractions were comparatively small: they were 59% (Cd), 44% (Pb), 15% (Cu) and 10% (Zn) of the total content. The heavy metal contents of the soils in Elisabeth-Außengroden were higher than of those in Jadebusen. The vertical heavy metal distribution showed a different sedimentation pattern over the last hundred years. Compared with the geological background values Cd was 2- to 3-fold enriched, Pb 7-fold, Cu 3- to 4-fold and Zn 3-fold in soils with high sedimentation rates. Even higher values are likely in soils with smaller sedimentation rates.  相似文献   

12.
Phytoextraction is a promising technology that uses hyperaccumulating plants to remove inorganic contaminants, primarily heavy metals, from soils and waters. A field experiment was conducted to evaluate impacts of a mixture of chelators (MC) upon the growth and phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance in a co-planting system in a paddy soil that was historically irrigated with Pb and Zn contaminated mining wastewaters. The co-planting system used in this study was comprised of a Zn- and Cd-hyperaccumulator (S. alfredii) and a low-accumulating crop (Zea mays). Results showed that yields of S. alfredii were significantly increased with the addition of the MC and by co-planting with Z. mays. Our study further revealed that concentrations of Zn, Pb, and Cd in the corn grains of Z. mays conform to the Chinese hygiene standards for animal feeds and in the other parts of Z. mays conform to the Chinese organic fertilizer standards. The uptake of Zn, Cd, and Pb by S. alfredii was significantly increased with the addition of MC. The uptake of Zn by S. alfredii was also significantly enhanced by co-planting with Z. mays, but the interaction between MC and co-planting was not significant, meaning the effects of the two types of treatments should be additive. When the MC was applied to the co-planting system in the soil contaminated with Zn, Cd, and Pb, the highest phytoextraction rates were observed. This study suggested that the use of the hyperaccumulator S. alfredii and the low-accumulating crop Z. mays in the co-planting system with the addition of the MC was a more promising approach than the use of a single hyperaccumulator with the assistance of EDTA (ethylenediaminetetraacetic acid). This approach not only enhances the phytoextraction rates of the heavy metals but also simultaneously allows agricultural practices with safe feed products in the metal-contaminated soils.  相似文献   

13.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

14.
Bioaccumulation of trace metals in plant tissues can present a health risk to wildlife, and potentially to humans. The Passamaquoddy tribe in Maine was concerned about health risks of cadmium (Cd) because of a health advisory for moose liver and kidney consumption due to high Cd levels. This study found relatively low to moderate concentrations of Cd, nickel (Ni), lead (Pb), and zinc (Zn) concentrations in four common terrestrial moose browse species, associated forest soils, and two species of aquatic vegetation on Passamaquoddy tribal land in eastern Maine. Terrestrial plant tissue concentrations ranged from 0.1 to 1.97, 0.65 to 7.08, 0.29 to 2.0, and 42 to 431 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Deciduous species, particularly aspen and birch, may be a more significant source of Cd and Zn to wildlife compared to coniferous or aquatic species. Aquatic plant tissue concentrations ranged from 0.11 to 0.14, 0.46 to 1.01, 0.8 to 0.9, and 22 to 41 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Total O horizon concentration means for coniferous and deciduous were 0.50 and 1.00, 4.27 and 4.11, 55 and 21, and 55 and 167 mg kg?1 for Cd, Ni, Pb and Zn, respectively. The study provides baseline vegetation and soil trace metal concentrations for a remote region in Maine impacted by non-point sources.  相似文献   

15.
The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035?C0.953 mg g?1 Hg, 6.5?C250.3 mg g?1 Cu, 0.059?C0.245 mg g?1 Pb, 0.004?C0.066 mg g?1 Cd, and 31.8?363.1 mg g?1 Zn in roots and 0.033?C0.888 mg g?1 Hg, 2.2?C70.7 mg g?1 Cu, 0.005?C0.086 mg g?1 Pb, 0.001?C0.03 mg g?1 Cd, and 12.6?C140.4 mg g?1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.  相似文献   

16.
The total content and content of mobile forms of potential soil pollutants (Cd, Pb, Zn, Cu, Sr, F, S) are determined in the topsoil in the impact zone of a cement plant and phosphorus fertilizer factory. The total concentration of Cd (4.0 mg/kg), Pb (99.4 mg/kg), F (15.2 mg/kg), and S (479.6 mg/kg) is found to exceed the established maximum permissible concentrations (MPC, APC). The local concentration maximum of the major pollutants is observed at a distance of 0.5 and 1.0 km away from a phosphogypsum stack. Comparing sampling plots equidistant from the pollution source reveals that alluvial soils have accumulated 1.5–2 times more total forms of Cd, Pb, Zn, Cu, S than agrosod podzolic soils.  相似文献   

17.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

18.
Abstract

Athyrium yokoscense, a type of fern that grows vigorously in mining areas in Japan, is well known as a Cd hyperaccumulator as well as a Cu, Pb and Zn tolerant plant. However, no information is available on As accumulation of A. yokoscense, although it often grows on soils containing high levels of both heavy metals and As. In this study, young ferns collected from a mine area were grown in media containing As-spiked soils or mine soil in a greenhouse for 21 weeks. Athyrium yokosense was highly tolerant to arsenate and survived in soils containing up to 500 mg As (V) kg?1. The addition of 100 mg As (V) kg?1 resulted in the highest fern biomass (1.95 g plant?1) among As-spiked soils. Although the As concentration of the fern was lower than other As hyperaccumulators, such as Pteris vittata, A. yokoscense could hyperaccumulate As in mature and old fronds. Arsenic was accumulated most efficiently in old fronds (922 mg kg?1) in the media containing 5 mg As (III) kg?1. Moreover, higher As accumulation was found in the roots of the ferns, with a range from 506 to 2,192 mg kg?1. In addition, in the mine soil with elevated concentrations of As and heavy metals, A. yokoscense not only hyperaccumulated As (242 mg As kg?1 in old fronds), but also accumulated Cd, Pb, Cu and Zn at concentrations much higher than those reported for other terrestrial plants. Athyrium yokoscense accumulated Cd mostly in fronds in high concentrations, up to 1095 mg kg?1, while it accumulated Cu, Zn and Pb mainly in the roots and the concentrations were 375, 2040 and 1165 mg kg?1, respectively.  相似文献   

19.
A slightly modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (BCR) for analysis of sediments was successfully applied to soil samples. Contaminated soil samples from the lead and zinc mining area in the Mezica valley (Slovenia) and natural soils from a non-industrial area were analysed. The total concentrations of Cd, Pb and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS). Total metal concentrations in natural soils ranged from 0.3 to 2.6 mg kg-1 for Cd, from 20 to 45 mg kg-1 for Pb and from 70 to 140 mg kg-1 for Zn, while these concentrations ranged from 0.5 to 35 mg kg-1 for Cd, from 200 to 10000 mg kg-1 for Pb and from 140 to 1500 mg kg-1 for Zn in soils from contaminated areas. The results of the partitioning study applying the slightly modified BCR three-step extraction procedure indicate that Cd, Pb and Zn in natural soils prevails mostly in sparingly soluble fractions. Cd in natural soils is bound mainly to Fe and Mn oxides and hydroxides, Pb to organic matter, sulphides and silicates, while Zn is predominantly bound to silicates. In contaminated soils, Cd, Pb and Zn are distributed between the easily and sparingly soluble fractions. Due to the high total Cd, Pb and Zn concentrations in contaminated soil close to the smelter, ! and their high proportions in the easily soluble fraction (80% of Cd, 50% of Pb and 70% of Zn), the soil around smelters represents an environmental hazard.  相似文献   

20.
Abstract

This experiment evaluated the capacity of two species, Indian mustard (Brassica juncea Czern.) and tall fescue (Festuca arundinacea Schreb.) to extract zinc (Zn) from soils. Also, this experiment focused on using nitrogen (N) fertilizers to increase the phytoextraction of Zn. Two soils of the Hadley series (Typic Udifluvents) were studied. A treatment array of Zn concentrations in soils was supplied as zinc sulfate. Nitrogen was supplied at 200 mg N/kg of soil as calcium nitrate, urea, or compost. Two successive plantings of Indian mustard in the same media were grown until flowering and harvested. Fescue was grown from seeding to a height of 15 cm, harvested, grown again in the same media to a height of 15 cm, and harvested again. After the second harvests of Indian mustard and fescue, soil samples were taken for analysis of extracts with water and with Morgan's solution. Indian mustard was grown with Zn additions ranging from 0 to 100 mg/kg soil. The shoot mass of Indian mustard in both harvests increased to a soil‐Zn level of 25 mg/kg and then decreased. Although growth decreased as the soil‐Zn levels increased beyond 25 mg/kg, Zn concentration and total accumulation increased linearly as the soil‐Zn levels increased. Zinc concentration and accumulation in Indian mustard were highest in soils amended with urea and were lowest in soils with no fertilizer. Fescue was grown with Zn additions ranging from 0 to 1000 mg/kg soil. The shoot mass of fescue increased to a soil‐Zn level of 125 mg/kg (harvest 1) or 250 mg/kg (harvest 2) and then decreased as the soil‐Zn levels increased. Concentration and accumulation of Zn in fescue increased linearly as the soil‐Zn levels increased. Zinc concentration and accumulation were highest in fescue grown in soils amended with urea and lowest in soils with no fertilizer. The highest accumulation of Zn in fescue (3800 mg/pot) occurred at 1000 mg Zn/kg soil. Highest concentrations of soil Zn were extracted with Morgan's solution or water from soils amended with urea, regardless of the species grown in the soils. Lowest concentrations of Zn were extracted from soils with no fertilizer added, regardless of extract or species. In general, if fertilizers (calcium nitrate, urea, or compost) were added to the soils, the pH decreased. Fescue was easy to grow, tolerated much higher soil‐Zn levels than Indian mustard in this research, and could be a species useful for phytoextraction of Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号